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Abstract. In this paper, we present a new approach towards high performance speech/music
discrimination on realistic tasks related to the automatic transcription of broadcast news. In the
approach presented here, the (local) Probability Density Function (PDF) estimators trained on
clean, microphone, speech (as used in a standard large vocabulary speech recognition system) are
used as a channel model at the output of which the entropy and “dynamism” will be measured and
integrated over time through a 2-state (speech and and non-speech) hidden Markov model (HMM)
with minimum duration constraints. Indeed, in the case of entropy, it is clear that, on average,
the entropy at the output of the local PDF estimators will be larger for speech signals than non-
speech signals presented at their input. In our case, local probabilities will be estimated from an
multilayer perceptron (MLP) as used in hybrid HMM/MLP systems, thus guaranteeing the use
of “real” probabilities in the estimation of the entropy. The 2-state speech/non-speech HMM will
thus take these two dimensional features (entropy and “dynamism”) whose distributions will be
modeled through (two-dimensional) multi-Gaussian densities or an MLP, whose parameters are
trained through a Viterbi algorithm.

Different experiments, including different speech and music styles, as well as different (a priori)
distributions of the speech and music signals (real data distribution, mostly speech, or mostly
music), will illustrate the robustness of the approach, always resulting in a correct segmentation
performance higher than 90%. Finally, we will show how a confidence measure can be used to
further improve the segmentation results, and also discuss how this may be used to extend the
technique to the case of speech/music mixtures.



2 IDIAP-RR 01-26

1 Introduction

The problem of distinguishing speech signals from other audio signals (e.g., music) has become in-
creasingly important as automatic speech recognition (ASR) systems are applied to more real-world
multimedia domains, such as the automatic transcription of broadcast news, in which speech is typ-
ically interspersed with segments of music and other background noise. Standard speech recognizers
attempting to perform recognition on all input frames will naturally produce high error rates with
such a mixed input signal. Therefore, a pre-processing stage that segments the signal into periods of
speech and non-speech is invaluable in improving recognition accuracy.

Another application of speech/music discrimination is low bit-rate audio coding. Traditionally, sep-
arate codec designs are used to digitally encode speech and music signals. An effective speech/music
discrimination decision will enable these to be merged in a universal coding scheme capable of repro-
ducing well both speech and music.

More generally, audio segmentation (which could be performed by a generalization of the speech/music
discrimination approach presented in the present paper) could allow the use of ASR acoustic models
trained on particular acoustic conditions, such as wide bandwidth (high quality microphone input)
versus telephone narrow bandwidth, male speaker versus female speaker, etc., thus improving over-
all performance of the resulting system. Finally, this segmentation could also be designed to provide
additional interesting information, such as the division into speaker turns and the speaker identities
(allowing, e.g., for an automatic indexing and retrieval of all occurrences of a same speaker), as well
as ‘syntactical information’ (such as end of sentences, punctuation marks, etc).

One of the issues in the design of a signal classifier is the selection of an appropriate feature set that
captures the temporal and spectral structure of the signals. Many such features for speech/music dis-
crimination have been suggested in the literature, including zero-crossing information, energy, pitch,
cepstral coefficients, line spectral frequencies (LSF), 4 Hz modulation energy, amplitude, and percep-
tual features like timbre and rhythm [1, 2, 3, 4, 5].

In this work, we use posterior probability based features introduced in [6], namely entropy and
dynamism. As we will show, these features indeed exhibit nice discriminant properties yielding to
high performance speech/music segmentation. In applications like broadcast news transcription, where
speech is always mixed with background sounds (music or noise), it is advantageous to find segments
which can be recognized properly by an ASR system.

Another issue in the system design is the selection of a classification algorithm. Different clas-
sifiers like the Bayesian Information Criterion (BIC) [5], Gaussian likelihood ratio (GLR) [1, 2, 6],
quadratic Gaussian classifier (QGC) [7], nearest neighborhood classifier [6, 7] and hidden Markov
model (HMM) [3] have been used for this purpose.

