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Abstract

The problem of finding an optimal location X™* minimizing the maximum Euc-
lidean distance to existing facilities is well solved by e.g.the Elzinga-Hearn algorithm.

In practical situations X™* will however often not be feasible. We therefore suggest
in this note a polynomial algorithm which will find an optimal location X* in a
feasible subset F' C IR? of the plane.
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1 Restricted Euclidean Center Problems

Using the classification scheme introduced in [Ham95] and [HN93] 1/P/v; = 1/l3/ max is
the problem of finding

e | new location X*
e in the plane,

e with constant weights v; = 1,

e with respect to the Euclidean distance, l5(X,Y) = \/(:1:1 —y1)? + (22 — y2)?
e minimizing the maximum distance to existing facilities Kz, = (@1, am2),m =1,...,
We therefore solve the problem

min max Io(X, Fxp,)

XeR2 m=1,....M
For M = 2 and M = 3 an optimal location X* can be found based on the following
geometric observations. Here L;; will denote the line connecting Fx; and FEx;.

For M =2: X* is the center point of the line Ly

For M =3: Consider the triangle A spanned by Fz;, Fxy and Fxs. If A is acute X*
is the unique center of the median of 7', which is found as the intersection
point of the perpendicular bisectors of the lines Ly, Loz and Lys3. If A is
obtuse X* is the center point of the hypotenuse of A.

For general M 1/P/v; = 1/l3/ max can be solved by comparing the optimal locations of all
groups of three locations Ex; , Ex;,, Ex;,, {i1,19,33} C {1,..., M} (an 0(M*) algorithm)
or by applying the more efficient algorithms of Elzinga-Hearn [EH72] and Megiddo, see
[Meg83]. Public domain codes of the former algorithm can be found in [HV95] and [Nic95].

In the restricted location problem 1/P/v; = 1, Rpolyhedron/l;/ max we assume that
some polyhedron R is given, such that the new location X is not allowed to be contained
in the interior int(R) of R, i.e. we solve

min max lo(X, Fxp,)
XeF:=R?\int(R) m=1,....M
This type of situation is very common in practical situations: Restricting sets may, for
instance, represent non-suitable regions for the new facility (e.g. natural habitats, lakes)
or space taken by existing facilities.

In the next section we will discuss some basic results which will lead to an efficient al-
gorithm described in Section 3. Section 4 contains some information on how to deal with
generalizations of this problem.
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2 Basic Results for Restricted Euclidean Center Prob-
lems

Denote with X* the unique optimal and with X* any optimal location of the unrestricted
and restricted problem, respectively. Corresponding optimal objective values are

and

If X* € IR*\ int(R), then X® = X* and the restricted problem is trivially solved. We
therefore assume in the following X* € int(R). If R is the boundary of R we know from
[HN95]:

Theorem 2.1 X¥ € OR.

Optimal locations X can be characterized using

level curves [L_(z):= {Y: max ly(Ex,,Y) =z}

m=1,...,
and

level sets L<(z):= {Y: max ly(Exn,,Y) <z}

Since 2P = min{z : L<(2)N(IR*\int(R)) # (0} we obtain the following result (see [HN95]).

Theorem 2.2 zF is the optimal objective value of the restricted Fuclidean center problem
if and only if

(1) L<(zF)C R and

(2) L=(z®YNadR #10

The set of all optimal locations is in this case L—(2%)N IR

Since

L<(z) = {Y: gllaXMlg(Emm,Y)gz}

weey

= {Y:L(Fz,,Y)<z Vm=1,...,.M}
= N {Y:L(Ez,,Y)<z}
M

m=1,...,

we can write level sets as intersections of M balls B(FEz,,,z) centered at the existing
facilities Kx,,, with radii z:

For the level curve we get:



e

Figure 1:
a) The optimal location X* as unique intersection of B(Ezy,,2*),m=1,2,3

b) L<(z) is the shaded area with corner points Ci2, C13 and Cas.

The optimal value z* of the unrestricted problem is the smallest value z with L<(z) # 0.
In that case L<(2*) = {X*} (see Figure la). For z > 2* L<(z) is an area in the plane (see
Figure 1b).

If X* € int(R) is not feasible for the restricted problem we need to increase z* until
conditions (1) and (2) of Theorem 2.2 are satisfied. Due to the representation of L<(z) as
intersection of the balls B(Ex,,,z), this may happen in two different situations shown in
Figure 2.



