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Abstract

Rosenkrantz et al. (SIAM J. Comput. 6 (1977) 563) and Johnson and Papadimitriou (in: E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan, D.B. Shmoys (Eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley,
Chichester, 1985, pp. 145–180, (Chapter 5)) constructed families of TSP instances with n cities for which the nearest
neighbor rule yields a tour-length that is a factor �(log n) above the length of the optimal tour.

We describe two new families of TSP instances, for which the nearest neighbor rule shows the same bad behavior. The
instances in the <rst family are graphical, and the instances in the second family are Euclidean. Our construction and our
arguments are extremely simple and suitable for classroom use.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The traveling salesman problem (TSP) is a funda-
mental and well-known problem in combinatorial op-
timization; see for instance the book [3] by Lawler et
al. An instance of the TSP consists of n cities 1; 2; : : : ; n
together with the distances d(i; j) for 16 i; j6 n.
Throughout this note, we will assume that the dis-
tances are symmetric and hence satisfy d(i; j)=d(j; i)
for all 16 i; j6 n. Moreover, we will assume that
the distances satisfy the triangle inequality d(i; k) +
d(k; j)¿d(i; j) for all 16 i; j; k6 n. A partial tour
is a path that visits each of the cities at most once. A
tour visits each of the n cities exactly once, and in the
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end returns to its starting point. The objective in the
TSP is to <nd a tour of minimal length.
The nearest neighbor rule (NNR) is a fast and sim-

ple heuristic for constructing a TSP tour. NNR starts
with an arbitrarily chosen city x1 as partial tour. Then
NNR repeats the following step for k = 1; : : : ; n − 1:
If the current partial tour is x1; : : : ; xk , then let xk+1 be
the city closest to xk subject to the condition that xk+1

is not already contained in the partial tour; ties are
broken arbitrarily. In the end, the NNR tour returns
from city xn to city x1. The partial tour constructed
after a number of steps of NNR is called a partial
NNR tour. Subsequently one should note the follow-
ing: If a partial NNR tour x1; : : : ; xp is given and the
points xp+1; xp+2; : : : ; xq are yet unvisited, and if the
partial tour xp; : : : ; xq can appear as a partial NNR tour,
then the partial tour x1; : : : ; xq can appear as a partial
NNR tour.
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Fig. 1. The graph G3 with its three special vertices ‘3, r3, and m3.

Rosenkrantz et al. [4] prove that if the distances
d(i; j) are symmetric and satisfy the triangle inequal-
ity, then the length of an NNR tour is at most O(log n)
above the length of the optimal tour (all logarithms in
this paper are logarithms to the base 2). Moreover [4]
exhibit instances for which the length of some NNR
tour is a factor 1

3 log n above the length of the optimal
tour. Johnson and Papadimitriou [2] construct slightly
simpler TSP instances that show the same bad lower
bound behavior for NNR.

1.1. Contributions of this note

We construct two extremely simple families of TSP
instances for which the length of some NNR tour is a
factor �(log n) above the length of the optimal tour.
Whereas the arguments in [4,2] are quite involved, our
arguments are simple and suitable for classroom use.
The TSP instances in the <rst family are graphical:

The distances result from an underlying undirected
graphG=(V; E) with V={1; 2; : : : ; n} such that d(i; j)
is the length of the shortest path from vertex i to ver-
tex j in G. All graphical instances satisfy the triangle
inequality, but not all instances that satisfy the trian-
gle inequality are graphical. In particular, the instances
constructed in [4,2] are non-graphical. The construc-
tion for the graphical TSP is given in Section 2. The
TSP instances in the second family are Euclidean: The
cities are points in the Euclidean plane, and the dis-
tance d(i; j) between cities i and j is just the Euclidean
distance between the corresponding points. The con-
struction for the Euclidean TSP is given in Section 3.

2. The construction for the graphical TSP

For k¿ 1 we consider the graph Gk =(Vk; Ek) that
consists of a chain of 2k−1 triangles. As an illustrating
example, the graph G3 is depicted in Fig. 1. The graph
Gk has 2k vertices in its lower level, and 2k−1 vertices

in its upper level. The left-most vertex in the lower
level is denoted by ‘k , the right-most vertex in the
lower level is denoted by rk , and the central vertex
in the upper level is denoted by mk . An equivalent
recursive de<nition ofGk with k¿ 1 is as follows: The
graph G1 is a triangle on the three vertices ‘1, m1, and
r1. For k¿ 2 the graph Gk is de<ned as follows. Take
two copies G′

k−1 = (V ′
k ; E

′
k) and G

′′
k−1 = (V ′′

k ; E
′′
k ) of

the graph Gk−1 together with a new vertex mk . Create
an edge between the vertices r′k−1 and ‘′′k−1. Create
edges from mk to r′k−1 and to ‘′′k−1. Finally, rename
vertex ‘′k−1 to ‘k , and rename vertex r′′k−1 to rk .

