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The Partial Constraint Satisfaction Problem:

Facets and Lifting Theorems

Arie M.C.A. Koster!? Stan P.M. van Hoesel'? Antoon W.J. Kolen'*

January 30, 1997

Abstract

In this paper the partial constraint satisfaction problem (PCSP) is introduced and formu-
lated as a {0, 1}-programming problem. We define the partial constraint satisfaction polytope
as the convex hull of feasible solutions for this programming problem. As examples of the
class of problems studied we mention the frequency assignment problem and the maximum
satisfiability problem. Lifting theorems are presented and some classes of facet-defining valid
inequalities for PCSP are given. Computational results show that these valid inequalities
reduce the gap between LP-value and IP-value substantially.

1 The partial constraint satisfaction problem

A partial constraint satisfaction problem is defined by (G = (V, E), Dy, Pg,Qy), where G =
(V, E) is a connected graph called the constraint graph, Dy is a set of domains D,, v € V where
each domain is a finite set, Pp is a set of (edge-)penalty functions Py, @ {{dy,dw} | dy €
D,,dy € Dy} — R, {v,w} € E, and Qv is a set of (vertex-)penalty functions Q, : D, — R,
velV.

The partial constraint satisfaction problem is to select exactly one value d, in the domain D, for
every v € V so as to minimize the total sum of the penalties, i.e. Z{v,w}EE Ppywy({dy,dw}) +

2 vev Qu(dy).

The Frequency Assignment Problem (FAP) belongs to the class of partial constraint satisfaction
problems. For the FAP a vertex corresponds to a base station, i.e. a directional antenna, in a
mobile telephone network. The domain of a vertex is the set of frequencies that can be assigned
to that base station, and an edge indicates that communication from one base station defining
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the edge may interfere with communication from the other base station defining the edge. In
most applications interference occurs whenever the distance between the frequencies assigned to
the stations is less than a given threshold depending on the two base stations. The penalty of
an edge reflects the priority with which interference should be avoided, whereas the penalty on
a vertex can be seen as a level of preference for the frequencies.

For another type of frequency assignment problems, involving receiver-transmitter pairs of radio
links, that can be formulated as a partial constraint satisfaction problem, we refer to Kolen [2].

The Maximum Satisfiability Problem (MAX SAT) can be formulated as a partial constraint
satisfaction problem. In a MAX SAT problem m clauses cy, ..., ¢, involving the boolean vari-
ables z1,...,x, are given. Each clause contains a number of literals, where a literal is either
a variable or the negation of a variable. The problem is to assign a value true or false to each
variable so as to maximize the number of clauses that are satisfied. A clause is satisfied if at
least one literal in it has the value true.

It is not straightforward to model MAX SAT as a partial constraint satisfaction problem. We
introduce a vertex v, for every clause ¢;, ¢ = 1,...,m and a vertex vy, for every variable z;,
j =1,...,n. The domain of v, contains a value for each literal in the clause c;, let us denote
this value by the literal itself. The domain of v,; is given by {true, false}. There is an edge
between a vertex v., representing clause ¢;, and a vertex v;; representing variable z; if and only
if z; € ¢; or Z; € ¢; (Z; is the negation of z;). If z; € ¢;, then the penalty of the combination
of domain values (z;, false) is equal to 1. If Z; € ¢;, then the penalty of the combination of
domain values (Z;,true) is equal to 1. All other penalties are zero.

The optimal value of this partial constraint satisfaction problem is k if and only if the opti-
mal value of the corresponding MAX SAT is m — k. Furthermore, an optimal solution of the
MAX SAT is given by the domain values selected for the vertices corresponding to the variables
in the optimal solution of the partial constraint satisfaction problem. This shows that the two
problems are equivalent. Since MAX 2 SAT (each clause contains at most 2 literals) is NP-hard
(Garey, Johnson and Stockmeyer [1]) a binary constraint satisfaction problem with |D,| = 2 for
all v € V is already NP-hard.

