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Abstract

We analyze a multiserver queue with a discrete autoregressive process of order 1 (DAR(1))

as an input. DAR(1) is a good mathematical model for VBR-coded teleconference traffic.

Based on matrix analytic methods and the theory of Markov regenerative processes, we

obtain the stationary distributions of the system size and the waiting time of an arbitrary

packet. Numerical examples illustrate the quantitative effect of the stationary distribution

and the autocorrelation function of input traffics on system performance.
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1 Introduction

The discrete autoregressive process of order 1 (DAR(1)) is known to be a good model for VBR-

coded teleconference traffic (see [1]) and it is mathematically tractable for queueing models (see

[4, 5]). Moreover, it is described by a few parameters and it is easy to match the probability

distribution and the decay rate of the autocorrelation function of DAR(1) with those of the

measured real traffic.

Recently, Hwang and Sohraby [4] and Hwang et al. [5] analyzed a discrete time single server

queue with DAR(1) input. Hwang and Sohraby [4] obtained a closed form expression for the sta-

tionary probability generating function of the system size. Hwang et al. [5] obtained the waiting

time distribution whose derivation was based on the analysis of the waiting time distribution of

the discrete GI/G/1 queue.

Kamoun and Ali [6] modeled an ATM multiplexer as a discrete time multiserver queueing

system with on-off sources, and studied the transient and stationary distribution of the number

of packets in the system.

In this paper, we consider the same multiserver ATM multiplexer as in [6], but with VBR-

coded teleconference traffic input. Here we model the multiplexer as a discrete time multiserver

queue with a DAR(1) input. We construct a Markov process at embedded epochs (see {(Nk, Jk) :

k = 0, 1, 2, · · ·} in Section 3) whose matrix of one-step transition probabilities has M/G/1 type,

and calculate the stationary distribution of the constructed Markov process by matrix analytic

methods. From the stationary distribution of this Markov process, we calculate the stationary

distributions of the system size and the waiting time. Note that our approach is different from

that of Hwang and Sohraby [4] and Hwang et al. [5], and so our work is a nontrivial extension of
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[4, 5]. Numerical examples support the intuitive fact that the distributions for the system size

and the waiting time increase stochastically when either the decay rate of the autocorrelation

function of input traffics or the variance of a batch arriving in a slot increases.

2 Discrete autoregressive process of order 1 (DAR(1))

Let {B(t) : t = 0, 1, 2 · · ·} be a sequence of i.i.d. random variables. We assume that B(t)

takes nonnegative integer values and denote bm = P{B(t) = m}, m = 0, 1, 2, · · ·. Discrete

Autoregressive Process of order 1 (abbreviated by DAR(1)) {X(t) : t = 0, 1, 2, · · ·} is defined by

the regression equation

X(0) = B(0),

X(t) = (1− α(t))X(t− 1) + α(t)B(t), t = 1, 2, 3, · · · ,

where {α(t) : t = 1, 2, 3, · · ·} are i.i.d. Bernoulli random variables with P{α(t) = 0} = β

(0 ≤ β < 1) and P{α(t) = 1} = 1− β, and {α(t) : t = 1, 2, 3 · · ·} is assumed to be independent

of {B(t) : t = 0, 1, 2 · · ·}. Note that DAR(1) is determined by parameter β and distribution

{bm : m = 0, 1, 2, · · ·} of B(t).

The following properties are known for DAR(1) (see, for example, [5]).

• {X(t) : t = 0, 1, 2 · · ·} is stationary.

• The probability distribution of X(t) is the same one as the distribution of B(t), i.e.,

P{X(t) = m} = bm, m = 0, 1, 2, · · · .
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• The autocorrelation function r(t) for {X(t)} is given by

r(t) =
Cov(X(0), X(t))

Var(X(0))
= βt, t = 0, 1, 2, · · · . (1)

Note that the parameter β is related to the decay rate of the autocorrelation function.