Lemma 1. Let k¿ 1, and let G be an undirected
graph that contains Gk as an induced subgraph such
that all edges between Gk and G − Gk are incident
either to vertex ‘k or to vertex rk in Gk . Let IG de-
note the graphical TSP instance that corresponds to
G. Then there exists a partial NNR tour Tk for the
instance IG:

(a) that visits exactly the cities in Gk ,
(b) that starts in city ‘k and ends in city mk ,
(c) that has length exactly (k + 3)2k−1 − 2.

Proof. The proof is by induction on k. For k = 1,
we choose the path ‘1 − r1 − m1 of length 2 for T1.
For k¿ 2, we use the recursive de<nition of Gk given
above that de<nes Gk in terms of two copies G′

k−1 and
G′′
k−1 of Gk−1 together with a new vertex mk .
By the inductive assumption there exists a partial

NNR tourT′
k−1 of length (k+2)2k−2−2 through the

subgraph G′
k−1 that starts in the left city ‘′k−1 (=‘k)

and ends in the central city m′
k−1. Note that city ‘

′′
k−1

is at distance 2k−2 + 1 from this central city m′
k−1.

Since the central city m′
k−1 is at distance 2k−2 from

cities ‘′k−1 and r
′
k−1, all other currently unvisited cities

are at distance at least 2k−2 +1 from m′
k−1. Therefore

it is feasible for NNR to visit ‘′′k−1 next after m′
k−1.
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Fig. 2. The point set H3 with its four special points ‘3, r3, u3, and d3.

By the inductive assumption, NNR may then traverse
G′′
k−1 from ‘′′k−1 to m

′′
k−1 according to the partial tour

T′′
k−1 with a total length of (k + 2)2k−2 − 2. Finally,

NNR may go the distance 2k−2 + 1 from city m′′
k−1 to

city mk since none of the unvisited cities is closer to
city m′′

k−1.
Summarizing, this yields the desired partial tourTk

from ‘k = ‘′k−1 to mk through Gk with length (k +
2)2k−2 − 2+ (2k−2 + 1)+ (k +2)2k−2 − 2+ (2k−2 +
1) = (k + 3)2k−1 − 2.

Theorem 2. For every k¿ 1, there exists a graphical
TSP instance with n= 2k+1 vertices and an optimal
tour of length 2k+1, for which the nearest neighbor
rule may yield a tour of length (k + 4)2k−1.
In other words, the ratio between the length of this

NNR tour and the length of the optimal tour equals
1
4 (3 + log n).

Proof. We add a new city v toGk , and we connect v to
‘k and to rk . Since the resulting graph is Hamiltonian,
the corresponding graphical TSP instance has a tour
of length n = 2k+1. The partial NNR tour Tk from
Lemma 1 together with the distances from mk to v
and from v to ‘k yields an NNR tour of length (k +
3)2k−1 − 2 + (2k−1 + 1) + 1 = (k + 4)2k−1.

3. The construction for the Euclidean TSP

For k¿ 1 we consider the Euclidean point set Hk
that consists of the points in a chain of 2k−1 diamonds.
As an illustrating example, the point set H3 is depicted
in Fig. 2. All line segments shown in this picture are
of unit length. The point set Hk consists of 3× 2k − 2
points that are arranged in three horizontal layers: The
middle layer has 2k points with coordinates (j

√
3; 0)

for j=0; : : : ; 2k −1. The upper layer has 2k −1 points
with coordinates ((j+ 1

2)
√
3;+1

2) for j=0; : : : ; 2k−2,
and the lower layer has 2k −1 points with coordinates

((j + 1
2)
√
3;− 1

2 ) for j = 0; : : : ; 2k − 2. Note that in
this construction, the sides and the vertical diagonal
of each diamond all have length 1. The left-most point
of Hk is denoted by ‘k , the right most point by rk , the
central point in the upper layer is denoted by uk , and
the central point in the lower layer is denoted by dk .
An equivalent recursive de<nition of Hk with k¿ 1

is as follows: The point set H1 consists of the four
points ‘1 = (0; 0), u1 = (12

√
3;+1

2), d1 = (12
√
3;− 1

2 ),
and r1=(

√
3; 0). For k¿ 2 the point set Hk is de<ned

as follows. Take two copies H ′
k−1 and H ′′

k−1 of the
point set Hk−1. Keep H ′

k−1 in its original position, and
shift H ′′

k−1 by 2
k−1

√
3 units to the right. In the middle

between these two copies, add two new points uk and
dk in the upper and lower layer, respectively. Rename
point ‘′k−1 to ‘k , and rename point r′′k−1 to rk .