For the MAX 2 SAT problem a more compact formulation is possible. We have a vertex v,
corresponding to every variable z; and the domain is given by {true, false}. There is an edge
{vxi,vxj} if and only if there exists a clause containing a literal corresponding to x; and a literal
corresponding to z;. The penalty corresponding to a combination of values for the variables x;
and z; is equal to the number of clauses containing literals corresponding to both variables for
which the given combination does not satisfy the clause.

The satisfiability problem (SAT), in which the question is whether there is an assignment of
the variables for which all clauses are satisfied, can also be formulated as a partial constraint
satisfaction problem as follows. There is one vertex for every clause and an edge if the two corre-
sponding clauses contain a conflicting literal corresponding to the same variable. A combination
{z;,7;} with 2; € C; and T; € C}, has penalty one. All combinations corresponding to noncon-
flicting literals have penalty zero. The problem is satisfiable if and only if the corresponding



partial constraint satisfaction problem has optimal value zero.

In Section 2 of this paper we formulate the partial constraint satisfaction problem as {0,1}-
programming problem, we state the dimension of the problem and describe the trivial facet
defining valid inequalities. We prove theorems for lifting facets of a subproblem to facets for the
original problem in Section 3. In Section 4 we define some classes of facets for the PCSP. Some
preliminary computational results are addressed in Section 5, whereas the last section contains
the concluding remarks.

2 Formulation, Dimension and Trivial Facets

To formulate the partial constraint satisfaction problem as a {0, 1}-programming problem we
introduce the following {0, 1}-variables for all v € V and d, € D,

y('U, du) — { L if dv S D’u is selected

0 otherwise

and for all {v,w} € E, d, € D, and d,, € Dy,

(v, dy, w, dy) = { 1 if (dy,dy) € Dy X Dy, is selected

0 otherwise

Note that since the constraint graph is undirected z (v, d,,w,d,,) and z(w,d,,, v, d,) denote the
same variable. To be consistent with the way we denote the x and y-variables, let p(v, d,, w, d,,)
and q(v,dy) denote Py, ) ({dy,dyw}) and Qy(dy), respectively.

A {0, 1}-programming formulation of the binary constraint satisfaction problem is given by

min Z{v,w}EE ZdveDU ZdweDw p(v, dy, w, dy)z(v, dy, w, dy)

+2 vev 2dyen, 1V dv)y(v, dy) (1)
st Dogep, Y(v,dy) =1 YoeV (2)
Yd,en, TV dy,w, dy) = y(v,dy) V{v,w} € E,d, € D, (3)
z(v,dy,w,dy) € {0,1} V{v,w} € E,d, € D,,dy, € Dy, (4)
y(v,dy,) € {0,1} Vv e V,d, € D, (5)

Constraints (2) model the fact that exactly one value in the domain of a vertex should be
selected. Constraints (3) model the fact that the combination of values selected for an edge
should be consistent with the values selected for the vertices of that edge.



We define the partial constraint satisfaction polytope X (PCSP) to be the convex hull of all
{0, 1}-vectors (y,x) satisfying (2) and (3). Although the y-variables can be eliminated from the
formulation, we have found it more convenient to keep them in the formulation. Note that once
the y-variables are {0,1} the z-variables are forced to be {0,1}. Therefore, the z-variables can
be relaxed to be [0, 1]-variables.

The dimension of the binary constraint satisfaction polytope is given by Theorem 2.1.

Theorem 2.1 The dimension of X(PCSP), defined by (G = (V,E),Dy) is

2wev (Dol = 1) + 320, wyen(1Do] = D([Dw| = 1)
Proof. We will first prove that the dimension is less than or equal to the given value by defining

> vev [Dol + 2 (ywier [ Dol |[Dw|(= number of variables)

(Coer (106 = 1) + Xy e (Dol = D(IDwl — 1)
= VI+ X uper(Do] +1Dul = 1)

linearly independent equalities which are satisfied by all solutions of PCSP. These linear inde-
pendent equalities are obtained by taking all constraints (2), and for every edge {v,w} all but
one of the constraints (3). The constraints (3) for a given edge {v,w} can be viewed as the
constraints of a transportation problem with suppliers indicated by (v, d,) with supply y(v, d,)
and clients indicated by (w,d,) with demand y(w,d,,). It is well-known that deleting one of
these constraints results in a set of linear independent equalities.

