
Modified version to appear in
Operations Research Letters
reference number OPERES 1105
Received August 1995, revised July 1996

Title:

Fast Local Search and Guided Local Search and Their Application to British Telecom’s
Workforce Scheduling Problem

Authors:

Edward Tsang & Chris Voudouris
Department of Computer Science
University of Essex, UK

Abstract:

This paper reports a Fast Local Search (FLS) algorithm which helps to improve the efficiency
of hill climbing and a Guided Local Search (GLS) Algorithm which is developed to help local
search to escape local optima and distribute search effort. To illustrate how these algorithms
work, this paper describes their application to British Telecom’s workforce scheduling prob-
lem, which is a hard real life problem. The effectiveness of FLS and GLS are demonstrated by
the fact that they both out-perform all the methods applied to this problem so far, which
include simulated annealing, genetic algorithms and constraint logic programming.

Keywords:

Combinatorial Optimization, Heuristics, Workforce Scheduling.

Address:

Edward Tsang
Department of Computer Science
University of Essex,
Colchester, CO4 3SQ, UK
e-mail: {edward,voudcx}@essex.ac.uk

Acknowledgements:
The benchmark problem was obtained from British Telecom (BT) Research Laboratories.
Edward Tsang was supported by a BT Short Term Research Fellowship in 1992, under the
guidance of Barry Crabtree. Chris Voudouris is employed by the EPSRC funded project, ref
GR/H75275.

edward
Typewritten Text
Tsang, E.P.K. & Voudouris, C., Fast local search and guided local search and their application to British Telecom's workforce scheduling problem, Operations Research Letters, Elsevier Science Publishers, Amsterdam, Vol.20, No.3, March 1997, 119-127

edward
Typewritten Text
http://www.bracil.net/CSP/papers/TsaVou-GlsWfs-ORL1997.pdf

edward
Cross-Out

2

I. Introduction

Due to their combinatorial explosion nature, many real life constraint optimization problems

are hard to solve using complete methods such as branch & bound [17, 14, 21, 23]. One way

to contain the combinatorial explosion problem is to sacrifice completeness. Some of the best

known methods which use this strategy are local search methods, the basic form of which

often referred to as hill climbing. The problem is seen as an optimization problem according to

an objective function (which is to be minimized or maximized). The strategy is to define a

neighbourhood function which maps every candidate solution (often called a state) to a set of

other candidate solutions (which are called neighbours). Then starting from a candidate solu-

tion, which may be randomly or heuristically generated, the search moves to a neighbour

which is ‘better’ according to the objective function (in a minimization problem, a better

neighbour is one which is mapped to a lower value by the objective function). The search ter-

minates if no better neighbour can be found. The whole process can be repeated from different

starting points.

One of the main problems with hill climbing is that it may settle in local optima — states

which are better than all the neighbours but not necessarily the best possible solution. To over-

come that, methods such as simulated annealing [1, 7, 20] and tabu search [10, 11, 12] have

been proposed. In this paper, we present a method, called Guided Local Search (GLS), to

guide local search to escape local optima. Like tabu search, this method also allows the soft-

ware engineer to build knowledge into the algorithm to guide the search towards areas which

appear to be more promising.

A factor which limits the efficiency of a hill climbing aglorithm is the size of the neighbour-

hood. If there are many neighbours to consider, then if the search takes many steps to reach a

local optima, and/or each evaluation of the objective function requires a nontrivial amount of

computation, then the search could be very costly. In this paper, we present a method, which

we called Fast Local Search (FLS) to restrict the neighbourhood. The intention is to ignore

neighbours which are unlikely to lead to fruitful hill-climbs in order to improve the efficiency

of a search.

3

We shall illustrate these two algorithms by using a real life scheduling problem as an example.

We shall also use this example problem to demonstrate the effectiveness and efficiency of

these two algorithms. In the next section, we shall explain this example problem.