Nowadays, BIC [5] is perhaps the most commonly used technique for audio segmentation and
assumes that the sequence of acoustic feature vectors is a Gaussian process. BIC then measures the
likelihood that two consecutive acoustic frames were generated from two different Gaussian processes
than from a single Gaussian process, thus yielding the following definition of the BIC function:

BIC(n)=R(n)— AP
where R(n) is a likelihood ratio calculated as:
R(n) = N1H|U| - N1 ln|01| — N21H|02|

where o, 01 and o, are the sample covariance matrices for all data, the data preceding frame n (N,
frames), and for the data following frame n (N frames). P is a penalty term and X is the penalty
weight to be tuned for optimal performance. A change point is thus detected where BIC(n) > 0.

This BIC scheme makes local decisions at every time instant n, which may be undesirable in
applications such as speech/music discrimination, in which it can be reliably assumed that speech
or music last for at least a specified minimum duration. In addition, it relies on the setting of a
hard decision threshold (via the penalty term) based on experiments, which can be imprecise and
undesirable in many situations.
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In this work, we use the entropy and dynamism features estimated at the output of the MLP used
in a regular hybrid HMM/MLP large vocabulary continuous speech recognition system. Depending on
the data presented at the input of the MLP, these features will exhibit different properties and can be
used in a secondary 2-state (speech/non-speech) HMM system, where the state probability densities
are estimated by either Gaussian mixture models (GMM) or a multi-layer perceptron (MLP). This
approach thus has two advantages, i.e.:

1. Using more appropriate features, basically “independent” of the acoustic features used for recog-
nition, but mainly based on the quality of the classifier, considered here as a channel model.

2. Being a threshold-free, global decision making strategy.

In the same framework, we also investigate the use of a confidence measure to improve the performance
and application of the discrimination system. This measure can be used to improve the discrimination
accuracy by removing short, low confidence segments. In addition, such a confidence measure could
be used in the framework of speech/music mixtures, where it is desirable to determine the ‘amount’ of
speech or music present in the audio signal, rather than simply providing hard segmentation bound-
aries.

2 Posterior Probability Based Features

According to information theory, a channel designed for a particular type of signal will exhibit char-
acteristic behaviour at its output when that signal is passed through the channel. Conversely, the
presence of a different type of signal will result in uncharacteristic behavior at the channel output. In
the case where the channel is a multilayer perceptron (MLP) trained to emit posterior probabilities for
speech recognition [8], it should therefore be possible to distinguish between speech and non-speech
signals by examining the behaviour of these probabilities. In this section, and building upon [6], we
define two features, namely entropy and dynamism, by which we can characterize the distribution of
these posterior probabilities.

2.1 Entropy

Entropy is a measure of the uncertainty or disorder in a given distribution [9]. In the case of an MLP
trained to emit posterior probabilities for K output classes (usually associated with speech phones or
HMM states gi, k =1,..., K), the instantaneous entropy h,, at a specific time frame n is defined as:

hy ==Y P(arlza) log, P(glzs) (1)
k=1

where z,, represents the acoustic vector at time n, ¢ the k-th MLP output class, and P(qy|x,) the
posterior probability of class (phone) g given z,, at the input.

The posterior probabilities at a given time represent a true PDF, and the entropy of that PDF (the
expected value of the log probability) is a measure of the goodness-of-fit of the current observation to
the acoustic model (channel). Generally, in the case of speech, the value of the posterior probability
for a particular phoneme (the ‘recognized’ phoneme) is much higher than other phonemes. This means
that the value of the entropy will be close to zero, indicating that little information will be gained by
knowing its actual value, or, equivalently, that there is little uncertainty over the unknown segments.
In the case when a music signal is passed through the MLP, the values of probabilities will be more
uniformly distributed, resulting in a higher value for entropy.

