
Operations Research Letters 25 (1999) 15–23
www.elsevier.com/locate/orms

Exact solution ofmulticommodity network optimization problems
with general step cost functions

V. Gabrela, A. Knippelb, M. Minouxb; ∗
aUniversit�e Paris 13 LIPN-Avenue J.-B. Cl�ement, 93430 Villetaneuse, France

bLaboratoire d’ Informatique de Paris 6, Universit�e Paris 6-LIP6-4 Place Jussieu, 75005 Paris, France

Received 1 August 1998; received in revised form 1 January 1999

Abstract

We describe an exact solution procedure, based on the use of standard LP software, for multicommodity network opti-
mization problems with general discontinuous step-increasing cost functions. This class of problems includes the so-called
single-facility and multiple-facility capacitated network loading problems as special cases. The proposed procedure may be
viewed as a specialization of the well-known BENDERS partitioning procedure, leading to iteratively solving an integer
0–1 linear programming relaxed subproblem which is progressively augmented through constraint generation. We propose
an improved implementation of the constraint generation principle where, at each step, several (O(N)) new constraints are
included into the current problem, thanks to which the total number of iterations is greatly reduced (never exceeding 15 in
all the test problems treated). We report on systematic computational experiments for networks up to 20 nodes, 37 links and
cost functions with an average six steps per link. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Optimum network design; Multicommodity
ows; Benders method; Multiple constraint generation

1. Introduction

The minimum cost multicommodity network

ow problem with discontinuous step increasing
cost functions is a basic model in Telecommuni-
cation network design. Previous work on the sub-
ject has been carried out on the following special
cases:
(a) The uncapacitated network design problems

[15] where, on each link of the network, it is only
possible either to open the link (in which case in�nite

∗ Corresponding author. Fax: 33-1-44-27-62-86.
E-mail address: michel.minoux@lip6.fr (M. Minoux)

capacity is available at some given �xed cost attached
to the link) or not (in which case the cost is zero and
no capacity is available).
(b) The so-called single facility capacitated net-

work loading problem, where capacity expansion on
any given link u can be done by installing an integer
number of units of a given basic facility characterized
by its capacity C and its cost
u (see [13,3]).
(c) The so-called two-facility capacitated network

loading problemwhich generalizes the previous model
in that, on each link u, capacity expansion can be
achieved by means of two types of facilities, one with
capacity C1 and cost
1u and the other with capacity
C2 and cost
2u (see [14]).

0167-6377/99/$ - see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(99)00020 -6

16 V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23

We address here the more general class of prob-
lems where, on each link u, an arbitrary discontinuous
step-increasing cost function is given.
This general model has received, up to now, only

very little attention. Stoer and Dahl [19] is one of the
only references we are aware of considering general
step cost functions. They propose a cutting plane ap-
proach using polyhedral properties (valid inequalities
and facet-de�ning inequalities) but the computational
experiments reported there are limited to a single net-
work structure with 27 nodes and 51 links with a very
sparse requirement matrix (composed of only 19 indi-
vidual requirements). Exact optimal solutions are only
reported for a very special set of values of the input
data.
Here we do not assume sparsity in the requirement

matrix, i.e., for an n node instance, the multicommod-
ity
ow requirements to be satis�ed include one re-
quirement for each pair of nodes (thus the number of
commodities is n(n− 1)=2).
LP relaxations have also been investigated in Gabrel

andMinoux [6] leading to lower bounds improving the
natural bounds derived from the convexi�ed problem.
Computational results are provided for instances up to
50 nodes and about 90 links.
In the present paper, it is shown that, with an

appropriate implementation of the constraint gener-
ation approach (a specialization of the well-known
BENDERS procedure) standard LP software (such
as CPLEX) can be used to obtain exact optimal solu-
tions up to about 20 nodes and 37 links. As far as we
know, this is the �rst systematic computational study
aimed at solving exactly this class of hard network
optimization problems.
The paper is organized as follows. The multicom-

modity network optimization problem with general
step cost functions is formulated in Section 2. Con-
straint generation procedures, together with details
on their implementations, are provided in Sections 3
and 4. Computational results are presented and dis-
cussed in Section 5.

2. Problem formulation

The basic network structure is given as an undi-
rected graph G=[N;U] whereN is the set of nodes
(|N|=N) andU the set of the edges (links) (|U|=M).