II. BT’s Workforce Scheduling Problem

The problem is to schedule a number of engineers to a set of jobs, minimizing total cost

according to a function which is to be explained below. Each job is described by a triple:

(Loc, Dur, Type) (1)

where Loc is the location of the job (depicted by its x and y coordinates), Dur is the standard

duration of the job and Type indicates whether this job must be done in the morning, in the

afternoon, as the first job of the day, as the last job of the day, or “don’t care”.

Each engineer is described by a 5-tuple:

(Base, ST, ET, OT_limit, Skill) (2)

where Base is the x and y coordinates at which the engineer locates, ST and ET are this engi-

neer’s starting and ending time, OT_limit is his/her overtime limit, and Skill is a skill factor

between 0 and 1 which indicates the fraction of the standard duration that this engineer needs

to accomplish a job. In other words, the smaller this Skill factor, the less time this engineer

needs to do a job. If an engineer with skill factor 0.9 is to serve a job with duration (Dur) 20,

say, then this engineer would actually take 18 minutes to finish the job.

The cost function which is to be minimized is defined as follows:

Total Cost = (3)

where: NoT = number of engineers;

NoJ = number of jobs;
TCi = Travelling Cost of engineer i;
OTi = Overtime of engineer i;
Durj = Duration of job j;
UFj = 1 if job j is not served; 0 otherwise;
Penalty = constant (which is set to 60 in the tests)

TCi

i 1=

NoT

∑ OTi
2

i 1=

NoT

∑ Durj Penalty+() UFj×
j 1=

NoJ

∑+ +

4

The travelling cost between (x1, y1) to (x2, y2) is defined as fo llow s:

if ;

otherwise. (4)

Here is the absolute difference between x1 and x2, and is the abso lu te d iffe rence

be tw een y1 and y2. T he g rea ter o f the x and y differences is halved before summing. Engineers

are required to start from and return to their bases everyday. An engineer may be assigned

more jobs than he/she can finish.

III. Fast Local Search Applied to Workforce Scheduling

III.1. Representation of candidate solutions and hill climbing

To tackle BT’s workforce scheduling problem, we represent a candidate solution (i.e. a possi-

ble schedule) by a permutation of the jobs. Each permutation is mapped into a schedule using

the following (deterministic) algorithm:

Procedure Evaluation (input: one particular permutation of jobs)

1. For each job, order the qualified engineers in ascending order of the distances
between their bases and the job (such orderings only need to be computed
once and recorded for evaluating other permutations)

2. Process one job at a time, following their ordering in the input permutation.
For each job x, try to allocate it to an engineer according to the ordered list of
qualified engineers:
2.1. to check if engineer g can do job x, make x the first job of g; if that fails

to satisfy any of the constraints, make it the second job of g, and so on;
2.2. if job x can be fitted into engineer g’s current tour, then try to improve

g’s new tour (now with x in it): the improvement is done by a simple 2-
opting algorithm (see e.g. [2]), modified in the way that only better
tours which satisfy the relevant constraints will be accepted;

2.3. if job x cannot be fitted into engineer g’s current tour, then consider the
next engineer in the ordered list of qualified engineers for x; the job is
unallocated if it cannot fit into any engineer’s current tour.

3. The cost of the input permutation, which is the cost of the schedule thus cre-
ated, is returned.

Given a permutation, hill climbing is performed in a simple way: a pair of jobs are looked at at

a time. Two jobs are swapped to generate a new permutation if the new permutation is evalu-

TC x1 y1,() x2 y2,(),()
∆x 2⁄ ∆y+

8
-------------------------= ∆x ∆y>

∆y 2⁄ ∆x+

8
-------------------------=

∆x ∆y

5

ated (using the Evaluation procedure above) to a lower cost than the original permutation.

The starting point of the hill climbing is generated heuristically and deterministically: the jobs

are ordered by the number of qualified engineers for them. Jobs which can be served by the

fewest number of qualified engineers are placed earlier in the permutation.

