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Abstract

We present a method to reduce the degradation in recognition accuracy introduced by full-rate GSM RPE-LTP
coding by combining sets of acoustic models trained under different distortion conditions. During recognition, the a
posteriori probabilities of an utterance are calculated as a weighted sum of the posteriors corresponding to the indi-
vidual models. The phonemes used by the system’s word pronunciations are grouped into classes according to amount
of distortion they undergo in coding. The acoustic model used in the decoding process is a weighted combination of
models derived from clean speech and models derived from speech that had been degraded by GSM coding (the source
models), with the relative combination of the two sources depending on the extent to which each class of phonemes is
degraded by the coding process. To determine the distortion class membership, and hence the weights, we measure the
spectral distortion introduced to the quantized long-term residual by the RPE-LTP codec. We discuss how this dis-
tortion varies according to phonetic class. The method described reduces the degradation in recognition accuracy in-
troduced by GSM coding of sentences in the TIMIT database by more than 70% relative to the baseline accuracy
obtained in matched training and testing conditions with respect to a system using the source acoustic models, and up to
60% relative to the best baseline systems regardless of the number of Gaussians. © 2001 Elsevier Science B.V. All
rights reserved.

1. Introduction lems of wireless-channel noise, data dropouts, and

signal degradation originated by the speech codec.

Recent progress in automatic speech recogni-
tion technology along with the increase in use of
wireless telephony have produced an increased
level of interest in voice-activated applications
using wireless communication channels. While
functionally similar to that of their public-switched
telephone network (PSTN) counterparts, speech
recognition systems and applications that include
a wireless link with coding such as GSM confront
the end user with the additional potential prob-
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Mobile applications provide the additional prob-
lem of potentially more varied and more intense
environmental noise (Mokbel et al., 1996; Haeb-
Umbach, 1997). These phenomena result in error
rates for speech recognition systems which are
substantially higher than their counterparts in
non-mobile environment (e.g., Das et al., 1999;
Delphin-Poulat and Mokbel, 1997; Elvira and
Torrecilla, 1998; Mokbel et al., 1996).

Even though the degradation in the signal due
to the speech codec amounts only to a fraction of
the overall degradation in wireless channels
compared to the effects of additive noise, the error
rate does depend on the coding scheme used and
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the codec bit rate, with accuracy decreasing as
bit rate decreases (cfr., Euler and Zinke, 1994,
Lilly and Paliwal, 1996; Digalakis et al., 1998).
Reduction of the sensitivity of a recognition
system to the overall presence of speech coding in
a communication link, will result in more robust
systems whose performance is more independent
of the type and bit-rate of the codec that happens
to be used in a particular communications
channel.

It has been observed that under mismatched
conditions (such as when the data used to test a
system are coded but the data used to train it are
not), a typical increase in the error rate of a system
due to coding can be as high as 20% (Euler and
Zinke, 1994; Lilly and Paliwal, 1996; Huerta and
Stern, 1998). As the demand for mobile telephony
increases one should expect further reductions in
bit rates, so the importance of systems which are
codec bit-rate insensitive will only become more
evident.

Research into the problem of robustness in
mobile applications has addressed some specific
issues such as codec tandeming (Salonidis and
Digalakis, 1998), and hole detection and rejection
(Paping and Fahnle, 1997; Fissore et al., 1999;
Karray et al., 1998). Other groups (Gallardo-
Antolin et al., 1998; Huerta and Stern, 1998;
Gallardo-Antolin et al., 1999) have focussed on
the assumption of the availability of the codec
parameters during recognition. Gupta et al. (1996)
have focused on robustness to environmental noise
encountered in mobile applications. Also, there is
work regarding the application and tailoring of
robustness techniques to the problem, such as
spectral subtraction, adaptive filtering and model
adaptation (Mokbel et al., 1996), robust front ends
(Dufour et al., 1996), bias removal and equaliza-
tion (Delphin-Poulat and Mokbel 1997). Some
work has focused on the use of robust acoustic
modeling (Puel and Obrecht 1997) and model
adaptation (Soulas et al., 1997).

While all these approaches can potentially re-
duce the absolute word error rate of a speech
recognition application, none of them attempt to
identify the source and nature of the distortion
from the operating model of the codec with this
same purpose.