Equation (1) gives the instantaneous value of the entropy at frame n. As we will see in the subse-
quent discussion, and to perform a first smoothing, it is advantageous to average this instantaneous



4 IDIAP-RR 01-26

entropy over a window of several frames, resulting in the averaged entropy at time n:

1 n+N/2
Hy =+ Yoo (2)

t=n—N/2

where n is the index of the current acoustic frame and IV is the size of the averaging window.

2.2 Dynamism

Dynamism is a measure of the rate of change of a quantity. In this case, and using the same notation
as above, the instantaneous dynamism at time n is defined as:

K

dn = Z [P(gr|zn) — P(Qk|xn+1)]2 (3)
k=1

This feature captures the dynamic behaviour of the probability values. As speech is a highly varying
signal, it can be expected that the probability values observed at the output of the MLP in the case
of speech input will change rapidly from one frame to another. Conversely, music is a harmonic (less
varying) signal and hence the dynamism is low, resulting in a higher dynamism for speech than for
music.

Similar to the case of entropy, it can be beneficial to average the instantaneous values of dynamism
over a certain number of frames, resulting in the average dynamism at time n:

1 n+N/2

t=n—N/2

where IV is the size of the averaging window.

3 Speech/Music Discrimination

The complete block diagram of the proposed speech/music discrimination system is shown in Figure 1.
We describe the individual blocks in following subsections.

P(ql [%n) COMPUTE
! Multilayer ENTROPY H_——= PDF > Segmentation
Input Signdl_| Perceptron N " Estimator CIH M 2/'
asstier
(MLP) pynamism D, | P
P(qK/ Xn)

Figure 1: Block diagram of the proposed system where PDF estimator is a GMM or an MLP

3.1 Multilayer Perceptron (MLP)

In the hybrid connectionist-HMM framework for ASR [8], typical practice is to train a neural network
to learn the complex temporal structure of tell-tale speech gestures present in phones and their transi-
tions. A signal containing the substantial and balanced collections of these gestures is effectively being
recognized as speech, and a signal that rarely passes through these critical patches of feature-space
fails to show any resemblance to speech. The phone network classifier thus provides a very specific
and significant amplification of the distinction between speech and non-speech segments.
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In practice, this neural network estimates the posterior probabilities of the output classes (in
our case, phones) given feature vectors corresponding to a temporal contextual window of a certain
duration (typically 9 acoustic frames of 16-ms), i.e., P(qg|z,) where g is the phonetic class (with
k=1,...,K, where K is the total number of output classes) and z,, is the feature vector at time n.
Careful observation of these probabilities shows a marked distinction between segments consisting of
clean speech and other segments, such as music or very noisy speech.

3.2 Feature Computation

The output of the MLP is a set of K posterior probabilities, i.e., P(gx|z,). For every acoustic frame
(16 ms in our case), we calculate the average entropy H,, and average dynamism D,, according to (2)
and (4). These values are combined to form a two-dimensional vector, y,, = (H,, D,)T, which is then
used as the HMM observation vector.

3.3 Probability Density Function Estimator

For every acoustic frame x,, of the input signal, the feature vector y,, is thus constructed and sent to
the PDF estimator. The role of this block is to estimate the emission probabilities of the HMM states
given the observation vector y,. We investigate two estimators for this purpose: namely, the GMM
and MLP.

3.3.1 Gaussian Mixture Model (GMM)

A GMM is a mixture of several Gaussian distributions and is used to estimate the PDF of a sequence
of feature vectors. The likelihood that a particular feature vector ¥, was produced from a particular
class C' € {Speech, Music} is then estimated as:

M
PWnlC) = > wiN (yn, i, Ts)

i=1

al Wi —\In T iT '71 n — Hi
Z;QW |ZZ'|exp{ (Yn — i) 221 (y u)}

(5)

where, in our case, ¥y, is a two-dimensional vector composed of the average entropy H,, and average
dynamism D,,, as defined earlier. M is the number of Gaussian distributions in the GMM. The
parameters of these distributions, w;, p; and )., are respectively the weight, mean and diagonal
covariance matrix of the it distribution in the GMM. These parameters can be trained by using the
standard (supervised or unsupervised) ezpectation mazimization (EM) algorithm for both speech and
music classes.