III.2. Fast Hill climbing

So far we have defined an ordinary hill climbing algorithm. Each state in this algorithm has

O(n2) ne ighbou rs , w here n is the number of jobs in the workforce scheduling problem. The

fast local search is a general strategy which allows us to restrict the neighbourhood, and con-

sequently improve the efficiency of the hill climbing. We shall explain here how it is applied

to the workforce scheduling problem. Later we shall explain that this technique can be (and

has successfully been) generalized to other problems.

To apply the fast local search to workforce scheduling, each job permuation position is associ-

ated with it an activation bit, which takes binary values (0 and 1). These bits are manipulated

in the following way:

1. All the activation bits are set to 1 (or “on”) when hill climbing starts;

2. the bit for job permutation position x will be switched to 0 (or “off”) if every
possible swap between the job at position x and another job under the current
permutation has been considered, but no better permutation has been found;

3. the bit for job permutation position x will be switched to 1 whenever x is
involved in a swap which has been accepted.

During hill climbing, only those job permutation positions which activation bits are 1 will be

examined for swapping. In other words, positions which have been examined for swapping

but failed to produce a better permutation will be heuristically ignored. Positions which

involved in a successful swap recently will be examined more. The overall effect is that the

size of neighbourhood is greatly reduced and resources are invested in examining swaps

which are more likely to produce better permutations.

6

IV. Guided Local Search Applied to Workforce Scheduling

IV.1. The GLS algorithm

Like all other hill climbing algorithms, FLS suffers from the problem of settling in local

optima. Guided local search (GLS) is a method for escaping local optima. GLS is built upon

our experience in a connectionist method called GENET (it is a generalization of the GENET

computation models) [27, 6, 26].

GLS is a algorithm for modifying local search algorithms. The basic idea is that costs and pen-

alty values are associated to selected features of the candidate solutions. Selecting such fea-

tures in an application is not difficult because the objective function is often made up of a

number of features in the candidate solutions. The costs should normally take their values

from the objective function. The penalties are initialized to 0.

Given an objective function g which maps every candidate solution s to a numerical value, we

define a function h which will be used by the local search algorithm (replacing g).

h(s) = g(s) + (5)

where s is a candidate solution, λ is a parameter to the GLS algorithm, F is the number of fea-

tures, pi is the penalty for feature i (which are initialized to 0) and Ii is an indication of whether

the candidate solution s exhibits feature i:

Ii (s) = 1 if s exhibits feature i; 0 otherwise. (6)

When the local search settles on a local optimum, the penalty of some of the features associ-

ated to this local optimum is increased (to be explained below). This has the effect of changing

the objective function (which defines the “landscape” of the local search) and driving the

search towards other candidate solutions. The key to the effectiveness of GLS is in the way

that the penalties are imposed.

Our intention is to penalize “bad features”, or features which “matter most”, when a local

search settles in a local optima. The feature which has high cost affects the overall cost more.

Another factor which should be considered is the current penalty value of that feature. We

λ pi Ii s()⋅
i 1 F,=

∑

7

define the utility of penalizing feature i, utili, under a local optimum s*, a s fo llow s:

utili(s*) = Ii (s*) × (7)

In other words, if a feature is not exhibited in the local optimum, then the utility of penalizing

it is 0. The higher the cost of this feature, the greater the utility of penalizing it. Besides, the

more times that it has been penalized, the greater (1 + pi) becomes, and therefore, the lower

the utility of penalizing it again.

In a local optimum, the feature(s) with the greatest util value will be penalized. This is done by

adding 1 to its penalty value:

pi = pi + 1 (8)

The λ parameter in the GLS algorithm is used to adjust the weight of penalty values in the

objective function. As it will be shown later, results in applying GLS to the workforce sched-

uling problem is not very sensitive to the setting of this parameter.

By taking cost and the current penalty into consideration in selecting the feature to penalize,

we are distributing the search effort in the search space. Candidate solutions which exhibit

“good features”, i.e. features involving lower cost, will be given more effort in the search, but

penalties may lead the search to explore candidate solutions which exhibit features with higher

cost. The idea of distributing search effort, which plays an important role in the success of

GLS, is borrowed from Operations Research, e.g. see Koopman [16] and Stone [22].