Next, we will prove that the dimension is greater than or equal to the given value by defining
L+ 3, cv (Dol = 1) + 32, wyer (Dol = 1)(|Dy| — 1) affinely independent solutions. Note that
once the y-variables are given, the z-variables are uniquely determined by constraints (3). To
define these solutions we arbitrarily select a value d} € D,. One solution is given by y(v,d}) =1
forallv e V.

For each v € V and d, € D, \ {d}}, we define the solution y(v,d,) = 1, y(w,d}) = 1 for all
w # v. Note that there are ) (|Dy| — 1) solutions of this type.

For each {v,w} € E, d, € D, \ {d;}, and d,, € D,, \ {d},}, we define the solution y(v,d,) =
y(w,dy) =1 and y(u,d})) =1 for all u € V, u # v, u # w.

Note that there are 3, ,yep(|Do| — 1)(|Dw| — 1) solutions of this type. These solutions are
affinely independent because the 3-, o\ (|Dy|=1)+ 3, yyep (| Do| —1) (| Dw|—1) vectors obtained
by subtracting the first solution from all other solutions are linearly independent. To see this
note that each vector has a one in a component in which each previously defined vector has a
zero. For the solution defined by (v,d,) take the component corresponding to z(v,d,,w,d))
or z(w,d},v,d,) for an edge {w,v} € E. For the solution defined by {v,w} € E, d, € D,,
dy € Dy, take the component corresponding to x(v, d,, w, dy). |



It follows straightforward that the non-negativity constraints of the z-variables define facets of
the polytope if both domains have at least two elements.

Theorem 2.2 For every {v,w} € E, |D,| > 2, |Dy| > 2, d, € D,, dy € Dy, the inequality
(v, dy,w,dy) >0 (6)
defines a facet for X (PCSP).

Proof. In the proof of Theorem 2.1 we listed dim X (PCSP) + 1 affinely independent solu-
tions exactly one of which has z(v,dy,w,dy) =1 ( d, # d, dy, # d;, ) and all others have
z(v,dy,w,dy) = 0. Hence, we have dim X(PCSP) affinely independent solutions satisfying
z(v,dy, w,dy) > 0 with equality. |

3 Lifting theorems

In this section we will discuss two different types of lifting. Firstly, we show that a facet defining
inequality of a partial constraint satisfaction problem defined by the constraint graph G = (V, E)
and a set of domains D,, v € V also defines a facet for the partial constraint satisfaction problem
defined by any constraint graph for which G = (V, E) is an induced subgraph, and a set of
domains where the domain for a vertex v € V' is unchanged and all other vertices have a domain
of cardinality one. If X(PCSP) is defined by (G = (V, E),Dy), let X, (PCSP) denote the
PCSP-polytope defined by the induced subgraph on V' \ {u} with the same domains.

Theorem 3.1 Let X (PCSP) be defined by (G = (V, E), Dy) with |D,| =1, for someu € V. If
mx < o is a facet defining inequality for X,(PCSP), then wx < my is a facet defining inequality
for X(PCSP).

Proof. The polytopes belonging to both problems have the same dimension. |

Next, we show how a facet defining inequality of a constraint satisfaction problem defined by
the constraint graph G = (V, E) and a set of domains D,, v € V can be lifted into a facet
defining inequality for the constraint satisfaction problem by the same constraint graph and set
of domains D), v € V, where D! = D,, for all v € V, v # u, and D) = D, U{d.}.

Theorem 3.2 states that if we make d, a copy of any domain element d,, € D, (i.e. the coefficient
of z(u,d),v,dy) is equal to the coefficient of x(u,dy,v,dy), for all v € d,, d, € D,, where §,
defines the set of neighbours of « in the constraint graph; 6, = {v | {u,v} € E}), then the new
inequality is facet defining for the extended problem whenever the original inequality is facet
defining for the original problem.



In order to prove Theorem 3.2 we need Lemma 3.1 and Lemma 3.2. The components corre-
sponding to (v,d,) are given by z(v,d,,w,d,,) for all w € §,, d,, € Dy, and y(v,d,).