The problem to be considered is to decide the
amount of capacity xu¿0 to install on each edge u of
the network in order to
• satisfy a given set of multicommodity
ow require-
ments: there are K source-sink pairs, and for each
k ∈ [1; K] a given requested
ow value dk has to be
routed between the source node s(k) and the sink
node t(k);

• satisfy given upper bound constraints:
∀u∈U: 06xu6�u;

• minimize the total cost of the network which,
in terms of given individual link cost functions
�u(xu) (u= 1; : : : ; M), may be written as

z =
∑
u∈U

�u(xu):

Minimum cost multicommodity
ow problems have
been extensively studied in the special cases where the
cost functions �u(xu) are linear (see e.g. [11,1]), linear
with �xed cost or nonlinear concave but continuous
and di�erentiable (see e.g. [18]).
We address here the minimum cost multicommod-

ity
ow problem in the case of general discontinuous
step-increasing cost functions.
Thus, for each edge u∈U in the network, we as-

sume that we are given a cost function �u(xu) de�ned
as follows. Let Vu = {v0u; v1u; : : : ; vq(u)u } be a �nite set
of values representing the discontinuity points of the
�u function and denote

0u =�u(v0u);
1u = �u(v1u);

2u =�u(v2u); : : : : : :
q(u)u = �u(vq(u)u);

with 0 = v0u ¡v1u ¡v2u ¡ · · ·¡vq(u)u and 0 =
0u ¡
1u
¡
2u ¡ · · ·¡
q(u)u .
With this notation we have

�u(xu) = 0 if xu = 0 and; ∀i = 1; : : : ; q(u):
�u(xu) =
 i

u for all xu ∈]vi−1u ; viu]:

Note here that the cost function �u(xu) is not de-
�ned for values of xu greater than �u= vq(u)u , therefore
our model will include bound constraints of the form:
06xu6�u either explicitly or implicitly.
For a given set of multicommodity
ow re-

quirements de�ned by a list of source–sink pairs
s(k); t(k) (k=1; : : : ; K), and a list of requirements dk

(amount of the kth
ow to be routed between s(k) and

V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23 17

t(k)), we denote by X ⊂RM
+ the polyhedron repre-

senting the set of all feasible multicommodity
ows.
Thus x = (xu)u∈U¿0 belongs to X if and only if a
feasible multicommodity
ow exists when, on each
edge u∈U; the total capacity installed is xu. With
this notation, the minimum cost multicommodity
ow
problem to be solved may be formulated as

(P)



min

∑
u∈U

�u(xu)

s:t: x∈X

xu ∈Vu (∀u∈U):
Several linear representations of X (as a system of
linear equality and inequality constraints involving
the x variables and possibly other variables) are
known, including the so-called node-arc formula-
tion and arc-chain formulation (for an overview, see
[11,18]). Later in the paper we will use the following
representation of X involving the x variables only.
For any � = (�1; : : : ; �M)∈RM

+ , let �(�) denote the
quantity:

�(�) =
K∑

k=1

dk × l∗k (�);

where l∗k (�) is the length of the shortest chain joining
s(k) and t(k) in G, when each edge u∈U is given
length �u¿0.
Then x = (xu)u∈U belongs to X if and only if, for

all �∈RM
+ , we have∑

u∈U

�uxu¿�(�) (1)

(see e.g. [8, Chapter 6]).
Constraints (1) are sometimes referred to as “met-

ric inequalities” (see [2]). Note that testing whether
a given �x∈RM belongs to X can be done in poly-
nomial time, since this amounts to solving a linear
program.

3. Solving (P) through constraint generation
(Benders)

The description of the multicommodity
ow poly-
hedron X as a large set of metric inequalities of type
(1) suggests a constraint generation approach, start-
ing from an initial relaxation which is progressively

re�ned by adding new inequalities violated by the
current solution. The process stops when the (exact)
optimal solution �x = (�xu)u∈U to the current relaxed
problem satis�es all the metric inequalities, i.e. when
�x∈X . With respect to problem (P), such a procedure
may be viewed as a specialization of the well-known
Benders approach [4] which has long been rec-
ognized as a useful basic tool for solving other
types of optimum network design problems (see e.g.
[7,16,10,17]).
At the current iteration k of the constraint generation

approach, let J k be the index set of metric inequalities
generated so far. Solve (exactly) the current relaxed
subproblem:

(Rk)




min
∑
u∈U

�u(xu)

s:t:
∑
u∈U

�j
uxu¿�(�j) ∀j∈ J k :

xu ∈Vu; ∀u∈U:

Let �x = (�xu) be the exact optimal solution obtained.
Metric inequalities violated by the current �x are then

looked for. If one (or several) can be found, add it
(add them) to (Rk) to form the augmented relaxed
subproblem (Rk+1), and start a new iteration k + 1.
If no violated inequality can be found then terminate:
�x∈X and �x is an optimal solution to (P).
To implement the above, the current relaxed sub-

problem (Rk) is reformulated as a pure 0–1 integer
linear program by introducing, for each link u; q(u)
0–1 variables �1u; �

2
u; : : : ; �

q(u)
u satisfying:

∀t = 2; : : : ; q(u): �t
u6�t−1

u

and expressing the xu variables as

∀u∈U: xu =
q(u)∑
t=1

�t
u(v

t
u − vt−1u) (2)

and the objective function as

z =
∑
u∈U

q(u)∑
t=1

�t
u(

t
u −
t−1u): (3)

18 V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23

Thus, (Rk) reduces to the following 0–1 integer linear
programming problem (ILPk):

(ILPk)




min z =
∑
u∈U

q(u)∑
t=1

�t
u(

t
u −
t−1u)

s:t:
∑
u∈U

�j
u

(q(u)∑
t=1

�t
u(v

t
u − vt−1u)

)
¿�(�j)

∀j∈ J k

∀u∈U; ∀t = 2; : : : ; q(u): �t
u6�t−1

u

∀t = 1; : : : q(u): �t
u ∈{0; 1}:

(ILPk) could be solved either by using some of the
various available standard LP software, either by de-
veloping a specialized algorithm. In this paper we
chose to investigate the capabilities of standard LP
software and we used CPLEX 4.0 in MIP mode to
solve the relaxed problems (Rk) in all our computa-
tional experiments (see Section 5).
We now discuss the implementation of the con-

straint generation process at each iteration.

4. Single and multiple constraint generation
procedures

To implement constraint generation, we �rst tried
the standard way consisting in generating, at each it-
eration, a single “most violated” metric inequality, as
explained in Section 4.1 below.

4.1. Single constraint generation (SCG)

Let �x denote the (exact) optimal solution to the cur-
rent relaxed subproblem (Rk). There are many possi-
ble criteria for selecting a “most violated inequality”.
Based on some preliminary computational testing,

the criterion chosen was to select a metric inequality
maximizing the ratio between the right-hand side and
left-hand side. It is easily seen that such an inequality
is obtained as an optimal solution to the following
auxiliary problem

(AP)



max �(�)

s:t:
∑

�u �xu = 1

�u¿0 ∀u∈U:

In our experiments we solved (AP) using the sub-
gradient algorithm described in [6, Section 4.1]. With
this subgradient algorithm we can only approximate
the exact optimal solution to (AP), but our experi-
ments have con�rmed that exact optimality in (AP)
is not needed in intermediate steps, good approximate
solutions to (AP) are su�cient. However, whenever
our subgradient algorithm fails to produce a � with
�(�)¿ 1 (therefore suggesting that �x∈X is likely to
occur) an exact feasibility test is carried out by solv-
ing a continuous feasible multicommodity
ow prob-
lem (an ordinary continuous LP problem easily solved
by standard LP software).
The computational experiments reported in

Table 1 show that, even for very small-sized problems
(≈ 8–12 nodes), constraint generation with (SCG)
not only requires a signi�cant number of iterations,
but this number seems to increase quite rapidly with
problem size (average # of iterations is 13 for N = 8;
18 for N = 10 and 37 for N = 12).
In order to improve the e�ciency of the algorithm

(i.e. to reduce the total number of main iterations), we
investigated a di�erent approach where several vio-
lated inequalities are systematically generated at each
iteration.

