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Abstract

A number of perceptual features have been utilized for the characterization of the emotional state of a speaker.

However, for automatic recognition suitable objective features are needed. We have examined several features of the

speech signal in relation to accentuation and traces of event-related brain potentials (ERPs) during affective speech

perception. Concerning the features of the speech signal we focus on measures related to breathiness and roughness.

The objective measures used were an estimation of the harmonics-to-noise ratio, the glottal-to-noise excitation ratio, a

measure for spectral flatness, as well as the maximum prediction gain for a speech production model computed by the

mutual information function and the ERPs. Results indicate that in particular the maximum prediction gain shows a

good differentiation between neutral and non-neutral emotional speaker state. This differentiation is partly comparable

to the ERP results that show a differentiation of neutral, positive and negative affect. Other objective measures are more

related to accentuation than to emotional state of the speaker.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The assessment of emotional content of speech

is a task of growing interest, both in the field of the
analysis of pathological speech (e.g., Blanken et al.,

1993) as well as in the field of man–machine

communication for automatic speaker state recog-

nition and as a pre-requisite for synthesis of

emotional speech (Cahn, 1990).

In the present study the relation between several

segmental acoustic features of the speech signal
and affect (emotional state of the speaker, lexical

content of the sentences) as well as noun and verb

accentuation are explored with objective measures

and event-related brain potentials (ERPs).

In many investigations concerned with the

analysis of emotional speech the lexical content is

neutral in order to isolate acoustic features inde-

pendent of lexical content. Emotional content is
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categorized by types of the emotional state of the

speaker. Here, we employed three emotional states

of a speaker (neutral, happy, and cold anger) but

considered the matching or mismatching lexi-
cal content (neutral, positive, or negative). Special

attention was directed to the possibility that for

mismatch conditions the encoding of the intended

emotional state by the speaker could be stronger

than for matching lexical content.

To explore this issue, we added ERPs on top

of our acoustic analyses as the implicit on-line

characteristics and high temporal resolution of
this measure might add meaningful insight into

the study of affective language processing (see

Pihan et al., 1997, 2000 for an application of

DC-potentials). ERPs are a transient change of

electroencephalogram (EEG) voltages reflecting

systematic brain activity which is triggered by a

physical event. Accordingly, in a first ERP exper-

iment using a prosodic judgment task different
emotional states were realized in qualitatively dif-

ferent ERP traces (Kotz et al., 2000).

Our procedure for the present study was based

on the following consideration: If the mismatch

between emotional state and lexical content of a

sentence is also acoustically encoded in the speech

signal, i.e., happy emotion combined with a neg-

ative lexical content then we have to analyze match
and mismatch conditions separately in both the

objective measures and the ERPs.

Furthermore, often only one type of accentua-

tion, namely the default accentuation, is explored.

To investigate the influence of accentuation the

position of the sentence accent was varied. First,

the nominal phrase (NP) immediately preceding

the sentence final verb was accentuated, indicating
neutral/default accentuation in German for verb

final sentences. Second, accentuation was on the

sentence final verb. The use of different accent

positions is based on the hypothesis that accented

syllables including their nuclei, i.e., the vowels, are

hyper-articulated (Lindblom, 1990). Unaccented

syllables and their nuclei are hypo-articulated. Al-

though most of the studies on the encoding of
emotional states in the speech signal found a re-

lation to global properties, i.e., speech rate, fun-

damental frequency, etc. (Ladd et al., 1985; Scherer

et al., 1991) we wondered to what extent speakers

arousal for non-neutral emotional states might be

connected to hyper-articulation. Our questions

were: If hyper-articulation is related to more vocal

effort locally, what happens with the acoustic en-
coding of different emotional states in accented

vowels, and is there a measurable acoustic differ-

ence between accented and unaccented vowels re-

lated to emotional states?

To summarize, three general questions were

addressed:

1. Are there relations between the acoustic para-
meters measured and the neural responses ana-

lyzed (objective measures and ERPs)?