Lemma 3.1 If Y 5 >4 cp. a(u,dy,v,dy)z(u,dy,v,dy) > 0, u € V, dy € Dy, is a facet
defining valid inequality for X (PCSP), then the inequality describes a trivial facet.

Proof. We first prove that by adding implicit equalities of the PCSP the valid inequality can
be rewritten as Y s >, p. B(u, dy,v,dy)z(u, dy,v,dy) > 0 with S(u,dy,v,d,) > 0.

Let d; € D,, v € d,, be such that a(u, dy, v, d}) = ming,cp,{a(u,dy,,v,d,)}. We add the implicit
equalities a(u, dy, v, d;)) (y(u, dy) =Y ,cp, ¥(U, du,v,dy)) = 0 to the inequality. We obtain a valid
inequality of the form

Zuedu a(u, dua v, d:)y(ua du)+
Zuedu ZduGDv (a(u, du7 v, d’U) - oz(u, du7 v, d:‘]))x(u, dua v, dv) Z 0

From the solution in which we select d;, € D, for all v € §,, and d,, € D,, for u, and the validity
of ax > 0 it follows that Y s a(u,dy,v,dy) > 0. Substitute y(u,dy) = > 4 cp. T(u,dy,v,dy)
for some v € §,, and we obtain an inequality where each coefficient is nonnegative.

Since z(u, dy,,v,d,) > 01is valid for all {u,v} € E,d, € D,, d, € D, it follows that the dimension
of the face of the inequality is maximal if there is exactly one nonzero coefficient 3(u, dy, v, d,).
In that case the inequality defines the same face as the inequality z(u, d,,v,d,) > 0. |

Lemma 3.2 Let oz < m define a non-trivial facet of X(PCSP). Then for each u € V,
duy € Dy there are exactly ¢ = 1+ 3, 5 (|Du| — 1) solutions with y(u,d,) = 1 and 7z = m
which are affinely independent with respect to the components corresponding to (u,dy).

Proof. Let (y',z!),...,(y?,2P) be p = dim X (PCSP) affinely independent solutions which
satisfy Tz < mp with equality. Moreover, let (y',z'),..., (y?,z9) be the solutions with y(u, d,) =
1 which are affinely independent with respect to the components y(u,d,) and x(u, d,,v,d,) for
all v € 0y, d, € D,. Note that by y(u,d,) = 1 these solutions are also linearly independent.
We prove that the corresponding matrix A with 1+ 37 s |Dy| rows and ¢ columns has rank
L+ 3 ,cs, (IDy| = 1), which implies that there are exactly 1 + 37 |D,| — 1) solutions which
are affinely independent with respect to these components.

VEDy (

To prove that the matrix has rank 1+ s (|Dy| — 1) we will prove that there are exactly
|0| linear independent vectors « such that A = 0. Every column of A satisfies y(u,d,) =
>-d,ep, (U, dy,v,dy) for all v € 6. Therefore there are at least [0, | linear independent vectors
a such that «A = 0. Assume there exists another vector « such that «A = 0 which is linear
independent from the other |d,| linear independent vectors. If the coefficient of y(u,d,) is
nonzero, then we use one of the equalities y(u,dn) = > 4 cp Z(u,dy,v,d,) to eliminate this
coefficient.



Since all solutions (y',z'), (y2,2?),..., (y?,zP) satisfy az = 0 it follows that {z € X | 7o =
mo} C {z € X | ar = 0}. If equality does not hold, then {x € X | ax =0} = X and az =0
is an implicit equality. However, « is linear independent from the implicit equalities involving
z(u,dy,v,dy), v € by, dy € D,. Hence {x € X | ax =0} = {z € X | mz = mp}. It follows that
either ax > 0 or ar < 0 is a valid inequality for X (PCSP) defining the same facet as 7 < 7.
Without loss of generality (multiply o by —1 if necessary) assume az > 0 for all z € X. It is
proved in Lemma 3.1 that in that case mz < 7y defines a trivial facet. |

Now, we can prove the main theorem of this paper.