4.2. Multiple constraint generation (MCG)

The MCG procedure described here is based on two
main ideas:
(i) before considering general metric inequalities,

bipartition inequalities (i.e. metric inequalities corre-
sponding to bipartitions of the node set X) are gener-
ated �rst;
(ii) at each step a signi�cant number (O(N) in our

experiments) of candidate bipartition inequalities is
computed, all the violated inequalities in this set being
actually added to the current relaxed subproblem.
For any subset S ⊂N, we denote �S=N\S; !(S)

the subset of edges having one endpoint in S, and the
other in �S, and d(S; �S) the total sum of requirements
dk such that either s(k)∈ S and t(k)∈ �S or s(k)∈ �S
and t(k)∈ S.
The bipartition inequality induced by S is a metric

inequality, which reads:∑
u∈!(S)

�xu¿d(S; �S): (4)

V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23 19

For a given �x, �nding a most violated bipartition in-
equality can be done according to various possible cri-
teria. Several such criteria were tested, among which:
• maximizing the di�erence between the right- and
left-hand sides in (4);
• maximizing the ratio

�(S) =
d(S; �S)∑
u∈!(S) �xu

between the right- and left-hand sides in (4).
Based on preliminary computational experiments,

the second criterion was found to be the best choice
for (MCG). With this criterion, the problem is to de-
termine S∗⊆N such that

�(S∗) = Max
S ⊆N

{�(S)}: (5)

Since (5) is an NP-hard problem (MAX-CUT is easily
seen to be a special case), (5) will be solved only ap-
proximately via a variable-depth local search heuris-
tic of Kernighan-Lin type [12]. This is implemented
through the procedure MAX-RATIO-CUT (i0; j0) be-
low, which, for any given pair of nodes (i0; j0) in
N, returns a near-optimal subset S such that i0 ∈ S;
j0 ∈ �S:

Procedure MAX-RATIO-CUT (i0; j0)
(a) initialization.
Randomly choose S ⊂N satisfying i0 ∈ S; j0 6∈ S.

Set S∗ ← S; t ← 1:
(b) Current phase t.

Set:
�̂← �(S); Ŝ ← S; T ← {i0; j0}
While (T 6=N) do
For each i∈N \ T compute:
�i = � (S ∪ {i})− �(S) if i 6∈ S
�i = �(S \ {i})− �(S) if i∈ S
and determine �r = Max

i∈N\T
{�i}

T ← T ∪ {r}
if r 6∈ S set S ← S ∪ {r}
if r ∈ S set S ← S \ {r}
if � (S)¿�̂ set: �̂← � (S)

Ŝ ← S
endWhile
If � (Ŝ)6�(S∗) Terminate and output S∗.
Otherwise set S∗ ← Ŝ ; S ← Ŝ ; t ← t + 1
and return to (b)

In our experiments, each time the procedure
MAX-RATIO-CUT is called for, ten distinct random
initial subsets S are tried, and the �nal result is taken to
be the best of the 10 locally optimal solutions found.
The observed number of phases needed for reaching
a local optimum from a given initial subset typically
lies between 2 and 4, and very rarely exceeds 4.
We now describe the MCG procedure. The

�rst step of this procedure consists in calling
MAX-RATIO-CUT (i; j) for all (i; j) ∈ U. This is
done in order to ensure that each variable xu is in-
volved in at least one of the candidate bipartition
inequalities. Of course only those candidate inequal-
ities which are violated by the current �x are actually
appended to (Rk).
In practice, it was observed that the number of dis-

tinct cuts found at each step is usually close to N − 1
(note that this is consistent with the result due to Cheng
and Hu [5]).

(MCG) multiple constraint generation procedure
Input: �x = (�xu)u∈U

Step 1: For all u= (i; j) ∈ U do: call MAX-RATIO-
CUT (i; j), and let Su be the (near-optimal) subset
returned by the procedure.
If �(Su)61 for all u∈U, go to step 2.
Otherwise, for each u such that �(Su)¿ 1; add to the
current relaxed subproblem the new constraint:∑
v∈!(Su)

xv¿d(Su; �S
u
);

end of (MCG).
Step 2: It essentially consists in applying (SCG) as de-
scribed in Section 4.1. Determine �, an (approximate)
optimal solution to the auxiliary problem (AP) as ex-
plained in Section 4.1 to �nd a most violated metric
inequality.
If � (�)¿ 1 add to the current relaxed subproblem the
metric inequality:∑
u∈U

�uxu¿�(�)

end of (MCG).
If � (�)61 no violated metric inequality has been
found. End of (MCG).