Following we shall describe the general GLS procedure:

Procedure GLS (input: an objective function g and a local search strategy L)

1. Generate a starting candidate solution randomly or heuristically;

2. Initialize all the penalty values (pi) to 0;

3. Repeat the following until a termination condition (e.g. a maximum number
of iterations or a time limit) has been reached:
3.1. Perform local search (using L) according to the function h (which is g

plus the penalty values, as defined above) until a local optimum M has
been reached;

3.2. For each feature i which is exhibited in M compute utili = ci / (1 + pi)
3.3. Penalize every feature i such that utili is maximum: pi = pi + 1;

ci

1 pi+

8

4. Return the best candidate solution found so far according to the objective
function g.

IV.2. GLS applied to BT’s workforce scheduling problem

To apply GLS to a problem, we need to identify the objective function and a local search algo-

rithm. In earlier sections, we have described the objective function and a local search algo-

rithm, FLS, for BT’s workforce scheduling problem.

Our next task is to define solution features to penalize. In the workforce scheduling problem,

the inability to serve jobs incurs a cost, which plays an important part in the objective function

which is to be minimized. Therefore, we intend to penalize the inability to serve a job in a per-

mutation. To do so, we associate a penalty value to each job. The travelling cost is taken care

of by the ordering of engineers by their distance to the jobs in the local search described in the

Evaluation procedure above as well as 2-opting. (If the travelling cost in this problem is found

to play a role as important as unallocated jobs, we could associate a penalty to the assignment

of each job x to each engineer g, with the cost of this feature reflecting the travelling cost. This

penalty is increased if the schedule in a local minimum uses engineer g to do job x.) Integrated

into GLS, FLS will switch on (i.e. switching from 0 to 1) the activation bits associated to the

positions where the penalized jobs currently lie.

It may be worth noting that since the starting permutation is generated heuristically, and hill

climbing is performed deterministically, the application of FLS and GLS presented here do not

involve any randomness as most local search applications do.

V. Experimental Results

The best results published so far on the workforce scheduling problem is in Azarmi & Abdul-

Hameed [3]. Apart from simulated annealing which we mentioned above, they have looked at

constraint logic programming [24, 18] and genetic algorithms [15, 13, 8, 28, 9]. The results

are based on a benchmark test problem with 118 engineers and 250 jobs. Each job can be

served by 28 engineers on average, which means the search space is roughly 28250, or 10360,

in size. This suggests that a complete search is very unlikely to succeed in finding the optimal

solution.

9

Azarmi & Abdul-Hameed [3] reported results obtained by a particular genetic algorithm (GA),

two constraint logic programming (CLP) implementations, ElipSys and CHIP, and a simulated

annealing (SA) approach. Azarmi & Abdul-Hameed cited Muller et. al. [19] for the GA

approach and Baker [4] for the SA approach. Results obtained by GA and CLP were

“repaired” (i.e. hill climbed) upon. All the tests reported there relax the constraints in the prob-

lem by:

(a) taking first jobs as AM jobs, and last jobs as PM jobs; and
(b) allowing no overtime.

The best result so far was 21,025, which was obtained by the SA approach. No timing was

reported on the these tests. These results are shown in Table 1 (Group I)

To allow comparison between our results and the published ones, we have made the same

relaxation to the problem. The results are reported in Group II of Table 1. FLS obtained a

result of 20,732, which is better than all the reported results. This result is slightly improved

by GLS. The best result obtained in this group is 20,433, when λ is set to 100 in GLS. Such

results are remarkable as the best results published were obtained by nontrivial amount of

work by prominent research groups in UK. (Note that a saving of 1% could be translated to

tens of thousands of pounds per day!)