2. Can we exclude possible interactions in the

speech signal for the production of emotional

states conflicting with the lexical content of

speech match versus mismatch relative to 1?

3. Are there local acoustic interdependencies of

accent placement related to hyper-articulation
and affective encoding in the speech signal?

We therefore related a three-dimensional classifi-

cation for the production of the speech signal to

the outcome of the acoustic measures. This should

allow to discriminate the influence of each di-

mension at first for the acoustic measurements––

lexical content, emotional state and accentuation.
To anticipate our findings, on the basis of the

acoustic analyses we performed an ERP study.

Our findings are that some of the measures are

indeed strongly correlated with accentuation and

not with affect, like the harmonics-to-noise ratio

(HNR) correlates with the accentuation type

and lower glottal-to-noise excitation (GNE) ratio

which is a characteristic of the accented word.
Nonetheless, maximum prediction gain shows a

basic differentiation of non-neutral affect in com-

parison to the neutral state. A similar discrimina-

tion between neutral and non-neutral emotion is

visible in the temporal progression of ERPs of the

subjects listening.

In the subsequent sections we give an illustra-

tion of the corpus recorded (Section 2), a de-
scription of the objective acoustic measures chosen

and of their application to the corpus (Section 3),

the assessment of the corpus by ERPs (Section 4),

and conclusions in Section 5.
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2. Recorded material

A corpus of emotional speech comprising 148

sentences with the same syntactic form (subject–
auxiliary–NP–verb) with matching and non-

matching lexical content was recorded for this

investigation. The text for the sentences was cho-

sen to cover the range of neutral, positive, and

negative lexical content. The lexical content was

rated by a group of subjects ðn ¼ 20Þ and classified
into one of the three categories neutral, positive, or

negative.
All sentences were spoken by a trained female

speaker of Standard German. Each sentence was

produced with two different forms of accentuation

(on the NP and on the sentence final verb) and

three different forms of emotional state (happiness,

neutral, and cold anger) combined with semanti-

cally mismatch conditions resulting in a total of

2� 3� 148 ¼ 888 recorded utterances.
Example sentences with different lexical content

are:

The variation of lexical content and of intended

emotional state of the speaker resulted in match
(e.g., positive lexical content spoken with a happy

voice) and mismatch (e.g., positive lexical content

spoken with an angry voice) conditions between

these two factors as well as for the position of

accentuation (see Table 1).

The complete crossover of emotional state and

lexical content was evaluated once with a prosodic

judgment task and once with a lexical judgment
task, with two different subject groups.

In a first experiment 444 sentences with noun

accentuation were tested in the ERP experiment.

Twenty subjects each judged either the lexical

content or the prosodic contour of the sentences

on a five point scale (negative ¼ 1, positive ¼ 5).
Here, only the results of the prosodic judgment

task will be reported. Measurements of ERPs with

verb accentuation are still ongoing, thus will not
reported here.

For the acoustic analyses the vowels in the ac-

cented and unaccented categories (NP and verb,

respectively) were extracted manually from 141 of

the 148 original sentences. Thus a total of 1692

vowel samples were utilized in the acoustic ana-

lyses.

3. Acoustic correlates for breathiness and roughness

evoked by emotional speaking state and accentua-

tion

Breathiness and roughness have been used as
perceptual features for the assessment of emo-

tional speech (Klasmeyer and Sendlmeier, 1995;

Klasmeyer, 1997). Objective measures for these

features have been applied, e.g., for the classifica-

tion of pathological voices (Fr€oohlich et al., 1998).
Compared to segmental measures based on the

spectral envelope, like spectral slope, spectral bal-

ance, or a more general description of the spectral
distribution, the measures chosen capture the

spectral fine structure.

We wanted to investigate the relation of several

objective measures for breathiness and roughness

with the parameters of the recorded database

(emotional state of speaker, lexical content, and

accentuation). As an acoustic correlate for brea-

thiness and roughness we use an estimation of
the HNR, the GNE ratio, a measure of spectral

Positive: Sie hat den Preis gewonnen.