In all our computational experiments, it was obser-
ved that when (MCG) terminates without producing

20 V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23

any new violated inequality, then the current �x was in-
deed feasible.Whenever this situation occurs, an exact
feasibility check is carried out by solving to optimal-
ity (using CPLEX) the (continuous) linear program
obtained from a node-arc formulation of the feasible
multicommodity
ow problem (where each link u is
assigned capacity �xu).
To initialize the constraint generation process,

(MCG) is applied with an input vector �x constructed
as follows. For all k ∈ [1; K]; let Pk denote the edge
set of the shortest chain between s(k) and t(k) in
terms of number of edges, and let u =

∑
k|u∈Pk

dk

(thus u is recognized as the total
ow through link u,
when all the commodities are routed on a single chain
having minimum number of edges between source
and sink). Then, the initial �x vector used is de�ned by

∀u ∈ U: �xu = 1
2 u: (6)

The initial restricted problem (R1); at the �rst itera-
tion of the constraint generation process, is therefore
composed of all the violated bipartition inequalities
identi�ed by (MCG) with the �x vector de�ned by (6).

5. Computational results

We present two series of results, shown in Tables
1 and 2.
Table 1 compares the two implementations of the

constraint generation process obtained by using either
the (SCG) procedure described in Section 4.1 or the
(MCG) procedure in Section 4.2. In order to obtain
a fair comparison between the two approaches, the
initial restricted problem for (SCG) has been taken to
be the same as for (MCG) (for details refer to Section
4.2 above).
For each method Table 1 displays:
• the total number of iterations needed until exact
optimality is reached (for (SCG), since exactly one
metric inequality is generated at each iteration, this
is also the total number of generated constraints);
• the total running time (in seconds) of the procedure
on a SPARC 20 workstation;

The last column shows the factor of improvement in
terms of computing time between (SCG) and (MCG).
Due to the long time taken by (SCG) these exper-

iments have been limited to small size problems not
exceeding 12 nodes.

The results from Table 1 clearly con�rm the superi-
ority of (MCG) over (SCG), both in terms of number
of iterations and computing time.
The second series of results, found in Table 2,

illustrates the behaviour of the (MCG) procedure
on a full set of 50 test problems of size up to 20
nodes and 37 links. The corresponding data have
been obtained by applying the random generator
described in Appendix 2 of Gabrel and Minoux
[6]. All the requirement matrices are fully dense.
Also the link cost functions feature an average
number of six steps. For each problem, Table 2
shows:
• the number of nodes N and the number of links M ;
• NV, the number of 0–1 variables in the relaxed
subproblem;

• NC1, the number of constraints in the initial relaxed
subproblem (R1);

• z1, the optimal integer solution value of the initial
relaxed subproblem;

• iter, the total number of iterations necessary to reach
an exact optimal solution to (P);

• NAP the total number of metric inequalities gener-
ated by solving the auxiliary problem (AP);

• NC, the total number of constraints in the �nal re-
laxed subproblem;

• z∗, the exact optimum solution value to problem
(P);

• T (Total) the total running time in seconds on a
SPARC 20 workstation;

• T (CG), the time taken by the process of generating
violated constraints.

The main observations which can be drawn from
Table 2 are the following:
(a) Step 2 of (MCG) is almost never processed

(NAP ¿ 0 in only 2 cases over 50). So, for most
instances, bipartition inequalities are su�cient to ob-
tain a feasible multicommodity
ow solution within a
limited number of main iterations.
(b) The average number of main iterations (iter)

increases rather moderately with problem size : iter
≈ 5 for N = 8; iter ≈ 9 for N = 10; iter ≈ 10 for
N = 12; iter ≈ 12 for N = 15; iter ≈ 13 for N =
20. These �gures illustrate the relevance of the mul-
tiple constraint generation approach as implemented
in (MCG).
(c) The last column in Table 2 illustrates the

computational e�ciency of the process of generating

V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23 21

Table 1
Comparison between single constraint generation (SCG) and multiple constraint generation (MCG)

No. of (SCG) (MCG) Time ratio
nodes (SCG)=(MCG)

No. of iterations Time (s) No. of iterations Time (s)