The individual PDFs of entropy and dynamism are shown in Figures 2 and 3, respectively. It is
clear from these figures that the behaviour of these features for speech and music is quite distinct and
that they can be effective discriminatory features. The figures also show both the distributions for
the instantaneous (local) values of entropy h, (1) and dynamism d,, (3), as well as the the average
entropy H,, (2) and average dynamism D,, (4). From the figures, the averaged measures exhibit better
Gaussian properties (due to the central limit theorem), and are more clearly separated and thus better
suited for discrimination purposes.

3.3.2 Multilayer Perceptron (MLP)

An MLP is a special case of feed-forward neural network with one input layer, one or several hidden
layers and one output layer. In our case, the MLP is trained with the observation vector y,, defined
earlier at its input, along with several context frames. At the time of segmentation, y,, is presented
along with the context frames at the input of the MLP, and the output is obtained as the set of
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Figure 2: Distribution of local and average entropy for speech and music. As expected, the average
entropy is usually higher for music than for speech.
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Figure 3: Distribution of local and average dynamism for speech and music. As expected, the speech
average dynamism is usually higher than the average music average dynamism.
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Figure 4: HMM topology for the proposed system

posterior probabilities P(C|y, ) for the two classes (speech and music). Using Bayes rule, these posterior
probabilities can be turned into scaled likelihoods that can be used as HMM emission probabilities:

p(ya|C)  P(Clyn)
Plys) ~ PO) (©)

where P(C) is the prior probability of the class C, as estimated on the training data, and P(y,) is
independent of the class and simply appears as a constant scaling factor. In our case, the training
data was characterized by equal speech and music priors, so it was not necessary to divide by P(C).

3.4 HMM Classifier

The HMM topology for the proposed system is shown in Figure 4. In the case of speech/music
discrimination, this HMM is a 2-state fully connected model, where a minimum duration is imposed
for each state. This is achieved by simply concatenating internal states associated with the same PDF.

As there is no a prioriinformation available regarding transitions across speech and music segments,
transition probabilities are set manually to favour remaining in the current (speech or music) state.
Similarly, as there is no information regarding the beginning of the audio data, initial probabilities
are set manually to make speech and music segments equally likely. The emission probabilities for the
HMM states are estimated by the either a GMM or an MLP expert.

The parameters of MLP are trained via the error back propagation (EBP) algorithm. Equal
amounts of labeled clean speech and music data are used for training the MLP. The feature vec-
tors y, = (Hy,,D,) from the training data are presented at the input layer of the MLP along with
several context frames. The parameters of the GMM are trained in a supervised manner using standard
EM algorithm. The same data is used to train both the MLP and GMM parameters.

At the time of segmentation, given the observation sequence y,, the local likelihood of each class
is calculated using the GMM (5) or MLP (6) at every frame n. The Viterbi algorithm is then used to
find the best possible state sequence which could have emitted this observation sequence. The criterion
used for the best state sequence is the mazimum likelihood (ML) criterion.

In this case, the backtracking part of the Viterbi algorithm is performed after reaching the end of
the audio sequence. This gives the sound (speech/music) sequence resulting in maximum likelihood.
However, for large audio databases, it may be necessary to break the data into chunks of manageable
size and then perform Viterbi decoding. These chunks may also be made to overlap to measure the
confidence of segments at the boundaries.

There are several advantages of using this classification strategy. First, it eliminates the need for a
hard threshold value. In schemes like the BIC and GLR, a threshold value is calculated on the basis of
experiments and is used for making a decision at the time of segmentation. Sometimes, this threshold
value can be imprecise and misleading. Second, with the HMM it is possible to easily impose the
constraint of minimum duration. If any sound (speech or music) lasts less than a minimum duration,
we consider that it does not carry any useful information. We impose this constraint by having several
states belonging to the same class in cascade as shown in Figure 4. Also, unlike the BIC and GLR



8 IDIAP-RR 01-26

schemes which tend to make independent decision every frame, global decisions over this minimum
duration are made in the case of the proposed system.