She has the prize won

(literal translation).

Negative: Er hat das Bein gebrochen.
He has the leg broken

(literal translation).

Neutral: Sie hat die T€uur geschlossen.
She has the door closed

(literal translation).

Table 1

The dimensions analyzed acoustically in the present study

Lexical content Emotional state Accentuation

Positive ðn ¼ 37Þ Happy NP

Neutral ðn ¼ 37Þ Neutral Final verb

Negative ðn ¼ 37Þ Cold anger

Each of the lexically positive, neutral or negative sentences was

completely crossed with all three emotional states resulting in

37� 3� 3� 2 ¼ 846 sentences analyzed acoustically. Note that
also the unaccented vowels from both NP and verb accentua-

tion i.e., the vowel from the unaccented verb in the NP accented

condition and vice versa were analyzed (in total 2� 846 ¼ 1692
vowel samples).
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flatness, as well as the maximum prediction gain for

a speech production model computed by the mu-

tual information (MI) function.

The results indicate that the HNR estimation
correlates with sentence accentuation, GNE ratio

with word accentuation, whereas a low maximum

prediction gain indicates arousal, i.e., positive or

negative emotional state of the speaker in com-

parison to the neutral state.

3.1. Estimation algorithms

3.1.1. Harmonics-to-noise ratio

For the computation of HNR first the har-

monic components are estimated in the cepstral

domain by finding the peaks at the lag corre-
sponding to fundamental frequency (f0) and its

multiples and classifying the range of cepstral co-

efficients around each peak as corresponding to

the harmonic components. These are subtracted

from the original cepstrum. The computed noise

cepstrum is transformed back into the spec-

tral domain and aligned appropriately below the

original spectrum, and the HNR is computed as
the total spectral energy of the original signal in

relation to the energy of the noise spectrum (de

Krom, 1994).

Examples for estimated noise spectra in relation

with the original spectra are shown in Fig. 1 for

the vowel /a/ in the sentence final verb for neutral

emotional state, neutral lexical content, and ac-

centuation on the NP versus accentuation on the
sentence final verb.

3.1.2. Glottal-to-noise excitation ratio

The GNE ratio measure is based on the cor-

relation between the Hilbert envelopes of the

linear prediction residual signal in different fre-
quency bands (Michaelis et al., 1995). For a signal

evoked by glottal oscillation the glottis closure

impulse triggers a pulse of the Hilbert envelope in

all frequency bands. Thus, the correlation be-

tween the envelopes is high, whereas for a noise

signal the correlation between the envelopes in

different non-overlapping frequency bands is low.

The GNE ratio thus provides a measure for the
relation between glottis evoked versus noise

evoked signal parts. GNE ratio is to a high degree

immune to variations in fundamental period (jit-

ter) and amplitude (shimmer) of individual pitch

cycles.

GNE ratio estimation is performed by applying

linear prediction analysis and inverse filtering to

the speech signal downsampled by a factor of 4
(fS ¼ 11; 025 Hz). Then a fast Fourier transfor-
mation (FFT) is applied and the Hilbert envelopes

are calculated by performing the inverse fast

Fourier transformation on 10 non-overlapping

frequency bands using only FFT points corre-

sponding to positive frequencies. For each pair of

envelopes the maximum cross correlation regard-

ing time lags between �3 and þ3 samples is
computed, and in the original algorithm the max-

imum of these correlation values is used as the

GNE parameter. Here we also used an average

over the five highest correlation values (GNEm) as

control parameter.