Theorem 3.2 Let X(PCSP) be defined by (G = (V,E),Dy). Letu € V, d, € D,. Define
X'(PCSP) by (G(V,E),Dy,) with D, = D,, v € V\{u}, D, = D, U{d,}. If tx < m is a
non-trivial facet defining inequality for X (PCSP), then

T+ Z1165(u) EdveDU W(u’ dy, v, dv)x(u, d;, v, dv) < mo (7)

is facet defining for X'(PCSP).

Proof. First, note that dim X'(PCSP) = dim X (PCSP)+1+3_ s (|Dy|—1). Let the solutions
(y',zY), ..., (y?,zP), where p = dim X (PCSP), be a set of affinely independent solutions which
satisfy mz < mp with equality. It follows from Lemma 3.2 that there exist 1+ 7 5 (|Dy| — 1)
solutions which satisfy y(u, d,) = 1 and are affinely independent with respect to (u,d, ). Replace
in these solutions d,, by d!,. Then these new solutions together with the old solutions are affinely
independent. |

In Section 4 we will define some facet defining inequalities for a partial constraint satisfaction
problem defined by G = (V, E) and a set of domains D,, v € V. To prove that they are facet
defining we will first prove that they are facet defining for a constraint satisfaction problem
defined by an induced subgraph Gg = (S, Eg) of G and a set of domains D,,, with |D,| = 2,
v € §. Next, Theorems 3.1 and 3.2 are used to extend these facets defining inequalities to facet
defining inequalities for the original problem.

4 Non-trivial facets of the PCSP

The non-trivial facets we will describe in this section are characterized by an induced subgraph
Gs = (S, Eg) of the constraint graph G. For every v € S the domain D, is partitioned into
A, and B,. Domain values in A, are copies of one another; likewise the domain values in B,,.
Therefore to describe the facets it is sufficient to specify for each edge {v, w} € Eg the coefficients
aa(v,w), ab(v,w), ba(v,w) and bb(v,w) corresponding to the coefficient of z(v,d,,w,d,) with
respectively {d,,d,} € Ay x Ay, {dy,dy} € Ay X By, {dy,dy} € Byx Ay and {d,,dy} € By XBy,.



The facet takes the form

w)x (v, dy, w, dy )+

—~
u@
v

Z{v,w}EES( Dodye Ay Dy Ay OO

ZdveAv ZdwEBw b(’U,’LU)]?(’U d’an d )+ (8)
ZdUEBU ZdweAw (Z(’U,’LU)]?(’U d’an d )+
Zdver ZdwEBw bb(v,w)x(v,dy,w,dy)) o ¢

where 0 € {>,<}.

It follows from the lifting theorems in Section 3 that in order to prove that an inequality of
type (8) is facet defining it is sufficient to prove that (8) is facet defining for X (PCSP) defined
by Gs = (S, Eg) and A, = {a,}, B, = {b,}, for allv € S.

4.1 The cycle-inequality

Firstly, we introduce the cycle-inequality. A k—cycle inequality, k > 3, is defined by

S = fuli=1,....k
Es = {{vi,via} |i=1,..k = 1}} U{{vg,v1}}

aa(vi,vip1) = bb(vi, viy1) = 1,ab(vi, vit1) = ba(vi,vip1) =0 i=1,...,k—-1
aa(vg,v1) = bb(vg,v1) = 0,ab(vg,v1) = ba(vg,v1) =1

s = <

c = k-1

We will call a domain value d, € D, an a-value whenever d, € A,; otherwise it is a b-value.
Figure 1 shows the 3-cycle and 4-cycle inequality. The a-dot represents the A-subset of the
domain; the b-dot represents the B-subset of the domain. A line between two dots indicate that
the coefficient corresponding to the indicated two subsets is equal to one.

Theorem 4.1 The k-cycle inequality, k > 3, is valid for X(PCSP).

Proof. Consider a solution. Each edge of the cycle contributes at most one to the left hand side
of (8). If d,, and d,, are a-values, then the edge {v;,v;} does not contribute to the left hand
side of (8) and hence (8) is satisfied. The same can be applied if d,, and d,, are b-values.

If d,, is an a-value and d,, is a b-value, then there exists an 7,1 < ¢ < k — 1, such that d,, is
an a-value and d,,_, is a b-value. Hence the edge {v;,v;11} does not contribute to the left hand
side of (8), and hence (8) is satisfied.