8 13 21 6 5.2 4
8 12 23 6 8.2 2.8
8 13 112 6 14.3 7.8
8 13 10 4 1.5 6.6
8 13 4 4 1.8 2.2
8 14 66 4 23.9 2.8
8 13 38 6 13.5 2.8
8 12 11 4 4.3 2.5
8 14 43 6 5.3 8.1
8 13 34 5 11.3 3
10 20 421 9 138 3
10 19 584 8 109 5.3
10 16 242 5 32 7.5
10 30 565 9 47 12
10 12 354 7 123 2.9
10 17 234 8 62 3.8
10 20 637 7 116 5.5
10 14 90 7 26 3.5
10 30 986 9 171 5.8
10 11 157 6 48 3.3
12 58 23 423 11 1 471 15.9
12 10 220 7 150 1.5
12 34 2 594 12 361 7.2
12 46 8 799 9 322 27.3
12 39 12 755 10 1 353 9.4

constraints. It is seen that, in most cases, the time
taken (TCG) is negligible as compared with the total
computation time (typically less than 1–2%).
(d) For a given problem size N , a signi�cant vari-

ability of the results in terms of computing time is ob-
served, the ratios between the longest and the shortest
computing time typically range from 6.5 (for N =10)
to 66 (for N = 12). This suggests that our test prob-
lem generator indeed provides a fairly wide sampling
of the problem instances, including both easier ones
and harder ones.
As far as we know, the above results are the

�rst systematic computational study providing exact
optimal solutions to this class of hard network opti-
mization problems. They con�rm the practical appli-
cability of an approach based on the use of standard LP
software (CPLEX) to solve moderate size instances
in this class of hard network optimization problems.

Since most of the computation time is spent in run-
ning CPLEX (in MIP mode) for solving the restricted
problems, the main criterion of e�ciency, in our im-
plementation of constraint generation, was to reduce
the number of main iterations as much as possible.
The (MCG) procedure described in this paper appears
to be practically e�cient according to this criterion.
We �nally mention that possible improvements in

computational e�ciency might be obtained by further
investigating:
• better criteria to select the constraints in the initial
restricted problem;

• reduction of the computational e�ort in solving the
restricted problem (Rk) by making use of informa-
tion gained during the solution of (Rk−1);

• development of a specialized algorithm (hopefully
more e�cient than CPLEX) to solve the restricted
problems.

22 V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23

Table 2
Results obtained by applying (MCG) on a series of randomly generated test problems

N M NV NC1 z1 Iter NAP NC z∗ T (total) T (CG)

8 13 84 8 380 6 0 23 465 5.2 0.4
8 12 80 7 368 6 0 20 463 8.2 0.3
8 13 83 7 246 6 0 19 358 14.3 0.3
8 13 79 7 172 4 0 18 296 1.5 0.3
8 13 76 7 289 4 0 15 336 1.8 0.4
8 14 89 7 223 4 0 20 483 23.9 0.4
8 13 86 7 396 6 0 22 477 13.5 0.4
8 12 72 7 273 4 1 19 338 4.3 0.5
8 14 81 8 279 6 0 24 357 5.3 0.4
8 13 85 8 406 5 0 23 506 11.3 0.3
10 18 115 8 299 9 0 53 410 138 1.6
10 17 108 8 467 8 0 41 772 109 1.3
10 16 102 7 352 5 0 29 431 32 0.8
10 17 115 9 365 9 0 41 591 47 1.5
10 17 117 8 358 7 0 33 582 123 1.2
10 16 111 8 348 8 0 41 555 62 1.3
10 17 105 9 504 7 0 40 604 116 1.2
10 16 105 9 525 7 0 25 600 26 1.1
10 17 105 6 367 9 2 53 616 171 2.4
10 18 109 10 514 6 0 30 626 48 1.1
12 21 138 9 569 11 0 68 805 1 471 4
12 20 124 11 628 7 0 37 1 011 150 2.4
12 20 134 10 522 12 0 68 858 361 4.2
12 21 130 10 450 9 0 63 704 322 3.3
12 20 130 10 809 10 0 71 996 1 353 3.5
12 20 135 11 426 9 0 60 685 525 3.1
12 20 130 10 682 9 0 53 933 199 3.1
12 21 131 10 427 6 0 37 636 22 2.1
12 20 132 11 698 8 0 52 919 457 2.7
12 21 140 10 488 9 0 48 614 535 3.3
15 26 171 13 557 9 0 79 859 1 621 8
15 27 172 12 938 12 0 132 1 315 10 911 11.2
15 26 165 14 525 8 0 69 743 984 7.2
15 26 167 13 719 7 0 52 973 565 6.2
15 26 166 11 608 10 0 93 1 102 2 724 8.9
15 26 170 12 668 10 0 89 974 662 8.8
15 25 165 13 683 10 0 93 1 214 6 314 8.6
15 26 171 12 670 9 0 83 997 2 302 8
15 26 168 11 850 11 0 97 1 242 13 473 9.7
15 25 162 12 800 11 0 92 1 136 5 179 9.3
20 36 205 17 887 13 0 146 1 263 23 042 37
20 36 213 16 849 12 0 183 1 262 18 795 35
20 35 206 21 707 9 0 103 963 2 139 25
20 35 200 17 686 12 0 147 1 161 12 476 34
20 36 218 16 1 077 12 0 156 1 567 39 792 35
20 35 207 19 1 122 12 0 142 1 581 10 961 34
20 37 218 20 733 13 0 190 1 100 30 644 39
20 35 201 17 1 009 12 0 145 1 491 10 963 34
20 35 200 17 945 14 0 180 1 450 21 140 35
20 36 208 17 977 14 0 196 1 600 51 644 37