In this work we specifically analyze the effect of
a full-rate GSM codec on the spectrum produced
by the signal and on recognition accuracy. Based
on this analysis we propose a method to alleviate
the degradation in recognition accuracy intro-
duced by the GSM distortion. GSM coding begins
with an LPC analysis which produces an all-pole
representation of the spectrum and a residual sig-
nal that represents the excitation. GSM coding
represents the spectrum in the form of log arca
ratio (LAR) coefficients. The residual signal is
processed by the RPE-LTP codec. The distortion
of the speech signal introduced by the GSM codec
can be traced to the quantization of the lot-area
ratio coefficients LAR and to the quantization and
downsampling of the residual signal performed in
the RPE-LTP process. The distortion of the re-
sidual signal affects recognition to a greater extent
than the quantization undergone by the LAR co-
efficients. Huerta and Stern (1998) presented an
analysis of the impact of the coding and quanti-
zation of these codec coefficients on recognition,
together with a method to combine selectively the
information contained in these parameters to
minimize this performance degradation. In the
present work we make no assumptions about the
availability of the codec parameters, focussing in-
stead on the development of better acoustic mod-
els of the reconstructed speech signal that
minimize the degradation recognition accuracy
produced by GSM coding.

In Section 2 of this paper, we discuss the origin
and nature of the distortion in the RPE-LTP co-
dec. We observe that based on the “predictability”
of the short-term residual signal, the RPE-LTP
will be able to minimize the error in the quantized
long-term residual. This predictability is later
shown to be related to general phonetic charac-
teristics of the signal. In Section 3 we show that the
relative spectral distortion introduced in the
quantized long-term residual tends to be concen-
trated around two regions, and that this amount of
relative spectral distortion can be loosely associ-
ated with the relative degradation in phone rec-
ognition accuracy introduced by GSM coding. In
Section 4 we sort the set of phonemes into clusters
according to their relative log spectral distortion
distributions. In Section 5 we propose a method to



J.M. Huerta, R.M. Stern | Speech Communication 34 (2001) 213-225 215

weigh two sets of acoustic models based on the
distortion categories introduced in Section 4 with
the intention of allowing phones that undergo a
moderate amount code distortion to be modelled
predominantly by clean models, and of allowing
highly distorted phones to be modeled by “noisy”
models. We describe the results of recognition
experiments using these techniques in Section 6.

2. The RPE-LTP codec as a source of acoustic
degradation

The full-rate GSM codec is a linear predictive
RPE-LTP based codec with a bit rate of 13 kbps
(ETSI, 1994). The 8-kHz speech signals enter the
codec where they are analyzed in frames of 160
samples, and the 8th-order LPC parameters are
obtained. The LPC parameters are represented as
LAR coefficients, and they are quantized and
transmitted. The residual signal from the LPC
analysis (the short-term residual) is subdivided
into subframes of 40 samples each and coded by a
regular pulse excited-long-term prediction coder
whose quantized parameters are also transmitted.
In this section we briefly describe the RPE-LTP
coding process (Kroon et al., 1986; Vary et al.,
1988) of the short-term residual signal in the GSM
full-rate codec. For the work of this paper we refer
to and use the publicly-available implementation
of GSM in C by Degener and Bormann (1992).

The RPE-LTP codec can be described in sim-
plified form as a two-part process: a Long Term
Predictor (the LTP block) process that produces
an estimate of the Short-term residual signal, and
the regular pulse excitation block (RPE block)
which is responsible for representing the “unpre-
dicted” part of the short-term residual signal
(called the long-term residual signal) using a re-
duced number of bits. Under normal conditions,
the LTP block will try to capture the long-term
periodicity of the signal associated principally with
voiced speech segments based on a cross correla-
tion analysis. We now explain these concepts in
more detail.

For the purpose of illustration we present two
diagrams representing simplified versions of the
RPE-LTP codec that process the short-term

residual signal that comes out of the LPC analysis.
The two diagrams we present correspond to two
versions of the RPE-LTP codec: an ideal codec
and a real codec. By comparing and contrasting
these simplified codecs we can identify the source
and nature of the distortion introduced to the re-
constructed version of the residual signal. In the
following sections we will relate the behavior of
the signal distortion to degradation in recognition
accuracy.

Fig. 1 is a simplified block diagram of an ideal
RPE-LTP codec. The primary difference between
the ideal codec and a real RPE-LTP codec is that
the ideal codec does not produce quantized ver-
sions of its signals or parameters. For this reason,
the ideal codec does not achieve any reduction in
bit rate. The short-term residual signal e[n] enters
the ideal codec and is compared to the short-term
residual estimate e[n] produced by the LTP block.
The difference between these two signals corre-
sponds to the part of the residual signal which the
LTP block was unable to predict. This signal is
called the long-term residual signal r[n], and it
represents what needs to be added to the short-
term residual estimate to obtain the reconstructed
short-term residual signal. In other words, this
signal represents a sort of “innovation” or un-
predictable part of the short-term residual signal.
The decoder section of the codec contains an
identical LTP block which generates a short-term
residual estimate, based on the received LTP pa-
rameters and the previously reconstructed version
of the short-term residual. After the short-term
residual estimate is generated, the ideal codec adds
the received innovation part of the signal (i.e., the

Short term .
residual Long term residual
e[n] r[n]
+
- +
+
Short term I__ Long term
residual estimate predictor Reconstructed short
e[n] term residual
e[n]

Fig. 1. A simplified block diagram of an ideal REP-LTP codec.
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long-term residual) to it. Although the sum of the
long-term residual and the short-term residual es-
timate signal results in exactly the residual se-
quence, the ideal codec produces no loss or
distortion in the restored signal. However, the
ideal codec must transmit an exact copy of the
long-term residual signal to achieve this, so its bit
rate is no less than the bit rate of the original
short-term residual sequence.