Figure 2: Two alternatives satisfiying conditions (1) and (2) of Theorem 2.2.

If the restricting set R is a polyhedron with @) facets fi,..., fo, we can therefore charac-
terize optimal solutions for the restricted problem as follows.

Theorem 2.3 Let X% be an optimal solution of the restricted Fuclidean center problem

veey

statements 1s correct:

a) X® is projection point P,,, of one of the existing facilities Ex,,,m € {1,..., M}, to
one of the facels f,,q=1,...,Q of R (see Figure 2a).

b) X is intersection point of two cycles C(Ex;,2%) and C(Exy, 2") (a corner point

Cin(2®)) lying on OR (see Figure 2b)
where C(Ex,,, 21) = 0(B(Ex,,, %) Vm € {1,..., M}
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Proof. The result follows from Theorem 2.2 and the fact that R is a polyhedron: X® € 9R
and Opt* N OR = () implies that AR and L<(z") are touching each other from within R.
Therefore, one of the facets f, of R is a tangent to one of the cycles C(Ez,,, z%), and
consequently f, and C(FEz,,, 2%) touch in P,,, (Case(a)) or X* = Cj(z7) is corner point
of L<(z") (Case(b)).

3 Polynomial Algorithm for Restricted Euclidean Cen-
ter Problems

Theorem 2.3 characterizes the candidates for being optimal locations of the restricted
problem.

In Case (a) there are M - () projection points of the existing facilities Kz,,,m =1,..., M
to the ) facets of R.

For Case (b) we know from elementary geometry that the set of all corner points
1
{Cu(z) € C(Exy,z)NC(Fag,z):z > 512(Ercl, Exg)}

can be represented by the perpendicular bisector My of Fx; and FExj. Therefore, possible
candidates for X7 are obtained by considering the intersection of M, with dR. If the
intersection contains two or less points, they are included in the candidate list. Otherwise,
the perpendicular bisector Mj; contains a complete facet f, of R. We have shown in the
Appendix that, in this case, M}, can be dropped from further consideration.

For each candidate X we compute its level z = z(X) given by the radius of C(Exz,,, z)
in Case (a) and the radii of C(Fx,z) and C(Fxyg,z) in Case (b). If lj(Ez;,, X) < z for
all 2 = 1,..., M, then X is a feasible candidate, otherwise we drop X from further
consideration. The feasible candidate with the smallest z(R) is an optimal location for
1/P/v; = 1, R polyhedron/ly/ max. (Because 2™ > 2* it is only necessary to check candid-
ates X with z(X) > z*.)

In summary we obtain the following algorithm.
Algorithm for restricted Euclidean center problems

Input: {Ex,, :m=1,..., M} set of existing facilities
R polyhedron with facets fi,... fg
Output: Opt? set of all optimal locations

1. Find the optimal location X* of the unrestricted problem.

2. If X* ¢ int(R) output Opt® = { X~}
Else: Define Optf = () and goto 3.

3. a) Cand =10



b) For all m=1,..., M do
For allg=1,....0Q do
Find projection point P, of Fz,, onto f, (if it exists) and compute
2(Prg) = l2( Py, Ex,y).
Set Cand := Cand U{(Pq, 2(Pnq))}

c) For all [ > k do
If the perpendicular bisector My, of Fx; and Exy, satisfies 1 < |(My; N 0R)| < 2 do
Compute the (at most two) intersection points I},,7 = 1,2 of My, with R and
the corresponding radii

2(Iy) = LB, L) = L(Bay, Iy), i = 1,2
and define Cand := Cand U{(I},, z(I})),i = 1,2}
4. Removeall (P, z) from Cand for which z < z*or ly(Fz,,, P) > z forsomem =1,..., M
5. Optft = {P:(P,z) € Cand & 2 is minimum}
The complexity of the algorithm is dominated by step 1 (solving the unrestricted problem)

and step 4. The complexity of step 4 is 0(M?®) 4+ 0(M?Q). If we solve the unrestricted

problem with the Algorithm of Megiddo [Meg83], we get an overall complexity of 0(M?) +
0(M?Q).

4 Extensions

In this section we will discuss some extensions of the theory developed in Section 2.

4.1 Weights v; #£ 1
If general weights v; > 0 are allowed, the level sets are defined using the relation

ly(Bp,Y) < —.