If dy, is a b-value and d,, is an a-value, then the same reasoning applies. |
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Figure 1: Cycle Inequalities

The proof of Theorem 4.1 also indicates the structure of the solutions which satisfy (8) with
equality. If d,, and d,, are both a-values, then all other domain values in the cycle must be
a-values as well.

If d,, and d,, are both b-values, then all other domain values in the cycle must be b-values as
well.

If dy, is an a-value and d,, a b-value, then there exists an 4, 1 < ¢ < k — 1, such that dvj,
1 <y <4, is an a-value, and dvj,z' +1 <5 <k is a b-value.

If dy, is a b-value and d,, is an a-value, then there exists an 4, 1 < ¢ < k — 1, such that
dy;,1 <j <iisab-value, and d,;, 1 +1 < j < k is an a-value.

Theorem 4.2 The k-cycle inequality, k > 3, is facet defining for X (PCSP).

Proof. By the results of Section 3 it is sufficient to prove that the k-cycle inequality is facet
defining for X (PCSP) defined by the k-cycle constraint graph and A,, = {a;}, By, = {bi},
i =1,...,k. The dimension of X (PCSP) is 2k. The 2k affinely independent solutions satisfying
the k-cycle inequality with equality are given below. After each solution we have indicated a
component for which this solution is the unique solution having a one in this component. This
proves that these solutions are affinely independent.

(a1,...,ax) (z(v1,a1, vk, a))

(a1y...,ai,bi41,...,0,) i=1,....k—1 (z(v;,ai,vit1,bit1))
(b1, .. , br) (z(v1,b1, vk, bg))
( (z(

bla"'abiaai+17"'7ak) i=1,...)k=1 (z viabiavi+17ai+1))



4.2 The clique-cycle inequality

A second class of facet defining valid inequalities are the clique-cycle inequalities. A k—clique-
cycle inequality, & > 3, is defined by

S = {vi|i:1,...,k}

Bs = {{oio} i) =1, ki <}

Ec = {{vi,vim}|i=1,...,k =1} U{{vg,v1}} subset forming a k-cycle
aa(v,w) = ab(v,w) = ba(v,w) = 0,bb(v,w) =1 {v,w} € Es\ Ec

aa(vi, vit1) = ab(vi,vit1) = ba(vi, vip1) = 1,0b(vi, vip1) =0 i=1,...,k—1
aa(vg,v1) = ab(vg, v1) = ba(vg,v1) = 1,bb(vg,v1) =0

o = 2

c = k-1

Figure 2 shows a clique-cycle inequality for £k = 3 and k = 4. For k = 3 the facet described by
a clique-cycle inequality is the same as a facet described by a cycle inequality.

Figure 2: Clique-Cycle Inequality

Theorem 4.3 The k-clique-cycle inequality, k > 3, is valid for X(PCSP).

Proof. Consider an arbitrary solution. Whenever an a-node is selected in D,,, then the edge in
the k-cycle {v;,vi11} (or {vg,v1} whenever i = k) contributes exactly one to the left hand side
of (8). Hence (8) is valid whenever at least k¥ — 1 a-nodes are selected. Therefore, let us assume
that £ — p a-nodes and hence p b-nodes are selected, p > 2.

If v van w are both b-nodes, then the edge {v,w} contributes one to the left hand side of (8).
The total contribution of all edges between b-nodes is p(p — 1)/2.

10



The total contribution of the a-nodes is equal to the number of a-nodes & — p. To prove that
the total contribution is at least kK — 1 we have to prove that p(p — 1)/2 + (k —p) > k — 1, i.e.
p? —3p+2>0o0r (p—1)(p—2) > 0. This holds since p > 2. |

The proof of Theorem 4.3 also indicates the structure of the solutions which satisfy (8) with
equality. A solution satisfies (8) with equality if and only if the number of b-nodes selected is
either one or two.

Theorem 4.4 The k-clique-cycle inequality, k > 3, is facet defining for X (PCSP).