In reality, the RPE-LTP coder transmits a
subsampled and quantized approximation of the
long-term residual sequence and the LTP infor-
mation in order to achieve bit-rate reduction.
Generally, the coder does not provide all the
information that is needed to obtain a perfect re-
construction. The reconstructed representation of
the long-term residual obtained from the trans-
mitted information (called the quantized long-term
residual 7[n]) is only an approximation to the
original innovation sequence. Fig. 2 illustrates this
process by adding to the codec the block labeled
RPE coding. The amount of degradation in the
reconstructed signal will be related to the energy of
the original LTR signal which in turn depends on
how well the LTP module in the coder is able to
“follow” or predict the next subframe of the time
sequence based on previous reconstructed sub-
frames.

The RPE codec introduces distortion to the
quantized long-term residual that is proportional
to the energy present in it. From the analysis of the
operation of the RPE-LTP codec above, we sug-
gest that the energy of the long-term residual can
be associated with the predictability of the short-
term residual. Although the different phones of any
given language can be associated with a certain

Short term Long term Quantized long term
residual residual residual
eln] () [ RpE coding | 717
L
— +
g
Short term L Long term
residual estimate predictor Reconstructed short
e_[n] term residual

é(n]

Fig. 2. A simplified block diagram of an ideal REP-LTP codec.

level of periodicity, or predictability (for example,
vowels are likely to be more predictable than
consonants), we can expect to find certain patterns
in the distribution of the amount of distortion
introduced by the RPE-LTP coding process. We
will illustrate this point in the following sections.

Other existing coding schemes in which the er-
ror minimization block consists of a predictive
component (i.e., closed loop prediction-based
coders) (Kroon and Kleijn, 1995; Kleijn and Pal-
iwal, 1995) can be thought to operate in a similar
fashion as the basic system of Fig. 2, with the main
differences between codecs being the way the long-
term prediction is performed and how the long-
term residual gets represented and the effects of
this quantized representation in the reconstructed
long-term residual.

3. RPE-LTP-induced spectral distortion

In order to establish the relation between pho-
netic identity and amount of distortion introduced
by coding we must specify a metric that will reflect
the degradation between the long-term residual
and its quantized approximation. In this section
we present such a metric and describe the dis-
tributions we obtained when applying it to the
TIMIT database (LDC, 1993).

3.1. Relative log spectral distortion introduced by
the RPE-LTP coder

We use the relative log spectral distortion
(RLSD) distance to measure the dissimilarity be-
tween the reconstructed and the original innova-
tion sequence (i.e., between the long-term residual
and the quantized long-term residual) at each
frequency w. Let S(w) represent the power spec-
trum of an innovation sequence subframe and let
Sr(w) represent the power spectrum of the corre-
sponding quantized innovation sequence sub-
frame. The RLSD is then defined to be

RLSD

75/“
-2

log(S()) — log (Sk(w)) | 4

Tog (5(®)) M)
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As can be seen, this metric reflects the ratio of the
differences between the distortion introduced to
the log-power spectra of the long-term residual,
normalized for each frequency by the magnitude
of the log power spectra. When no distortion is
introduced, both power spectra are equal and the
RLSD is equal to zero. When a relatively large
amount of distortion is present, the RLSD
becomes large. The RLSD can be thought of as a
type of average inverse SNR.

3.2. Distribution of the relative log spectral distor-
tion

We computed the relative log spectral distortion
introduced by the RPE-LTP codec on a subset of
the training utterances of the TIMIT corpus that
were lowpass filtered with a cutoff of 3.2 kHz and
downsampled by a factor of 2 to an 8-kHz sam-
pling rate. We modified the GSM RPE-LTP codec
to produce output files containing the samples
corresponding to the long-term residual and the
quantized long-term residual. We then computed
the log power spectrum for the two types of sub-
frames and computed the relative log spectral
distortion as in Eq. (1). Fig. 3 is a histogram that
shows the logarithm of the frequency of the values
of relative log spectral distortion. The horizontal
axis represents the amount of relative distortion
observed per codec subframe (i.e., 40 samples). We

Log counts

500 1000 1500

% Distortion

2000 2500 3000

Fig. 3. Log histogram of the RLSD observed in a portion of
the training part of the TIMIT corpus.

can observe that the RLSD ranges from 0 to
3000%. The log-counts are roughly clustered in
two regions separated at approximately the value
of 1000%. It should be noted that many of the
frames with the greatest RLSD are silence or
similar frames, for which S(w) can be relatively
small in magnitude compared to the amount of
distortion introduced. The majority of the frames
suffer only a relatively small amount of distortion,
so most of the time the LTP section of the codec is
able to do a reasonably good job of predicting the
short-term residual signal.