Um

Consequently, we can write

()= () BlEr. )

As before, the candidate set consists of all projection points and of all corner points (see
Theorem 2.2. and Figure 2), even if the circles B(Ex,,, %) have different sizes.
Therefore we have to check all projection points P,,, from existing facilities Fx,, to any

facet f, and all points X, which fulfill
Vnlo(Ep, X) = vila( By, X)
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for any pair Kz, = (am1,ame2) and Fxy, = (a1, arg) of existing facilites. Simple calculations
show, that
{X € IR? : Vpla(Ex,, X) = vply(Exy, X)} = C(M P, k)

is a circle around M P,,;, with radius r,,;, where

MP — (aml_ﬂ?akl am2_#2ak2)
mk —

1_#2 9 1_#2
Pk = —|1_“#2|12(E;z;m,E:1:k) and
— w
o=

To get the corner points we have to calculate the intersection of C(M Pk, i) with OR for
all m < k,m,k € M and can proceed as shown in the algorithm. That means we change
step 3c as follows:

3c’) For all I > k do
Compute the (at most 2Q)) intersection points I},,i = 1,2,..., W of C(M Py, ry)
with R and the corresponding radii

2(I4) = vla(EBxy, Iy) = vily(Bxg, 1), i = 1,2, ..., W
and define Cand := Cand U{(I}, 2(1},)),i = 1,2,...,W}

For abitrary weights v; that method does not work, because Theorem 2.1. does not hold.
If all weights v; < 0 we get the problem of obnoxious facility planning, that was treated
for exampl e by [CHJT91], [DW80] or [CP95].

4.2 Set of polyhedra as restricting set

If R = RU---URy is the disjoint union of K polyhedra the results of Sections 2 and 3
need only be slightly modified. If the optimal location X* of the unrestricted problem
is not contained in any int(Ry),k = 1,..., K, the restricted problem is trivially solved.
Otherwise, there exists a unique k such that X* € int(Rjy) and the restricted problem is
solved by replacing R by Rj.

4.3 Non-convex polyhedra as restricting set

If R is a polyhedron with extreme points FKat = {ey,...,eq} we define:
e, € Ext is an inner extreme point, if e, € int(conv(Fzt)). For convex polyhedra the set
of inner extreme points is empty.

Theorem 4.1 Let XF be an optimal solution of the restriced Euclidean center problem with
a polyhedron as restricting set. Lel z® be the corresponding objective value and 2 > 2*.
Then one of the following statements is correct:

a) X® is a projection point P,



b) XP® is a corner point Cy,
¢) XP® is an inner extreme point €q

Proof. As in the proof of Theorem 2.3 we know that R and L<(zf) are touching each
other from within R. Because R is a polyhedron, this can happen in projection points P,
or corner points C; and, additionally in all inner extreme points e,.

To solve 1/P/v; = 1, R = non-convex polyhedron /l;/ max we can use the algorithm of
Section 3 with a small modification. We need to add step 3d as follows:

3d) For all g=1,...,Q do

If e, is an inner extreme point calculate

ey) = max b Bag,c,)

and define Cand := Cand N{(e,, z(e,))}

APPENDIX

Lemma 4.2 Let Fx;, Fxy be two existing facilities. [f the perpendicular bisector My, of
Ex; and Exjp contains a facel f, of the restricled sel R, then, for finding all possible
candidates for the solution X of the restricted problem, il is not necessary lo consider

M[k.

Proof. Let f, C Mj; and consider a point X € f, C M. Then we know that

ly(Exy, X) = l(Exy, X) =: z. If X is feasible, then [y( Fz,,, X) < z for all facilitiesm € M.
We can suppose that for all m € M\{l,k} [(Ez,,,X) < z, because if [,(Ez,,, X) = z for
any m € M\{l,k} X would be added to the candidate set when regarding M;,,,. Because of
that strict inequality the level set L<(z) is determined by the balls B(Ez;, z) and B(Fxg, z)
in a neighbourhood U = U(X) of X, that means

A:=Lc(z)NU = B(Ex,2) N B(Ex,z)NU

Because X is not optimal for the unrestricted problem and M;; separates Fx; and Exy
we get that int(A) C int(L<(z)) contains points of both sides of Mj;. Therefore we find
apoint Y € A C Lc(z),Y ¢ R, such that L<(z) C R does not hold and X cannot be

optimal for the restricted problem according to Theorem 2.2.
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