In the objective function, the overtime term is squared. This discourages overtime in sched-

ules, but it does not mean that a good schedule cannot have overtime. We tried to restate this

constraint, but gave each engineer a limit in overtime. The best result, which were found in

limiting overtime to 10 minutes per engineer, is shown in Group III of Table 1. FLS in this

group obtained a result of 20,224, which was better than all the results in Group II. The best

result in Group III, which is 19,997, was found by GLS when λ was set to 20.

The λ parameter is the only parameter that needs to be set in GLS (there are relatively more

parameters to set in both GA and SA). The above test results show that the total cost is not ter-

ribly sensitive to the setting of λ.

Test data1 and results reported in this paper by FLS and GLS are included in Essex’s world

wide web (http://cswww.essex.ac.uk/CSP/wfs) for reference and verification.

10

VI. Discussion

In BT’s workforce scheduling problem, an activation bit is associated to each job permutation

postion. Although the definition of activation bits in FLS is domain dependent, it is not diffi-

cult to define them in an application. Hints can often be obtained from the objective function

or the representation of candidate solutions.

FLS is a generalization of Bentley’s approximate 2-opting algorithm [5], which is applied to

the travelling salesman problem (TSP). Voudouris & Tsang [26] report the successful applica-

tion of FLS and GLS in the TSP. Apart from these prolems, FLS has been applied successfully

to the radio link frequency assignment problem, which will be reported in detail in another

occasion (this problem and early results were reported in Voudouris & Tsang [25]).

To evaluate the role of the activation bits in the efficiency of FLS, we compare FLS with a

local search algorithm which uses the same hill climbing strategy as FLS, but without using

activation bits to reduce its neighbourhood (we refer to this algorithm as LS). The results are

shown in Table 2.

When no overtime is allowed, FLS runs 16 times faster than LS, which converged to a slightly

worse local minimum. When a maximum of 10 minutes is allowed for overtime, FLS runs 20

times faster than LS, though LS produced a slightly better result. Our conclusion is that the

activation bits help to speed up FLS significantly and there is no convincing evidence that

quality of results has been sacrificed in the workforce scheduling problem.

In BT’s workforce scheduling problem, penalties are associated to each job, because they are

the subject of allocation. The selection of features to be penalized is (like the definition of acti-

vation bits) not difficult. It can often be done through observation in the objective function.

Bits can be associated to elements which make up the total cost. (In fact, a similar exercise is

often done in genetic algorithms in defining building blocks in a representation.)

We have also experimented with random starting permutations and a starting permutation with

the jobs ordered by the ratio between their durations and the number of qualified engineers.

1. with the permission of British Telecom

11

Their results are shown in Table 3.

In Table 3, an (almost) arbitrary λ value of 100 has been chosen to give the readers more infor-

mation about the sensitivity of GLS over this parameter (though this was not the parameter

under which the best result were generated when overtime was allowed). Results in Table 3

shows that the result of FLS can be affected by the initial ordering of the job, though even the

worse result is comparable with those reported in the literature. However, Fast GLS is rela-

tively insensitive to it — all the results of GLS are better than the best result reported in the lit-

erature. This helps to show the robustness of GLS. More evidence of the effectiveness of GLS

will be given in other occasions.

VII. Concluding Summary

In this paper, we have described two general local algorithms, namely the fast local search

(FLS) algorithms and the guided local search (GLS) algorithm, for tackling constraint optimi-

zation problems. We have demonstrated their effectiveness in a case study using British Tele-

com’s workforce scheduling problem. On the benchmark problem, our algorithms obtained

results convincingly better than those published, which include simulated annealing, genetic

algorithms and constraint logic programming.

The FLS algorithms is designed to speed up local search by restricting the neighbourhood to

those which are more likely to contain better neighbours. This allows one to speed up a hill

climbing search. The GLS algorithm helps local search to escape local optima by adding a

penalty term in the objective function. The penalties also help the search to distribute its effort

according to the promise of the selected features in candidate solutions.