Even though a large portion of the frames incur
only a moderate amount of RLSD (i.e., below
1000%), the histogram shown in Fig. 3 has a rel-
atively low level of resolution for the region where
most of the frames occur. Fig. 4 is a similar his-
togram of RLSD, but with a logarithmic abscissa.
The bimodal pattern observed in Fig. 3 is pre-
served, with the two modes centered around
common logarithmic values of approximately 1
and 3, respectively. It is also clear from this figure
that the majority of the frames incur only a
moderate amount of degradation.

3.3. Impact of relative log spectral distortion on
phonetic recognition

In order to analyze the relation that exists
between the degradation in recognition accuracy
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Fig. 4. Log histogram of the RLSD observed in a portion of
the training part of the TIMIT corpus as in Fig. 3.
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and the amount of RLSD introduced by the
RPE-LTP block, we performed two phonetic
recognition experiments: testing using clean (i.e.,
non-GSM coded) speech data and testing using
speech that underwent GSM coding. Details of the
system’s configuration are in Section 6. In both
cases the acoustic models were trained using clean
speech. We computed the phonetic error rate of
both experiments when GSM coding is present
and when it is not. From this information we were
able to compute the percentage of increase in error
rate for each phone due to GSM coding.

We also computed the average value of the
RLSD associated with each of the recognizer’s
feature frames (i.e., 100 ms of speech) of every
phone. This was performed based on the phone
segmentations of TIMIT. In Fig. 5 we present a
scatter plot in which the horizontal axis represents
the average of the log of the RLSD, while the
vertical axis describes the relative increase in WER
due to GSM coding. We can see that phones that
incur an average log RLSD values of about 2.6 or
below have a degradation in error rate of 20% or
less. These phones are mostly vowels (ae, eh, ah,
aw, aa, ay, uh, etc). There are phones with log
RLSD values between 2.6 and 2.8 whose relative
degradation goes above 20%. Finally, we can see
that the consonants f, z, v and dh fall in the region

70¢
60}
50} v
40}
30} dh

20} . axr th

% increase in Phone error rate

% y
; %’h en

80 85 90 95
Average RLSD

Fig. 5. Scatter plot of the phonetic units of the TIMIT corpus,
according to their average RLSD and their relative increase in
eror rate due to GSM coding.

above 2.8 and suffer a degradation of over 40% in
error rate. Informally, from Fig. 5 we can observe
a modest relation or trend between the mean
RLSD observed by a phone and its increase in
phonetic error rate due to GSM coding, as well as
between phonetic classes and mean observed
RLSD. The most notable exception to this trend is
the cluster of nasals (em, en, n, m and ng). This
group shows a relatively high average RLSD but
little degradation in recognition due to GSM
coding. The average RLSD is clearly only one of
several different sources of deterioration in accu-
racy due to GSM coding. (Other sources include
the quantization of the LAR coefficients, the
quantization of the LTP coding, etc.)

4. Relating RLSD patterns to phonetic classes

In Section 3 we described the RLSD metric and
suggested that there appears to be a relation be-
tween the mean RLSD observed at the subframes
corresponding to a phone and the phonetic iden-
tity (or properties) of the phones. In this section we
will extend this analysis of phonetic accuracy
based on histograms of RLSD.

4.1. Clustering phonetic-classes using the relative
log-spectral distortion

We constructed histograms of the log counts of
the logarithm of the values of the relative log
spectral distortion for each of the 61 phonetic units
of the TIMIT database (LDC, 1993). Having
obtained such histograms we normalized their
areas in order to account for the differences in
frequency of occurrence of the phonetic units. We
grouped these units into phonetic clusters by
incrementally clustering the closest normalized
histograms, using as a distance the sum of the
square difference between the values of each bin.
The clustering process was started by calling each
phonetic element a class of its own, and finding the
closest two histograms. After finding them, the
normalized histograms are added and renormal-
ized, which is equivalent to computing the geo-
metric mean of the bins of both histograms
because we are working with the logarithms of the
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Table 1

Phonetic classes generated by automatically clustering phone distortion histograms and the corresponding class phone error rates

Class Class members Class phone error Class phone error Percent degradation
rate (no GSM) rate (GSM)

1 hhjhdxbdgkchpt 32.4% 36.7% 13.27%

2 ng mn em en v eng 29.3% 42.1% 43.7%

3 h# bel del gel kel pel tel pau NA NA NA

4 hv aa ae ah eh aw ay ey 41.9% 44.7% 6.68%

5 epi NA NA NA

6 ix iy ow oy ux zh nx ao ih r er ax 35.9% 38.5% 7.24%
sh uh

7 dh th q 47.3% 64.3% 35.94%

8 axruw flax-helswyz 30.9 39.5 27.83%

counts. Table 1 shows the clusters obtained when
the process was stopped at 8 classes. It also shows
the average phonetic error rate per class with and
without GSM coding and the corresponding rela-
tive degradation in error rate. In describing the
clustering we use the categorization and descrip-
tion of the phones included in the TIMIT docu-
mentation (LDC, 1993).