V. Gabrel et al. / Operations Research Letters 25 (1999) 15–23 23

Also, extensions of our aproach to cope with surviv-
ability constraints (see e.g. [9]) will have to be inves-
tigated. This is left for future research.

Acknowledgements

An anonymous referee is gratefully acknowledged
for his=her constructive comments on a �rst version
of the paper.

References

[1] R.K. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory,
Algorithms and Applications, Prentice-Hall, Englewood
Cli�s, NJ, 1993.

[2] D. Avis, On the extreme rays of the metric cone, Can. J.
Math. 32 (1980) 126–144.

[3] F. Barahona, Network design using cut inequalities, SIAM J.
Optim. 6 (3) (1996) 823–837.

[4] J.F. Benders, Partitioning procedures for solving mixed-
variables programming problems, Numerische Mathematik 4
(1962) 238–252.

[5] C.K. Cheng, T.C. Hu, Ancestor tree for arbitrary multi-
terminal cut functions, Ann. Oper. Res. 33 (1991) 199–213.

[6] V. Gabrel, M. Minoux, LP relaxations better than convexi�-
cation for multicommodity network optimization problems
with step-increasing cost functions, Acta Mathematica
Vietnamica 22 (1997) 128–145.

[7] R.E. Gomory, T.C. Hu, An application of generalized linear
programming to network
ows, SIAM J. Appl. Math. 10 (2)
(1962) 260–283.

[8] M. Gondran, M. Minoux, Graphes et Algorithmes, third ed.,
Paris, Eyrolles, 1995.

[9] M. Gr�otschel, C.L. Monma, M. Stoer, Design of survivable
networks, in: Handbook in OR and MS, North-Holland,
vol. 7, 1995, pp. 617–672.

[10] H.H. Hoang, Topological optimization of networks: a non-
linear mixed integer model employing generalized Benders
decomposition, IEEE Trans. Automat. Control AC-27 (1982)
164–169.

[11] J.L. Kennington, A survey of linear cost multicommodity
network
ows, Oper. Res. 26 (1978) 209–236.

[12] B.W. Kernighan, S. Lin, An e�cient heuristic procedure for
partitioning graphs, Bell. Systems Tech. J. 49 (2) (1970)
291–307.

[13] T.L. Magnanti, P. Mirchandani, Shortest paths, single origin-
destination network design and associated polyhedra,
Networks 23 (1993) 103–121.

[14] T.L. Magnanti, P. Mirchandani, R. Vachani, Modeling and
solving the two-facility network loading problem, Oper. Res.
43 (1) (1995) 142–157.

[15] T.L. Magnanti, P. Mireault, R.T. Wong, Tailoring Benders
decomposition for uncapacitated network design, Math.
Programming Study 26 (1986) 112–154.

[16] M. Minoux, Optimum synthesis of a network with nonsimul-
taneous multicommodity
ow requirements, Ann. Discrete
Math. 11 (1981) 269–277.

[17] M. Minoux, Subgradient optimization and Benders decompo-
sition for large scale programming, in: R.W. Cottle, M.L.
Kelmanson, B. Korte (Eds.), Mathematical Programming,
North-Holland, Amsterdam, 1984, pp. 271–288.

[18] M. Minoux, Network synthesis and optimum network design
problems: models, solution methods and applications,
Networks 19 (1989) 313–360.

[19] M. Stoer, G. Dahl, A polyhedral approach to multicommodity
survivable network design, Numerische Mathematik 68
(1994) 149–167.