12

Table 1: Results obtained in BT’s benchmark workforce scheduling problem

Algorithms Total cost
Cpu time

(sec)
Travel
cost

Cost
(number) of
unallocated

jobs

over-
time
cost

Group I: Best results reported in the literature (no overtime allowed):

GA 23,790 N.A. N.A. N.A. (67) disallow

GA + repair 22,570 N.A. N.A. N.A. (54) disallow

CLP — ElipSys + repair 21,292 N.A. 4,902 16,390 (53) disallow

CLP — CHIP + repair 22,241 N.A. 5,269 16,972 (48) disallow

SA 21,025 N.A. 4,390 16,660 (56) disallow

Group II: Best results on FLS and GLS with overtime disallowed:

Fast Local Search (FLS) 20,732 1,242 4,608 16,124 (49) disallow

Fast GLS

λ = 10 20,556 5,335 4,558 15,998 (48) disallow

λ = 20 20,497 7,182 4,533 15,864 (49) disallow

λ = 30 20,486 6,756 4,676 15,810 (50) disallow

λ = 40 20,490 5,987 4,743 15,747 (48) disallow

λ = 50 20,450 3,098 4,535 15,915 (49) disallow

λ = 100 20,433 9,183 4,707 15,726 (48) disallow

Group III: Best results on FLS and GLS, with a maximum of 10 minutes overtime allowed:

Fast Local Search (FLS) 20,224 1,244 4,651 15,448 (51) 125

Fast GLS

λ = 10 20,124 4,402 4,663 15,329 (50) 132

λ = 20 19,997 4,102 4,648 15,209 (49) 140

λ = 30 20,000 2,788 4,690 15,155 (48) 155

λ = 40 20,070 4,834 4,727 15,194 (48) 149

λ = 50 20,055 2,634 4,690 15,197 (49) 168

λ = 100 20,132 2,962 4,779 15,152 (48) 201

Notes:
1. GA, CLP and SA results from Azarmi & Abdul-Hameed [3], Muller et. al. [19] and

Baker [4];
2. FLS and GLS are implemented in C++, all results obtained from a DEC Alpha 3000/600

175MHz machine; results are available in http://cswww.essex.ac.uk/CSP/wfs;
3. The benchmark problem, which has 118 engineers and 250 jobs, is obtained from British

Telecom Research Laboratories, UK.

13

Table 2: Evalutation of the efficiency of FLS

Algorithms
Total
cost

Cpu
time
(sec)

speedup
by FLS
in cpu
time

Travel
cost

Cost
(number) of
unallocated

jobs

over-
time
cost

No overtime
allowed

FLS 20,732 1,242

16 times

4,608 16,124 (49) disallow

LS 20,788 20,056 4,604 16,184 (50) disallow

Max. 10 min.
OT allowed

FLS 20,224 1,244

20 times

4,651 15,448 (51) 125

LS 20,124 25,195 4,595 15,358 (48) 171

Notes: Local Search (LS) use the same hill climbing strategy as FLS, but no activation bits
are used; Both aglorithms implemented in C++, all results obtained from a DEC Alpha
3000/600 175MHz machine

Table 3: Ordering heuristics used in starting permutation

Heuristics used in generating
starting permutation

Initial
Cost

After FLS After Fast GLS

cost cpu sec cost cpu sec

Random ordering 25,886 21,204 767 20,287 7,639

Job duration / # of qualified eng. 23,828 20,286 903 20,187 2,468

of qualified engineers 22,846 20,224 1,218 20,132 2,962

Notes: a maximum of 10 minutes is allowed in overtime; a maximum of 500 penalty cycles
is allowed in GLS, which uses λ = 100; all programs implemented in C++; all results
obtained from a DEC Alpha 3000/600 175MHz machine

14

References

[1] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines, John
Wiley & Sons, 1989.

[2] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data structures and algorithms,
Addison-Wesley, 1983.

[3] N. Azarmi and W. Abdul-Hameed, “Workforce scheduling with constraint
logic programming”, British Telecom Technology Journal, Vol.13, No.1,
January, 81-94 (1995).