4.2. Phonetic properties of distortion pattern-
derived classes

From Table 1 we can see that Class 5 corre-
sponds to the segments labeled as epenthetic
silence, described in the TIMIT documentation as
generally found between a fricative and a semi-
vowel or nasal. As this symbol does not appear in
the phonetic dictionary used for recognition, no
phone error rate is associated to it. Similarly, Class
3 grouped all the closures for the stops b, d, g, k, p
and t, as well as the begin and end markers and the
pauses. Since the pronunciations in the dictionary
do not explicitly have the closures indicated, no
phone error rate is associated with them either.

Class 1 includes all the stops except q, both the
affricates jh and ch, and the semivowel hh. Class 2
encompass all the nasals except the nasal flap nx,
but includes the fricative v. Classes 4 and 6 split the
vowels, Class 4 including the voiced h: hv, and
Class 6 the fricatives sh and zh, the nasal nx, and
the glide r. Class 7 includes the fricatives dh and th,
as well as the stop q. Class 8 is the most hetero-
geneous, and includes fricatives, semivowels and
vowels.

Class 7 has the highest absolute class phone
error rate without GSM coding, and classes 1, 2, 6
and 8 have the lowest. Classes 2 and 7 are the
classes that suffer the greatest amount of relative
degradation when GSM coding is introduced, and
Classes 1, 4 and 6 are the most robust to GSM
coding. We can see that the use of the distribution
of the RLSD introduced by the RPE-LTP in the
form of normalized histograms for the purpose of
clustering the phones produces classes with some
phonetic homogeneity. We also note that classes
dominated by vowels suffer the least from GSM
coding, while groups dominated by nasals, fric-
atives, and some other consonants suffer substan-
tially larger relative degradation in their class
phonetic error rates due to GSM coding.

Fig. 6(a,b) shows the normalized histograms for
Classes 3 and 4. We can see that for Class 3 the
number of counts in the region of high distortion
(i.e., the rightmost mode of the histogram) has a
substantial number of counts, while Class 4 does
not show such mode. Another visible difference is
the location of the leftmost mode. We can see that
the mode for Class 4 is closer to the vertical axis,
meaning that the subframes of the phone realiza-
tions of this class suffer in average a considerably
smaller amount of relative log spectral distortion.
This confirms our observation that vowels are less
sensitive to the effects of coding than (in this case)
stop closures, or more generally consonants and
silences.

In Section 6 we will be performing recognition
experiments based on phonetic categories that
have been derived in the way described above. We
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Fig. 6. Normalized log histogram of the log of the RLSD for
Class 3 (plosive closures) and Class 4 (vowels), classified as in
Table 1.

Table 2
Phonetic classes generated by automatically clustering phone
distortion histograms, 15 classes

Class Class members
1 bd
2 ngmnenyv
3 bel del gel pau
4 eng
5 hv aa ae ah eh aw ay ey
6 hhjhdxgkchpt
7 epi
8 ix iy ow oy ux zh nx ao ih r er ax sh uh
9 felwz
10 dh th
11 ax-h
12 h# kel pel tcl
13 em
14 axruw Isy
15 q

will be doing experiments based on 15 phonetic
classes. This number of classes result in a small
number of parameters to estimate, yet allows the
phonetic clusters to be distinct. In Table 2, we
present the results of following the clustering
procedure described above, but stopping at 15
phonetic classes. We can observe from this figure
that the difference between the 8 and 15 classes are
principally due to some phones separating into
their own classes.

5. Weighted acoustic modeling of phonetic catego-
ries

We saw in Section 4 that not all the phones in
an utterance undergo the same amount of RLSD.
Due to this, we can expect to obtain better rec-
ognition accuracy for those phones that undergo a
small amount of degradation in coding by using
models trained from speech that had not under-
gone GSM coding (which we refer to as ““clean”
speech). Similarly, for those phones for GSM
coding produces a larger average distortion, one
can expect greater accuracy if we employ models
that reflect a higher amount of distortion during
decoding. Possible ways to achieve this type of
modeling are to use two acoustic models during
decoding: one derived from clean speech and the
other from GSM speech. In this section we will
describe different strategies of combining both
models during decoding.