Lemma 3. Let k and t be integers with 16 k6 t.
Then the point set Ht contains by de>nition a copy
of Hk as a subset. Let H ′ be an arbitrary copy of Hk
in Ht , and let IH denote the Euclidean TSP instance
that corresponds to Ht . Then there exists a partial
NNR tour Tk for the instance IH :

(a) that visits exactly the cities in the copy H ′,
(b) that starts in city ‘k and ends in the upper cen-

tral city uk of H ′,
(c) that has length exactly (4+(k−1)

√
3)2k−1−1.

By symmetry, there also exists a partial NNR tour
through H ′ of the stated length that starts in city ‘k
and ends in the lower central city dk .

Proof. The proof is by induction on k. For k =1, we
choose the path ‘1 − d1 − r1 − u1 of length 3 for T1.
For k¿ 2, we use the recursive de<nition of Hk given
above that de<nes Hk in terms of two copies H ′

k−1 and
H ′′
k−1 of Hk−1 together with two new points uk and dk .
By the inductive assumption there exists a partial

NNR tour T′
k−1 of length (4 + (k − 2)

√
3)2k−2 − 1
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through the subset H ′
k−1 that starts in the left city

‘′k−1 (=‘k) and ends in the lower central city d
′
k−1. At

that moment, none of the unvisited cities inH is closer
to d′k−1 than city dk , and thus we let NNR move on
to city dk . The distance between d′k−1 and dk equals√
3×2k−2. Next, NNR moves the distance 1 from city

dk to city ‘′′k−1. By the inductive assumption, NNR
may then traverse H ′′

k−1 from ‘′′k−1 to u
′′
k−1 according

to the partial tourT′′
k−1 with a total length of (4+(k−

2)
√
3)2k−2 − 1. Finally, NNR may go the distance√

3× 2k−2 from city u′′k−1 to city uk since none of the
unvisited cities is closer to city u′′k−1. Summarizing,
this yields a partial tour Tk from ‘k = ‘′k−1 to uk
through H ′ of total length

(4 + (k − 2)
√
3)2k−2 − 1 +

√
3× 2k−2 + 1

+ (4 + (k − 2)
√
3)2k−2 − 1 +

√
3× 2k−2

which equals (4+(k−1)
√
3)2k−1−1, exactly as we

desired.

Theorem 4. For every k¿ 1, there exists a Eu-
clidean TSP instance with n= 3× 2k − 2 points and
an optimal tour of length (2 +

√
3)2k − 2

√
3, for

which the nearest neighbor rule may yield a tour of
length at least (4 + k

√
3)2k−1 − (

√
3 + 1).

Hence, the ratio between the length of this NNR
tour and the length of the optimal tour is at least
(
√
3− 3

2 )(log n− 2) ≈ 0:232(log n− 2).

Proof. We consider the Euclidean TSP instance Hk .
Since all points in Hk lie on three parallel lines, an
optimal tour can be determined along the arguments
of Cutler [1]. The optimal tour is not unique. One
optimal tour starts in ‘k , then runs through all cities
in the upper layer, then moves to rk , and then makes a
zig-zag path back to ‘k while alternating between the
lower and the middle layer. The length of this optimal
tour is (2 +

√
3) 2k − 2

√
3.

Next, we recall that the partial NNR tour Tk de-
scribed in Lemma 3 has a length of exactly (4+ (k −
1)

√
3)2k−1 − 1. Moreover, the distance for the <nal

step from uk back to ‘k is at least (2k−1 − 1)
√
3. This

yields an NNR tour of length at least (4+k
√
3)2k−1−

(
√
3 + 1). With this, for k¿ 2, the ratio between the

length of this NNR tour and the length of the optimal

tour is at least

(4 + k
√
3)2k−1 − (

√
3 + 1)

(2 +
√
3)2k − 2

√
3

¿
(4 + k

√
3)2k−1

(2 +
√
3)2k

=
4 + k

√
3

4 + 2
√
3

¿
k
√
3

4 + 2
√
3

=
(√

3− 3
2

)
k:

Since k = log(n+2)− log 3¿ log n− 2, the claimed
lower bound on the ratio follows.

4. Conclusion

We have constructed bad (graphical and Euclidean)
instances for the nearest neighbor rule for the TSP.
Just as in the instances constructed by Rosenkrantz
et al. [4] and by Johnson and Papadimitriou [2], the
tie-breakings of NNR are crucial for its bad behavior
on our instances. The points in the Euclidean instances
from Section 3 can be perturbated by tiny amounts,
so that tie-breaking is avoided, whereas the �(log n)
lower bound for NNR remains valid. For the graph-
ical instances from Section 2, however, we do not
know how to work around and avoid the tie-breakings.
Hence, we currently cannot exclude the possibility that
NNR with ‘optimal’ tie-breakings always yields good
approximations for the TSP on graphical instances.
We leave this as an open problem.
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