Fig. 1. Spectra of the original signal (––) and the estimated noise component (� � �) for the vowel /a/ in the sentence final verb for neutral
emotional state and (a) accentuation on the NP, (b) accentuation on the sentence final verb, corresponding to neutral case �s� versus
neutral case �v� in Fig. 2.
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3.1.3. Spectral flatness

Spectral flatness is the ratio of the geometric to

the arithmetic mean of the spectral energy distri-

bution (Markel and Gray, 1976). As such, it is
limited to a range between zero and one, and equal

one only for a perfectly flat spectrum. If we express

the spectral flatness in dB the resulting range of

values is )1 to zero. The spectral energy distri-

bution is computed by a FFT. Signal and FFT

length were chosen according to the proposi-

tions by Markel and Gray (1976) with the signal

downsampled to 11,025 Hz windowed to 128
points and applied to a 256 point FFT.

3.1.4. Maximum prediction gain

The maximum prediction gain has been chosen

as a measure for the amount of glottis oscillator

evoked––and thus predictable––in relation to

the noisy–unpredictable–signal components. The

maximum prediction gain estimated by the MI

function regards the non-linear characteristics in

the signal production system (Bernhard, 1997,

1998), and, as the results show, achieves a measure
clearly distinct from the other methods used.

The application of the MI function relies on the

embedding of the speech signal in a low dimen-

sional pseudo phase space with a dimension ac-

cording to the underlying production system. It

has been shown that voiced phonemes––and

particularly vowels––can be considered as signals

produced by a low dimensional system ðd 	 3Þ. So
for the estimation of the maximum prediction gain

a three-dimensional pseudo phase space recon-

struction by time delay embedding (T ¼ 0:7 ms)
was used for the speech signal and the maximum

prediction gain was computed for a one sample

ahead prediction (Bernhard, 1997).

It is noteworthy that three of the measures used

here, the HNR estimation, spectral flatness, and
the maximum prediction gain computed by use of

the MI function, cannot provide a measure for the

noisy signal components alone, but––since they

rely on stationarity––are also affected by other

attributes like frequency variations (jitter) or am-

plitude variations (shimmer) (Pinto, 1990). More-

over, the estimation algorithms for both HNR and

maximum prediction gain also depend on the
length of the signal. Thus, although the measures

were chosen as possible correlates for the percep-

tual features breathiness and roughness they con-

stitute features of the speech signal and hence have

to be classified as acoustic rather than as percep-
tual features.

3.2. Analysis of results

Analysis was performed on the signals corre-

sponding to vowels in the NP and the sentence

final verb. The signal was sampled at 44,100 Hz

with 16 bit resolution. All analyses were performed

for the verbs in the NP and in the sentence final

verb for 141 sentences (comprising different lexical

content) uttered with three different emotional
states and two different accentuation types, sum-

ming up to 1692 vowel samples.

Generally, no explicit dependence of either

HNR, GNE ratio, spectral flatness, or maximum

prediction gain on the lexical contents of a sen-

tence was found. Also the mismatch conditions

between lexical content and affect yield no effect in

the speech signal. Thus, in the following the results
presented are restricted to the parameters emo-

tional state of speaker and accentuation.

The results for the HNR analysis show a

slightly higher value for the cold anger emotional

state than for neutral or happy emotional state. A

more explicit effect is exemplified in Fig. 2 for the

vowels in the sentence final verb: if sentence accent

is on the NP (case �s�) the HNR is generally lower
for the vowel in the verb than if the verb is ac-

cented (case �v�).
Also for the vowels in the NP (Fig. 3) higher

values (at least for cold anger and happy state) are

indicated for accentuation of the sentence final

verb (case �v�) then for accentuation of the NP it-
self.

So, for both the vowel in the NP and in the
sentence final verb the HNR value is higher if the

sentence accent is placed on the sentence final

verb. HNR values thus correlate with the accen-

tuation type of the whole sentence.

Analysis by the GNE ratio on the other hand

yields distinctive values depending on the word

accentuation for non-neutral emotional state. Figs.

4 and 5 again show the statistics for vowels in the
NP and the sentence final verb. Note the difference
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in Fig. 4 compared to Fig. 2 concerning the values

for non-neutral emotional state. Both in the vowel

of the NP and of the sentence final verb a lower

GNE ratio––corresponding to a higher amount of

noise excitation––is observed if the word bearing

the vowel is accented (case �v� for the vowel in the
verb and case �s� for the vowel in the NP). The
GNE ratio can thus be used as an indicator for
word accentuation.