3 Analysis of the DAR(1)/D/c queue

We consider the discrete time DAR(1)/D/c queue, where the time is divided into slots of equal

size and one slot is needed to serve a packet by a server. We assume that packet arrivals occur at

the beginning of slots and departures occur at the end of slots. A DAR(1) {X(t) : t = 0, 1, 2 · · ·}

represents packet arrivals so that X(t) is the number of packets arriving at the beginning of the

tth slot.

We analyze the DAR(1)/D/c queue. Let N(t) be the number of packets in the system (we call

it system size) immediately before arrivals at the beginning of the tth slot. Then {(N(t), X(t)) :

t = 0, 1, 2, · · ·} is a Markov process. Note that the Markov process {(N(t), X(t)) : t = 0, 1, 2, · · ·}

has M/G/1 type [7]. But, it is not easy to calculate the stationary distribution of {(N(t), X(t)) :

t = 0, 1, 2, · · ·} itself, because the number of phases is infinity. So, we find the stationary

distribution of the Markov process {(N(t), X(t)) : t = 0, 1, 2, · · ·} by introducing a new Markov

process at the embedded epochs {τk : k = 0, 1, 2, · · ·} defined below. Let 0 = τ0 < τ1 < τ2 < · · ·

be the epochs defined by

τk =





0, k = 0,

inf{t > τk−1 : α(t) = 1 or 0 ≤ X(t) ≤ c− 1}, k = 1, 2, · · · .
(2)
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Let

Nk = N(τk), k = 0, 1, 2, · · · ,

J0 = c,

Jk =





X(τk), if α(τk) = 0,

c, if α(τk) = 1,
k = 1, 2, 3, · · · .

Note that packet arrivals at and after τk are independent of the information prior to τk given Jk.

From this, it is observed that {(Nk, Jk) : k = 0, 1, 2, · · ·} is a Markov process with state space

E = {0, 1, 2, · · ·} × {0, · · · , c}, and that the Markov process {(Nk, Jk) : k = 0, 1, 2, · · ·} has the

following transition probabilities.

• For n = 0, 1, 2, · · · and i = 0, · · · , c− 1,

(n, i) →





(max{n− c + i, 0}, i) with probability β,

(max{n− c + i, 0}, c) with probability 1− β.

• For n = 0, 1, 2, · · · ,

(n, c) →





(max{n− c + i, 0}, i) with probability biβ, 0 ≤ i ≤ c− 1,

(n− c + i, c) with probability bi(1− β), c− n + 1 ≤ i ≤ c− 1,

(0, c) with probability
∑min{c−n,c−1}

i=0 bi(1− β) + g0δn0,

(n + l, c) with probability gl, l ≥ 0, n + l > 0,

where

δn0 =





1 if n = 0,

0 if n ≥ 1,

g0 = bc,

gl =
∑

i|l
bi+c(1− β)β

l
i
−1, l = 1, 2, · · · .
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Therefore, the Markov process {(Nk, Jk) : k = 0, 1, 2, · · ·} has the M/G/1 type structure (see

[7]) of the one step transition probability matrix P :

P =




Bc Ac+1 Ac+2 · · ·

Bc−1 Ac Ac+1 Ac+2 · · ·
...

...
...

...

B1 A2 A3 A4 A5 · · ·

A0 A1 A2 A3 A4 A5 · · ·

A0 A1 A2 A3 A4 A5 · · ·

A0 A1 A2 A3 A4 A5 · · ·
. . . . . . . . . . . . . . . . . .




,

where

Ai =

0 · · · i · · · c

0

...

i

...

c




0 · · · 0 · · · 0

...
...

...

0 · · · β · · · 1− β

...
...

...

0 · · · hiβ · · · hi(1− β)




,
0 ≤ i ≤ c− 1,

Ai =

0 · · · c

0

...

c




0 · · · 0

...
...

0 · · · gi−c




,
i ≥ c,

Bi =
i∑

j=0

Aj , 1 ≤ i ≤ c.