4 Evaluation Experiments

4.1 Implementation

For the posterior probability calculation, we use a (9x13)-2000-42 MLP with a softmax output layer
trained via back-propagation to a minimum-cross-entropy criterion. The input features are the first 13
cepstra of a 12t"-order PLP filter to the spectrum of the 16 KHz sampled data, using a 32 ms window
and a 16 ms frame shift. No delta, double delta, or explicit energy terms are used. Nine successive
feature frames are presented to the neural network at a time.

For the purpose of feature calculation, the number of phonemes K is 42 and the size of averaging
window N is 40.

Approximately 2.5 hours of audio data was used for training the GMM and MLP experts. The
GMMs for both speech and music have 5 Gaussian distributions and were trained using the EM
algorithm as described earlier. These Gaussians have diagonal covariance matrices, meaning that the
two features are not correlated in a two-dimensional feature space. This also makes it easier to use
entropy and dynamism individually as discriminatory features if desired. The MLP is a (9x2)-5-2
structure with a softmax output layer trained via the back-propagation algorithm.

The number of states used to impose the minimum duration constraint in the HMM was fixed to
180, thus assuming in our case that any speech or music segment is never shorter than 2.88 seconds
(16ms x 180).

4.2 Evaluation

We evaluated the system using 4 labeled data sets, each 10 minutes long. These data sets have a
wide variety of speech and music. For example, they contain speech from a variety of both male and
female speakers, as well as different types of music, such as jazz, pop, and country. To observe the
effect of durations of sounds, segments of different durations have been mixed together. Three different
experiments were performed on each of these data sets using both GMM and MLP experts.

Results were obtained in terms of the percentage frame level accuracy. We calculate three different
statistics in each case : the percentage of true speech frames identified as speech, the percentage of
true music frames identified as music, and the overall percentage of speech and music frames identified
correctly.

4.3 Results
4.3.1 Test Set 1

This is a 10 minute audio stream having alternate speech and music segments of equal (15 seconds)
duration. The classification results are shown in Table 1.

For this data set, the entropy works better than dynamism for both speech and music, although
dynamism works much better for music compared to speech. Combining the two features does not
significantly improve the performance over entropy. The performances of the GMM and MLP systems
are comparable in this case.

4.3.2 Test Set 2

The second test set, which presents a more realistic task, consists of a 10 minute audio stream con-
taining varying lengths of alternate speech and music segments. These segments include very short
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Expert Feature Speech | Music | Total
GMM Entropy 93.2 98.6 95.6
GMM | Dynamism 73.8 98.3 81.8
GMM Both 94.2 98.7 96.2
MLP Entropy 94.1 98.7 96.2
MLP | Dynamism 79.1 93.8 84.8
MLP Both 94.0 97.3 95.5

Table 1: Classification results for Test Set 1

(2 seconds) as well as long (14 seconds) segment durations. These classification results are shown in
Table 2.

Ezxpert Feature Speech | Music | Total
GMM Entropy 91.3 97.5 94.2
GMM | Dynamism 81.8 99.5 90.0
GMM Both 91.6 98.1 94.6
MLP Entropy 92.3 97.4 94.6
MLP | Dynamism 85.1 92.9 88.6
MLP Both 94.4 98.6 96.3

Table 2: Classification results for Test Set 2

In the GMM framework, entropy and dynamism work better for speech and music respectively
and, once again, the combination does not give a notable improvement over the performance of using
only entropy features. However, in the case of the MLP (hybrid HMM/MLP classification), combining
the two features does significantly improve the results. One clear observation from Table 2 is that, in
the case of the MLP, the error is distributed more evenly between speech and music. This is true even
for the individual performance of the two features, especially for dynamism. This observation can be
explained by the fact that MLP training exhibits better discriminant capabilities than is the case for
GMDMs.