It has been shown by other authors (e.g., Ming
et al.,, 1999; Beyerlein 1998) that a recognition
system’s performance can be improved by com-
bining several different acoustic models during
recognition. In this kind of approach, three issues
are of relevance: the nature of the individual
models, the way in which the models/scores are
obtained, and the way in which the weighting
factors are determined. As mentioned above, our
aim is to combine two sets of models: one derived
from undistorted data and one from distorted
data. In the rest of this section we describe the
method used to combine such models and the way
we obtain the weighting coefficients.

5.1. Combining acoustic models by means of
mixture weighting

One way to consider several models when de-
coding an utterance is by combining the posterior
probabilities obtained from this model into a log
linear posterior probability distribution, (e.g., Be-
yerlein 1998). Eq. (2) describes the probability of a
string w given the observation O is expressed in
term of the posterior log probabilities of the N
different models. The term C(A) is a normalization
factor. These models are weighted by the terms 4;



J.M. Huerta, R.M. Stern | Speech Communication 34 (2001) 213-225 221

and incorporated into a log linear score expres-
sion,

p(w|0) = exp { logC(A) + ) 4,log Pj(WIO)}-

| @)

A different approach to achieving this model
combination is by merging the distributions of
both model distributions into a single set of model
distributions. Acoustic modeling for HMM-based
speech recognition commonly makes use of mix-
tures of Gaussian distribution representing a set of
tied states. The posterior probability that an ob-
served vector has been emitted by a certain state is
thus expressed by

by(o) = S Ui, KIN (00 1, Ci)- 3)

The term c[j,k] in Eq. (3) expresses the prior
probability of the kth Gaussian component of the
jth HMM. In a tied state-based system, this ex-
pression represents the jth tied state. For a given
state j the sum of ¢[j, k] over all k is equal to 1. The
parameters of the Gaussian distribution N () are
wi and Cy, respectively.

We consider the amount of distortion that a
frame or a phonetic class undergoes while evalu-
ating the posterior probability using several mod-
els that reflect these distortion regions. We express
this concept by introducing a function f that
weights the kth posterior probability of the pth
model depending on d;, the distortion of the ob-
served frame ¢, and j, which indicates the model
representing a given phonetic unit. The function f
also depends on the prior probabilities of the
model ¢,[/, k]. This function can also be considered
to be a weighted version of ¢,[j, k]. The resulting
expression for the posterior probability becomes

N M

g / (cp[jak}adtvj)N(OhlupjhCpf )

p=1 k=1

bj,d(ot) =

4)

The function f can also be dependent on the dis-
tortion class the model represents. This way, f will
weight more the clean models for states that model

phonemes that suffer small average GSM distor-
tion. Alternatively, one can make the function f
depend on knowledge of the instantaneous relative
distortion of each frame d, if this information is
available. This function should give more weight
to the distorted models when the relative frame
distortion is greater.

For the case of two sets of models (i.e., clean
and GSM models), by making the weighting
function dependent only on j (i.e., the state in the
model), Eq. (4) becomes

M
bi(o:) = )7201 [j, k]N(oy, ks Cij)
k=1

M

+ (1= 4))_eali, kN (01 a4 Caj)- - (5)

k=1

The function f(c,[j, k], d;, /) was separated into the
mixing weights terms c,[j, k] and c¢,[j, k], and the
state weighting factors A; which are factored out of
the sum. In the next subsection we describe how
we found these weights.

5.2. Estimating the weighting factors from RLSD
histograms

For a given certain set of phonetic classes, we
want to associate a set of weights such that each
class 7 will combine the two sets of models with
weights /4; and 1 — 4;, respectively. These weights
should be made proportional to the amount of
distortion observed per category.

We determined the values of the weights from
the normalized log histograms of the RLSD. We
first clustered the phones into phonetic categories
using the method described in Section 4.1. We then
obtained the normalized log-histograms of each
class, and from these histograms we computed for
each class the value of the bin for which 50% of the
counts had been accumulated (i.e., a value close to
the median of the distribution of the RLSD), and
then divided this value by the value of the highest
bin (this bounds the value of lambda between 0
and 1, which is desirable). A value close to zero
indicates that 50% of the counts are close to the
low distortion area and the associated weight 4,
will be small and 1 — 4; will be high (i.e., close to



222 J.M. Huerta, R.M. Stern | Speech Communication 34 (2001) 213-225

one), indicating that 1—4; is the weight that
should be associated to the clean models.