Proof. By the results of Section 3 it is sufficient to prove that the k-clique-cycle inequality is
facet defining for X (PCSP) defined by the k-clique constraint graph and A,; = {a;}, By, = {bi},
i =1,...,k. The dimension of X (PCSP) is k+k(k—1)/2. The k+k(k—1)/2 affinely independent
solutions satisfying (8) with equality are given below. For each solution we will also specify a
component for which this solution has a value one and all previously defined solutions have value
zero at this component. This proves that the solutions are affinely independent.

For each p =1,...,k we define

vp is a b-node
v; 17 pis an a-node

with component z(vp, by, vp11,ap+1) ( (v, bg,vi,a1) if p=Ek).

For each p,g=1,...,k, p < q, we define

vp is a b-node
vg is a b-node
v; 1 F# p,qis an a-node

with component z(vy, by, vg, by) |

5 Computational Results

A first test of the quality of the valid inequalities described above is done on 11 instances with
|Dy| = 2 for v € V. These instances are subproblems of the Frequency Assignment CALMA-
instance celar8, which have to be solved in the crossover of the genetic algorithm described by
Kolen [2]. We used the callable library of CPLEX 4.0 to solve the linear programming relaxation
(zLp), the (0, 1)-programming problem (z;p) as well as the linear programming relaxation with 3-
cycle valid inequalities (z3). The selection of violated valid inequalities was done by enumaration
of all valid inequalities with £ = 3 (i.e. 4 valid inequalities for each 3-cycle were available). For
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all instances we have |V| = 458 and |E| = 1655. The results are presented in Table 1. The
program written in C++ was running on a DEC 2100 A500MP workstation with 128Mb internal
memory. The table shows that for all instances the LP-relaxation with 3-cycle valid inequalities
gives an integer solution. The number of violated inequalities which had to be added is given in
the last column. The computation times were in average reduced by 76.4%.

instance H ZLP ‘ Z3 ‘ zZip H CPU ZLP ‘ CPU Z3 ‘ CPU Z3+IP ‘ CPU zZip H #V.i. ‘
c8.1 848.5 986 | 986 8.8 18.1 18.1 78.0 || 1104
c8.2 721 836 | 836 8.7 11.4 11.4 48.4 497
c8.3 630.5 T4T | 747 7.8 13.1 13.1 63.1 771
c8 4 802 834 | 834 8.0 10.9 10.9 35.4 || 1243
c8.5 627.5 729 | 729 7.5 11.3 11.3 35.7 608
c8.6 695 717 | 717 8.6 12.0 12.0 31.5 907
c8.7 836 894 | 894 8.2 9.9 9.9 39.1 267
c8.8 757 835 | 835 7.2 10.5 10.5 71.2 47
c8.9 769 866 | 866 9.2 12.6 12.6 54.9 610
c8.10 768.5 812 | 812 8.1 10.0 10.0 37.7 215
c8-11 622 814 | 814 7.3 16.0 16.0 187.1 || 1259
pl 35.5 | 104.5 | 110 6.6 25.5 152.4 - 266

Table 1: Computational results

An instance with a large gap between LP and IP was given by a subproblem of a Frequency
Assignment Problem of a large telecommunication company. This instance has 708 vertices and
1677 edges (again all domains contains 2 values). The 3-cycle inequalities close the gap between
LP and IP with 92.6%. With these valid inequalities CPLEX needed 113 nodes branch-and-
bound nodes to obtain and prove the optimal value. CPLEX was not able to solve this instance
to optimality without adding valid inequalities.

6 Concluding Remarks

In the case |D,| = 2 for all v € V' the number of k-cycle inequalities which describe different
facets of the polytope is 2¥~!, which give us the possibility the enumerate all valid inequalities
for small k£ (which is done for the instances mentioned in the previous section. However, if the
number of domain elements grows the number of available cycle and clique-cycle inequalities
which define different facets increases enormously. Therefore, in a future paper the separation
problems for each class of valid inequalities will be discussed. Heuristics for these separation
problems have to be developed, and have to be implemented in a Branch-and-Cut framework
to solve large-size real-life problems (like the CALMA-instances). Moreover, due to the size of
these instances, problems will arise in solving the LP relaxation.
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