4.3.3 Test Set 3

The third test set consists of a 10 minute audio stream comprising mainly of speech data. In this case,
15 second segments of speech data are interleaved with short segments of music. This represents a more
likely scenario for the case when the speech/music discrimination is being used as a pre-processing step
to segment, a predominantly speech audio signal for automatic speech recognition. These classification
results are shown in Table 3.

Ezxpert Feature Speech | Music | Total
GMM Entropy 90.4 94.1 91.5
GMM | Dynamism 89.9 85.8 88.3
GMM Both 96.2 95.0 95.6
MLP Entropy 92.5 91.0 91.8
MLP | Dynamism 94.0 76.8 86.2
MLP Both 97.7 87.3 93.3

Table 3: Classification results for Test Set 3
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From these results we see that entropy works better than dynamism for both speech and music
segments. In this case, combining the two features gives a noticeable performance improvement over
the individual performance of entropy and dynamism. While the overall performances of the GMM
and MLP systems are comparable, the GMM and MLP can be seen to work better for music and
speech, respectively.

4.3.4 Test Set 4

The final test set contains a 10 minute audio stream mostly consisting of music data. In this case,
15 second music segments are interleaved with short segments of speech. The classification results are
shown in Table 4.

Ezxpert Feature Speech | Music | Total
GMM Entropy 86.3 95.8 91.2
GMM | Dynamism 60.9 98.6 81.0
GMM Both 88.9 98.3 94.3
MLP Entropy 86.2 95.8 91.7
MLP | Dynamism 77.0 93.8 86.2
MLP Both 92.0 96.0 94.3

Table 4: Classification results for Test Set 4

Here we again see that entropy generally gives the better discrimination results, although dynamism
is quite effective for detecting music segments. Combination of the two features significantly improves
the performance over the use of either feature in isolation, especially in the case of the speech segments.
This is true for both the GMM and MLP frameworks. Again, while the overall performance of GMM
and MLP are comparable, the MLP offers more accurate detection of speech segments, which is highly
desirable in the case of speech recognition applications.

4.4 Discussion

The observations from these four data sets can be summarized as follows:

e Overall, entropy is a better discriminatory feature than dynamism. This is because the entropy
for individual frames is generally much higher for music than it is for speech, and this situation
does not vary greatly. In contrast, the dynamism for frames within a speech phoneme period
can be as low as it would be for a music segment. Even though we compensate for this effect
somewhat by averaging these values over a window, the dynamism remains sensitive to the
phoneme durations.

e Dynamism is a better discriminatory feature for detecting music segments than it is for detect-
ing speech segments. This is because the behaviour of dynamism does not vary during music
segments, and is effectively modelled by statistical approaches such as GMMs and MLPs. In the
case of speech segments, however, the dynamism may be affected by factors such as the speaking
rate.

e In general, the relative behaviour of entropy and dynamism does not change in the GMM and
MLP frameworks. We note, however, that the MLP tends to redistribute the error more evenly
among speech and music regions due to its discriminative training.

e As expected, the combination of the two features improves the performance over the individual
performance of the two features. This is because the region of overlap (confusion) between
speech and music regions in the combined feature space is diminished compared to the regions of
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overlap in the individual entropy and dynamism feature spaces. The combination is particularly
beneficial for music, due to the more consistent behaviour of the individual features (especially
dynamism).

e Overall, while the performances of the GMM and MLP systems are comparable, the MLP gives
consistently higher frame accuracy for speech segments. For this reason, in applications such as
large vocabulary speech recognition, where identifying true speech regions is more important
than ignoring false speech regions, the MLP system would be preferable.

As an aside, we note that some of the error may be attributed to the inherent latency of the system.
At a first level, a high amount of averaging is done in the pre-processing stages in order to extract
the speech recognition features and contextual information for input to the MLP. This is followed by
another level of averaging to obtain the average entropy and average dynamism features. Due to these
factors, the features will not change abruptly as the signal makes a transition from speech to music
and vice-versa. Another level of latency is introduced by the minimum duration constraint within the
HMM, where a specified minimum amount of time is required to decide whether the signal is really a
music or a speech signal. The combined effect of these factors will mean that perfect 100% accuracy
at the frame level is unlikely to be achieved in practice.