6. Speech recognition experiments

6.1. Recognition system setup and baseline experi-
ments

Recognition experiments were performed using
the TIMIT corpus and the Carnegie Mellon Uni-
versity SPHINX-3 system. The TIMIT corpus was
reduced in bandwidth down to 4 kHz and down-
sampled to 8000 samples per second. A GSM-
coded version of the TIMIT corpus was generated
by passing the bandwidth-reduced speech signal
through the codec. Our baseline system consisted
of a cross-word triphon-based, continuous-density
HMM recognition system, modeled by approxi-
mately 600 multigaussian distributions with diag-
onal covariance matrices, and 8 Gaussian densities
per mixture. The acoustic features consisted of Mel
frequency cepstral coefficients including a power
coefficient, along with delta and double-delta
coefficients. Models were trained for both GSM-
coded speech and non-GSM (clean) speech sepa-
rately using the same model definitions (i.e., state
tyings) to ensure tied-state compatibility between
both sets of models. Our dictionary consisted of
the 6329 words found in the TIMIT corpus, plus
silence. The language model (LM) consisted of a
bigram model trained on the transcription of the
training utterances. The language weight was set to
a conservative value to achieve a balance between
maximizing the decoding speed while preventing
the LM score from dominating the overall score at
the expense of evidence from the acoustic models
(which represent the effects of GSM coding). We
employed an LM weight equal to 9.5.

Lines 1 and 2 in Table 3 summarize recognition
error rates for clean and GSM speech using clean
models, while lines 3 and 4 describe results when
models are trained using GSM-coded speech or a
combination of clean and GSM-coded speech, re-
spectively. Given the number of words in the TI-
MIT test set the interval in the WER that can be
considered to be statistically reliable is approxi-
mately 0.5% (Gillick and Cox, 1989).

Table 3
Baseline error rates for the reduced-bandwidth TIMIT database
under diverse train and test coding conditions

Testing Training data Word error
data rate

Clean Clean 11.5%
GSM Clean 13.0%
GSM GSM 12.2%
GSM GSM + clean multistyle 11.9%

From Table 3 we can see that the absolute word
error rate increase by 1.5% from 11.5-13% due to
the presence of coding in the testing data using
clean speech models, which corresponds to a 13%
relative increase in word error rate. By recognizing
using models trained in matched conditions (i.e.,
GSM coding) the absolute increase in word error
rate is 0.7%, corresponding to a relative increase of
6.1%. When both clean and GSM data are used
during training in “multistyle” fashion, there is a
further reduction of word error rate of 0.3%. Some
authors have noticed improvement when per-
forming multistyle training in cellular and tele-
phone communications or by judicious use of both
types of models (Puel and Obrecht, 1997; Das
et al., 1999; Mokbel et al., 1996). In our case, the
same utterances that were used for training the
clean models were coded and reused in the multi-
style training. In other words, our multistyle
training procedure uses the same data only twice,
once before coding and once after. Other authors
(cfr. Haavisto 1999) have observed larger effects of
GSM coding on ASR even when recognizing using
matched acoustic model conditions. The smaller
effect of GSM coding on our task can be associ-
ated with the task’s limited acoustic confusability,
and the relatively low perplexity of the LM for the
lexicon size.

6.2. Experiments using weighted acoustic models

In this subsection we describe recognition ex-
periments we performed on GSM-coded speech
using weighted models, comparing the effects
of different phonetic groupings and different
weighting schemes. Table 4 summarizes recogni-
tion results from these experiments. Experiments
were conducted using the automatically clustered
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Table 4
Comparison of recognition error rates using several different types of weights for combining acoustic models, as described in
Section 6.1

Test data Number of distortion Number of phonetic categories Weight search method Word error

categories rate

GSM 2 1 class (flat weights) Exhaustive search 11.9%

GSM 2 15 classes Exhaustive search 11.7%

GSM 2 15 classes Histogram derived 11.8%

GSM 2 45 classes (1 phone per class) Histogram derived 11.8%

categories obtained using the method described in
Section 4. We considered three types of phonetic
clusters: a single phonetic category including all
phones (line 1 in Table 4), an automatic clustering
that yielded 15 phonetic categories (lines 2 and 3 in
Table 4), and assigning each of the phones to its
own category (line 4 in Table 4). We compared
recognition accuracy using two different types of
weights: associating with each class a value of 1
which was optimized by searching for the param-
eter value that maximized recognition accuracy
(lines 1 and 2 in Table 4), and associating with
each class a 4 which was obtained by clustering
log-spectral histograms and making A equal to
normalized median value of the corresponding
histogram distribution, as described in Section 5.2
(lines 3 and 4 in Table 4).

In order to optimize the weights in the experi-
ment associated with lines 1 and 2, we explored the
vicinity of the values obtained by clustering log-
spectral histograms for each A and we adjusted
each value independently trying to minimize the
work error rate. We associated all the tied states
related to a certain basephone j with the weight
corresponding to that basephone 4;. (We refer to
this sequential procedure as exhaustive search in
the tabular data and discussion that follow.)