6



We assume that the stability condition

λ , E[X(t)] =
∞∑

m=1

mbm < c

is satisfied. Then, by matrix analytic methods in [7], the limiting probabilities (hence the

stationary probabilities) of {(Nk, Jk) : k = 0, 1, 2, · · ·}

πni = lim
k→∞

P{Nk = n, Jk = i}, n ≥ 0, 0 ≤ i ≤ c,

are calculated as follows:

1. Set

Ãn =




Acn Acn+1 · · · Ac(n+1)−1

Acn−1 Acn · · · Ac(n+1)−2

...
...

. . .
...

Ac(n−1)+1 Ac(n−1)+2 · · · Acn




, n = 0, 1, 2, · · · ,

where Al = O for l < 0. Set

B̃0 =




Bc Ac+1 · · · A2c−1

Bc−1 Ac · · · A2c−2

...
...

. . .
...

B1 A2 · · · Ac




,

B̃n = Ãn+1, n = 1, 2, · · · .

2. Find the minimal nonnegative solution G of the matrix equation

G =
∞∑

n=0

ÃnGn.
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For example, G is given by the iteration

G0 = O,

Gl+1 =
∞∑

n=0

ÃnGn
l , l = 0, 1, 2, · · · .

Set

K =
∞∑

n=0

B̃nGn.

3. Find a positive row vector κ satisfying

κK = κ.

4. Set

x0 = κ,

xn =

(
x0

∞∑

i=0

B̃n+iG
i+

n−1∑

l=1

xl

∞∑

i=0

Ãn−l+i+1G
i

)(
I−

∞∑

i=0

Ãi+1G
i

)−1

, n = 1, 2, · · · .

5. Finally,

((πnc,0, · · · , πnc,c), · · · , (π(n+1)c−1,0, · · · , π(n+1)c−1,c)) = Cxn, n = 0, 1, 2, · · · ,

where C−1 =
∑∞

n=0 xne and e is the c(c+1)-dimensional column vector whose components

are all ones.

Now we find the stationary distribution of the Markov process {(N(t), X(t)) : t = 0, 1, 2, · · ·}.

Observe that {((Nk, Jk), τk) : k = 0, 1, 2, · · ·} is a Markov renewal sequence (see p. 479 in [8]) and

that {(N(t + τk), X(t + τk)) : t = 0, 1, 2, · · ·} given {(N(u), X(u)), 0 ≤ u < τk, (Nk, Jk) = (n, i)}
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is stochastically equivalent to {(N(t), X(t) : t = 0, 1, 2, · · ·} given {(N0, J0) = (n, i)}. Hence

{(N(t), X(t)) : t = 0, 1, 2, · · ·} is a discrete time Markov regenerative process (see Definition 3

in Appendix) with the Markov renewal sequence {((Nk, Jk), τk) : k = 0, 1, 2, · · ·}.

By Theorem 4 in Appendix, the limiting probabilities (hence the stationary probabilities)

pnj = limt→∞ P{(N(t), X(t)) = (n, j)}, n, j = 0, 1, 2, · · ·, of {(N(t), X(t)) : t = 0, 1, 2, · · ·} are

given by

pnj =

∑∞
l=0

∑c
i=0 πliE

[∑τk+1−1
t=τk

1{(N(t),X(t))=(n,j)}
∣∣∣ (Nk, Jk) = (l, i)

]
∑∞

l=0

∑c
i=0 πliE [τk+1 − τk| (Nk, Jk) = (l, i)]

. (3)

Observe that

E




τk+1−1∑
t=τk

1{(N(t),X(t))=(n,j)}

∣∣∣∣∣∣
(Nk, Jk) = (l, i)




=





1 if i = j, 0 ≤ i ≤ c− 1 and n = l,

bj if i = c, 0 ≤ j ≤ c− 1 and n = l,

bc
1−β if i = c, j = c and n = l,

bjβ
n−l
j−c if i = c, j > c, n ≥ l and j − c divides n− l,

0 otherwise.

Therefore the numerator of the right hand side of (3) is




πnj + πncbj , 0 ≤ j ≤ c− 1,

πnc bc
1−β , j = c,

∑
j

n
j−c

k
i=0 πn−i(j−c),cbjβ

i, j ≥ c + 1.