Examination of spectral flatness shows no dis-
tinct values except for the case of unaccented

vowels in the sentence final verb in neutral emo-

tional state, which exhibit somewhat lower spectral

flatness than all other cases (Fig. 6).

In contrast to the other measures, maximum

prediction gain provides a distinction between the

neutral emotional state (higher prediction gain)

and cold anger/happy state (lower prediction gain)
and is merely independent of accentuation, as

shown in Fig. 7. Thus, arousal––i.e., a non-neutral

affect––seems to result in a less predictable speech

waveform.

For both HNR and maximum prediction gain

the analyses were also performed for the speech

signal at 11,025 Hz sampling rate and qualitatively

Fig. 3. Results of the statistical analysis of the estimated HNR

for the three emotional states and vowels from the NP. Like in

the analysis for the sentence final verb (Fig. 2) the HNR for

cold anger and happy emotional state is higher when the verb is

accented (case �v�) than when the NP is accented.

Fig. 4. Results of the statistical analysis of GNE ratio for the

three emotional states and vowels from the sentence final verb.

Fig. 5. Results of the statistical analysis of GNE ratio for the

three emotional states and vowels in the NP.

Fig. 2. Results of the statistical analysis of the estimated HNR

for vowels from the sentence final verb and the three emotional

states. For each case the box ranges from the lower to the upper

quartile with the median value indicated by a line, and the total

range indicated by the whiskers. Outliers are indicated by

crosses. For each emotional state higher HNR is found when

the verb is accented (case �v�).
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the same results are achieved, with generally

slightly higher HNR values and lower prediction

gain.

Closer examination reveals that a more dis-

tinctive distribution of the analysis results can be

achieved by taking into account the identity of the

vowel. In Fig. 8 the vowel identity (SAMPA no-

tation) is printed in the statistics for the maximum
prediction gain.

Some vowels tend to generally yield lower pre-

diction gain (/a/, /E/, . . .) whereas others generally
yield higher values (/o/, /U/, . . .). Hence, using the

vowel identity as a parameter may help to find a

clearer distinction between neutral and emotional

speaker state. This is exemplified in Fig. 9 where
the maximum prediction gain is plotted for two

different vowel classes (class 1: /a/, /a:/, /E/, /e/, /I/, /

i/, /aI/ and /aU/, and class 2: /O/, /o/, /U/, /u/, /OY/,

/Y/, /y/ and /2/).

4. Event-related brain potentials

ERPs allow the differentiation of language
subprocesses as reflected in language-related

Fig. 8. Position of individual vowels in the distribution of the

maximum prediction gain analysis.

Fig. 9. Maximum prediction gain for two vowel classes.

Fig. 7. Results of the statistical analysis of the maximum pre-

diction gain computed by means of the MI function (graphic

presentation like in Fig. 2). Non-neutral emotional state results

in a generally lower maximum prediction gain than emotionally

neutral speech; accentuation (�v� versus �s�) has a remarkable low
influence on maximum prediction gain.

Fig. 6. Results of the statistical analysis of spectral flatness for

the three emotional states and vowels from the sentence final

verb.
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components. For example specific syntactic viola-

tions result in a biphasic pattern of early negative

and late positive voltage changes, while semantic

violations elicit a late negative change (see Fried-
erici, 1995; Kutas and Hillyard, 1980). Thus, ERPs

seem to be an appropriate tool to differentiate

language-related characteristics. While there is

ample evidence in the clinical literature that the

processing of affective prosody might vary as a

function of valence (positive versus negative affect;

Davidson and Tomarken, 1989), there is very little

evidence from online measures. However, some
seminal DC-potential work by Pihan et al. (1997,

2000) reports that the discrimination of sentences

with happy, sad or neutral intonation results in

DC-potential patterns that vary as a function of

fundamental frequency or the duration of syllable

stress. However, the valence of prosodic affect does

not vary by any of the acoustic manipulations.