[4] S. Baker, “Applying simulated annealing to the workforce management
problem”, ISR Technical Report, British Telecom Laboratories, Martlesham
Heath, Ipswich (1993).

[5] J.J. Bentley, “Fast algorithms for geometric traveling salesman problems”,
ORSA Journal on Computing, Vol.4, 387-411 (1992).

[6] A. Davenport, E.P.K. Tsang, C.J. Wang and K. Zhu, “GENET: a connection-
ist architecture for solving constraint satisfaction problems by iterative
improvement”, Proc., 12th National Conference for Artificial Intelligence
(AAAI), 325-330 (1994).

[7] L. Davis (ed.), Genetic algorithms and simulated annealing, Research notes
in AI, Pitman/Morgan Kaufmann, 1987.

[8] L. Davis (ed.), Handbook of genetic algorithms, Van Nostrand Reinhold,
1991.

[9] A.E. Eiben, P-E. Raua, and Zs. Ruttkay, “Solving constraint satisfaction
problems using genetic algorithms”, Proc., 1st IEEE Conference on Evolu-
tionary Computing, 543-547 (1994).

[10] F. Glover, “Tabu search Part I”, ORSA Journal on Computing 1, 109-206
(1989).

[11] F. Glover, “Tabu search Part II”, ORSA Journal on Computing 2, 4-32
(1990).

[12] F. Glover, E. Taillard, and D. de Werra, “A user’s guide to tabu search”,
Annals of Operations Research, Vol.41, 1993, 3-28 (1993).

[13] D.E. Goldberg, Genetic algorithms in search, optimization, and machine
learning, Addison-Wesley Pub. Co., Inc., 1989.

[14] P.A.V. Hall, “Branch and bound and beyond”, Proc. International Joint
Conference on AI, 641-650 (1971).

[15] J.H. Holland, Adaptation in natural and artificial systems, University of
Michigan press, Ann Arbor, MI, 1975.

[16] B.O. Koopman, “The theory of search, part III, the optimum distribution of
searching effort”, Operations Research, Vol.5, 1957, 613-626 (1957).

[17] E.W. Lawler and D.E. Wood, “Branch-and-bound methods: a survey”,

15

Operations Research 14, 699-719 (1966).

[18] J. Lever, M. Wallace, and B. Richards, “Constraint logic programming for
scheduling and planning”, British Telecom Technology Journal, Vol.13,
No.1., 73-80 (1995).

[19] C. Muller, E.H. Magill, and D.G. Smith, “Distributed genetic algorithms for
resource allocation”, Technical Report, Strathclyde University, Glasgow
(1993).

[20] R.H.J.M. Otten and L.P.P.P. van Ginneken, The annealing algorithm, Klu-
wer Academic Publishers, 1989.

[21] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial algorithms: the-
ory and practice, Englewood Cliffs, N.J., Prentice hall, 1977.

[22] L.D. Stone, “The process of search planning: current approaches and contin-
uing problems”, Operations Research, Vol.31, 207-233 (1983).

[23] E.P.K. Tsang, “Scheduling techniques — a comparative study”, British Tele-
com Technology Journal, Vol.13, No.1, 16-28 (1995).

[24] P. van Hentenryck, Constraint satisfaction in logic programming, MIT
Press, 1989.

[25] C. Voudouris and E.P.K. Tsang, “The tunnelling algorithm for partial con-
straint satisfaction problems and combinatorial optimization problems”,
Technical Report CSM-213, Department of Computer Science, University
of Essex (1994).

[26] C. Voudouris and E.P.K. Tsang, “Guided Local Search”, Technical Report
CSM-247, Department of Computer Science, University of Essex (1995).

[27] C.J. Wang and E.P.K. Tsang, “Solving constraint satisfaction problems
using neural-networks”, Proceedings of IEE Second International Confer-
ence on Artificial Neural Networks, 295-299 (1991).

[28] T. Warwick and E.P.K. Tsang, “Using a genetic algorithm to tackle the proc-
essors configuration problem”, Symposium on Applied Computing (1994).