Observe that

E[τk+1 − τk|(Nk, Jk) = (l, i)] =





1 if 0 ≤ i ≤ c− 1,

∑c−1
s=0 bs +

∑∞
s=c bs

1
1−β if i = c.
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Therefore the denominator of the right hand side of (3) is

∞∑

l=0

c−1∑

i=0

πli +
∞∑

l=0

πlc

(
c−1∑

s=0

bs +
∞∑

s=c

bs
1

1− β

)
. (4)

Observe that (
∑∞

l=0 πl0, · · · ,
∑∞

l=0 πlc) is the stationary probability vector of the Markov process

{Jk : k = 0, 1, 2, · · ·} whose transition probability matrix is

(P (Jk+1 = j|Jk = i))0≤i,j≤c =




β 0 · · · 0 1− β

0 β · · · 0 1− β

...
...

. . .
...

...

0 0 · · · β 1− β

βb0 βb1 · · · βbc−1 1− β
∑c−1

s=0 bs




.

By solving the balance equations for the stationary distribution of the Markov process {Jk : k =

0, 1, 2, · · ·}, we obtain

∞∑

l=0

πli =





βbi

1−β
P∞

s=c bs
, 0 ≤ i ≤ c− 1,

1−β
1−β

P∞
s=c bs

, i = c.

(5)

By substituting (5) into (4), we obtain the denominator of the right hand side of (3) as

(1− β
∑∞

s=c bs)
−1.

Thus, we have the following theorem.

Theorem 1 The limiting probabilities (hence the stationary probabilities)

pnj = limt→∞ P{(N(t), X(t)) = (n, j)}, n, j = 0, 1, 2, · · ·, of {(N(t), X(t)) : t = 0, 1, 2, · · ·} are

given by

pnj =





µ−1(πnj + πncbj), 0 ≤ j ≤ c− 1,

µ−1 πncbc
(1−β) , j = c,

µ−1
∑
j

n
j−c

k
i=0 πn−i(j−c),c bjβ

i, j ≥ c + 1,
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where µ−1 = 1− β
∑∞

s=c bs.

Now we find the stationary distribution of the waiting time of a packet. Let W denote the

waiting time of an arbitrary packet at steady state. Then for w = 0, 1, 2, · · ·,

P (W = w)

=
Mean number of arrivals in a slot at steady state whose waiting time is w

Mean number of arrivals in a slot
. (6)

Suppose that there are n packets immediately before arrivals at the beginning of the tth slot

and that the number of packet arrivals is j at the beginning of the tth slot, i.e., N(t) = n and

X(t) = j. Then the number of packets whose waiting time is w among the ones who arrive at

the beginning of the tth slot is




min{c(w + 1)− n, j}, cw < n < c(w + 1),

min{n + j − cw, c}, n ≤ cw < n + j,

0, otherwise.

Therefore the mean number of arrivals in a slot at steady state whose waiting time is w is

cw∑

n=0

∞∑

j=cw−n+1

pnj min{n+j−cw, c}+
c(w+1)−1∑

n=cw+1

∞∑

j=1

pnj min{c(w+1)−n, j}

Since the mean number of arrivals in a slot is λ, the following theorem is obtained from (6).

Theorem 2 The distribution of the waiting time W of an arbitrary packet is given by

P (W = w)

=
1
λ




cw∑

n=0

∞∑

j=cw−n+1

pnj min{n+j−cw, c}+
c(w+1)−1∑

n=cw+1

∞∑

j=1

pnj min{c(w+1)−n, j}

 ,

w = 0, 1, 2, · · · .
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Figure 1: Complementary distribution function of the stationary system size, when m = 1

4 Numerical Examples

It is shown that the stationary distribution of VBR-coded video teleconference traffics is a

negative binomial distribution [1, 2, 3]. For numerical examples, we choose negative binomial

distributions as the stationary distribution of DAR(1), i.e.,

bk =




k + m− 1

m− 1


 qm(1− q)k, k = 0, 1, 2, · · · .