The EEG was recorded from 32 cap-mounted
tin electrodes with a sampling rate of 250 Hz/12

bits and with 40 Hz low-pass filtering. The left

mastoid electrode served as the reference. A total

of 20 subjects (10 female, mean age 23 years) were

tested in the prosodic judgment task. Trials con-

taining eye blinks or movement artefacts were re-

jected. Averages were first computed for each

single subject. These averages then entered the
grand averages. ERP components were quantified

as amplitude means of specified time windows.

Concerning the different prosodic emotional

states, there were differences between all condi-

tions, as shown by repeated measures ANOVA.

Fig. 10 shows the main pattern: there was a sig-

nificant difference between the positive state and

both neutral and negative states as reflected in a
P200 component. At around 400 ms post-stimulus

onset there was a stronger differentiation between

neutral and both emotional states that persisted

over the course of the sentence. However, between

400 and 700 ms positive and negative emotional

states differed significantly.

The pattern for mismatch conditions was less

clear, but broadly similar. As the comparison be-
tween match and mismatch conditions was always

based on the same emotional content but mis-

matching prosody, the similarity with respect to

match and mismatch conditions suggests that the

differences between contours could not be attrib-

uted to lexical effects alone as Pihan�s work sug-
gests might be the case.

One of the attractions of the ERP technique is

that it may illuminate the time course of affect

processing. Fig. 10 suggests that distinctive brain

reaction extends over most of the sentence rather

than being highly localized. The traces begin to

diverge after 200 ms and furthermore around the

onset of the noun (about 400 ms after stimulus
onset). The distinction is maintained as the sen-

tence continues, and in some respects it is en-

hanced when the sentence final verb occurs (about

1400 ms after stimulus onset). These interpreta-

tions are tentative, because further work is needed

to eliminate alternative explanations of the pat-

terns. But the data indicate why the technique is

promising.

5. Conclusions

In our study acoustic measures of the speech

signal chosen as correlates for breathiness and

roughness, as well as traces of ERPs were analyzed

regarding their relation to the emotional state of
the speaker (affect), lexical content, and accentua-

Fig. 10. The differentiation in the ERP between neutral (dotted

line) and happy/cold anger (straight/dashed line) emotional

speaker state. Waveforms illustrate the averages for all three

conditions from 150 ms prior to sentence onset to 2000 ms at a

selected frontal electrode site.
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tion. It has been found that emotional state (match

versus mismatch) could only be differentiated in the

maximum prediction gain. The dimensions of ac-

centuation and affect are almost mutually inde-
pendently captured by distinct acoustic measures.

They seem to be encoded in different features of the

speech signal, and as the assessment of listener

perception with EPR traces shows, also to trigger

different perceptual events in the listener.

There is a correlation between the maximum

prediction gain and the differentiation of ERP

traces related to different emotional states. Ut-
terances comprising neutral emotional state are

characterized by a higher maximum prediction

gain and a more negative ERP trace than utter-

ances with a happy emotional state. Thus, those

features could be an indicator of arousal, i.e., to

distinguish between a non-neutral emotional state

of the speaker and the neutral state.

A low GNE ratio of a vowel signal was found
to go with accentuation of the word, whereas the

HNR estimation correlates with accentuation type

of the sentence, i.e., accentuation of the sentence

final verb versus default accentuation on the NP.

A strong differentiation between ERP traces for

neutral and non-neutral emotional state of the

speaker is independent of lexical content and

accentuation. Presumably, the hearers perception
system seems to use signal properties at all stages

of the incoming signal in order to process affec-

tive meaning. Accented and thus hyper-articulated

signal portions are overlooked by the system

during the processing of affective meaning. Both

the acoustic analyses and the ERP data suggest

that accentuation and the encoding of affect are

two separate prosodic entities. The former seems
to be a local quality of prosodic encoding, the

latter seems to be realized globally.
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