The results described in Table 4 indicate that
the lowest error rates are obtained by optimizing
the weights of each of the 15 classes. The best
result, 11.7% is just 0.2% absolute points from the
result obtained by training and testing on clean
data. In other words, if we use 15 classes and ob-
tain the best weights we will effectively minimize
the impact of the codec on word error rate. Results
similar to these but based on cepstral frame
accuracy and phonetic accuracy using a slightly
different log-spectral metric were obtained using

the Resource Management database in (Huerta
and Stern, 1999). The value of the weight 4 when
only on single phonetic class was considered (i.e.,
what we previously referred to as the flat weights
condition) was close to 0.6.

The experiments described above were based on
the weighted combination of two source acoustic
models. For those experiments, the total number
of Gaussians used in recognition has been effec-
tively doubled, making the decoding process
computationally more expensive and thus slower.
An important issue is the extent to which im-
provement is possible regardless of computational
complexity. Fig. 7 shows results of recognition
experiments that employ the same phonetic clus-
tering and s obtained using 15 phonetic classes
and exhaustively-searched weights, as a function
of the number of Gaussians per mixture. The
horizontal axis is labelled according to the number
of Gaussians per state in the source models used in
the Clean/Clean and GSM/GSM cases (e.g., 8
Gaussians), and according to the number of
Gaussians in the resulting weighted acoustic

125 T—
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% WER 415 - )-Q.\ - — Fa ~@- Clean/Clean

. #— GSM/GSM
1 =
* [ Phonetic cat.
105 ‘.\* — 4
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8d or16d or32d or64d

Gaussians per mixture

Fig. 7. Error rates using best weights obtained in Table 4 using
models with different number of Gaussian densities per mixture.
The number of Gaussians indicated in the x-axis refer to the
weighted acoustic modeling (top row), and Clean/Clean and
GSM/GSM scenarios (bottom row).
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models (e.g., 8 x 2 Gaussians). We can see that
lowest word error rate was obtained for the Clean/
Clean and GSM/GSM baseline conditions using
32 Gaussians per density. For that case the de-
gradation in recognition accuracy produced by
GSM coding under matched conditions is about
1.0% absolute. With a greater number of Gaus-
sians, the base models are overtrained and their
error rate increases. We can see that the weighted
acoustic modeling based on these models contin-
ues to produce an improvement with a greater
number of Gaussians (i.e., 64 x 2d). We believe
that this is due to the smoothing effect that this
technique has on the likelihood surfaces. Likeli-
hood smoothing techniques have been repeatedly
shown to help reduce effects of problems like
model overtraining (cfr. Huang et al., 1996). The
best absolute performance of the weighted acous-
tic modeling, then, reduces the gap that exists be-
tween the best systems’s performance under Clean/
Clean and the best system under GSM/GSM
conditions by approximately 60% (relative).

These results suggest that once we have estab-
lished a set of the A parameters that work with a
certain number of Gaussians per state we can ap-
ply them with success to other numbers of Gaus-
sians. While we can expect equal or better results
when the As are optimized for each of the partic-
ular configurations, this involves more computa-
tion. The computational expense associated with
the exhaustive weight search is mitigated by three
facts: (1) the search can be performed more effi-
ciently using model configurations with small
numbers of Gaussians, (2) the phones can be
clustered into categories, which will simplify the
search and produce results similar to untied con-
ditions, and (3) the search for optimal weights
needs to be done only once, after the source
models have been trained.

7. Summary

The distribution of the RLSD introduced to the
quantized long-term residual by the RPE process
of the RPE-LTP codec differs for the various
phonetic categories. We presented a way to take
advantage of this observation and adjust the

acoustic models for each of these phonetic classes
by means of weighted models. While a reasonable
way to approach the GSM codec problem might
be through the use of acoustic models that had
been trained exclusively on matched data condi-
tions, the results observed in Section 6 indicate
that the degradation in recognition accuracy can
be reduced by including both GSM and clean data
in the acoustic models. The gap introduced by
GSM coding was reduced by 86% for mismatched
training and testing conditions, and by 71% for
matched conditions. These reductions in error rate
were obtained when models were combined using
weights derived directly from statistics from the
distributions of the RLSD and phonetic clusters
derived from these patterns of distortion, using a
relatively small number of Gaussians (8 Gaussians
per state). When computational expense is not an
issue and the number of Gaussians per state are
not considered the method provides a reduction of
60% of the degradation gap introduced by GSM
coding between the best Clean/Clean conditions
system and the best performing GSM/GSM sys-
tem. A recognition system that processes speech
that had undergone GSM coding will greatly
benefit from including models based on both clean
speech and GSM-encoded speech in the training
process. Similar analyses of the effects of coding
based on distortion categories can easily be ap-
plied to other types of closed-loop predictive
coders regardless of their bit rates.
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