Here mean and variance of the negative binomial distribution are m× 1−q
q and m× 1−q

q2 , respec-

tively. To get a fixed mean number 3.5 of the negative binomial distribution for various values

of m, let m × 1−q
q = 3.5 so that q = 2m

2m+7 . Then the variance is m × 1−q
q2 = 3.5 + 49

4m . Let the

number of servers is c = 5. Note that the offered load is λ
c = 0.7.

Figure 1 and Figure 2 display the complementary distribution functions of the stationary
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Figure 2: Complementary distribution function of the waiting time of an arbitrary packet, when

m = 1.

system size and the waiting time of an arbitrary packet, respectively, when m = 1 and β = 0.1,

0.3, 0.5, 0.7 and 0.9. From (1), the parameter β gives information on the strength of correlation

of the input process. The larger the parameter β is, the slower the decay of the autocorrelation

of the input process is. So it is expected that stationary system size and waiting time for the

case of large β (for example, β = 0.9) are stochastically larger than those for the case of small

β (for example, β = 0.1). Figure 1 and Figure 2 support this intuitive fact.

Figure 3 and Figure 4 display the complementary distribution functions of the stationary

system size and waiting time of an arbitrary packet, respectively, when β = 0.3 and m = 1, 2, 3

and 4. It is intuitive that stationary system size and waiting time for the case that the stationary

distribution of the input process has a large variance (for example, m = 1) are stochastically

larger than those for the case that the stationary distribution of the input process has a small
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Figure 3: Complementary distribution function of the stationary system size, when β = 0.3.

variance (for example, m = 4). Figure 3 and Figure 4 support this intuitive fact.

5 Conclusions

In the paper, we analyze a multiserver queue fed by a DAR(1) input which is a good mathe-

matical model for a multiserver ATM multiplexer with VBR-coded teleconferece traffic input.

Based on matrix analytic methods and the theory of Markov regenerative processes, we obtain

the stationary distributions of the system size and the waiting time of an arbitrary packet. Nu-

merical examples show that the distributions for the system size and the waiting time increase

stochastically when either the decay rate β of the autocorrelation function of input traffics or

the variance of a batch arriving in a slot increases.
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β = 0.3.

APPENDIX

We deal with the discrete time version of Markov regenerative processes. For the (continuous

time) Markov regenerative processes, see for example p.525-532 in [8].

Definition 3 A discrete time process {Z(t) : t = 0, 2, 3, · · ·} is a discrete time Markov regener-

ative process if there exists a Markov renewal sequence {(Yk, Sk) : k = 0, 1, 2, · · ·} such that all

conditional finite dimensional distributions of {Z(t + Sk) : t = 0, 1, 2, · · ·} given {Z(u), 0 ≤ u <

Sk, Yk = i} are the same as those of {Z(t) : t = 0, 1, 2, · · ·} given {Y0 = i}.

The following is a limit theorem for discrete time Markov regenerative processes, which is

proved by similar procedure as its continuous counterpart. See p.527 in [8] for the continuous

counterpart.
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Theorem 4 Let {Z(t) : t = 0, 1, 2 · · ·} be a discrete time Markov regenerative process on the

countable state space S with Markov renewal sequence {(Yk, Sk) : k = 0, 1, 2, · · ·}. Let E be the

countable state space of the Markov process {Yk : k = 0, 1, 2, · · ·} and for i ∈ E and j ∈ S,

µi = E[S1|Y0 = i],

αij = E

[
S1−1∑

t=0

1{Z(t)=j}

∣∣∣∣∣Y0 = i

]
.

Suppose that the discrete time semi-Markov process {Y (t) : t = 0, 1, 2, · · ·} defined by Y (t) = Yk

for Sk ≤ t < Sk+1 is irreducible, aperiodic and positive recurrent. Then for k ∈ E and j ∈ S,

lim
t→∞P{Z(t) = j|Y0 = k} =

∑
i∈E πiαij∑
i∈E πiµi

,

where π = (πi)i∈E is a stationary measure of the Markov process {Yk : k = 0, 1, 2, · · ·}.
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