5 Confidence Measure

In many situations it is desirable to not only have the segmentation information, but also a measure
of the confidence that we have in the segmentation decision. In this section, we first discuss mean
posterior confidence measure (MPCM) [10] and then briefly discuss its use for two different purposes.
As the MLP system outputs real posterior probabilities, it offers a more convenient framework for the
development of such a confidence measure. For this reason, the following discussion focuses on the
MLP system, however we note that a similar measure could also be obtained using the GMM system.

5.1 Definition of Confidence Measure

In the context of the MLP system, we obtain the posterior probabilities for the speech P(S|y,) and
music P(M|y,) (= 1 — P(S|yn)) classes for each input frame. For a segment of multiple frames
(N7 < n < Ns), we can define a measure of the confidence of the speech and music classes from the
arithmetic mean of these frame probabilities. We adopt the arithmetic mean in this case so that the
segmental confidence measure is not unduly biased by the probability estimates of a single frame (it
is evident that use of the geometric mean would result in an average confidence of 0 if only one of the
frames gave a probability of 0). Thus, the MPCM is defined as:

No
1
Rc(Ny,Ny) = ——— P(C 7
C( 1, 2) N2 _Nl Z ( |yn) ( )
n:N1
where C' represents either the speech or music class. This confidence measure is convenient as it is has
a range of 0 < Rc < 1 and obeys the constraint that Rg + Ry = 1.

5.2 Improving Speech/Music Discrimination Accuracy

In the experiments reported in Section 4.3, the segmentation resulting from the 2-state HMM has
alternate speech and music segments with minimum durations of 2.88 seconds. However, it was obseved
that, sometimes, a short speech (music) segment may be recognised between two large music (speech)
segments. While in some cases these segments may be valid, they could also be attributed to several
factors, such as long pauses during speech, rap music, etc. In such cases, we require a strategy to
excise these unwanted, incorrect segments.
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To this end, we investigated the use of a simple empirical algorithm in which low confidence
segments are merged with the neighbouring segments if

1. the confidence of a segment falls below a threshold, and
2. the confidences of the neighbouring segments are above this threshold value.

We set a confidence threshold at 0.65 and use the above algorithm on the results (MLP system
only, using both entropy and dynamism features) of Section 4.3. The results are shown in Table 5.

Total

Test Before | After
1 95.5 96.1
2 96.3 96.1
3 93.3 95.6
4 94.3 94.9

Avg 94.8 95.7

Table 5: Comparison of results before and after using confidence measures

These results demonstrate two important points. First, we can achieve a significant reduction in
error rate by removing low confidence segments. In this case we see the overall error rate decrease
from 5.2% to 4.3%, corresponding to a relative error rate reduction of approximately 17%. Second,
from the fact that the error rate does not increase noticeably in any case, we can also conclude that,
for these test sets, all of the correct speech and music segments are being recognised with a high
confidence greater than 0.65. This is as we would hope, as the segments used in these test sets are all
‘pure’ speech or music segments, and thus the discrimination system should have high confidence in
making correct segmentation decisions.

5.3 Speech/Music Mixtures

In this article we have concentrated on the problem of segmenting an audio file consisting of pure
speech or music portions. A related problem, and a natural extension of the technique, is determining
the ‘amount’ of speech present in a signal containing a mixture of both speech and music at the same
time. In the previous sub-section, we have seen that such pure speech or music segments are recognised
with high confidence (above 0.65 for this test data). In the case of speech and music mixtures, it would
also be of interest to use the confidence measure as an indication of the relative levels of speech and
music present at a given time.

Such a measure would have application, for example, in the context of a multi-modal fusion ap-
plication in which the speech/music discrimination information, and indeed the speech recognition
output, are simply input cues (or features) for higher-level processing decisions combining cues from
different modalities. Such a technique for classifying speech/music mixtures has been applied in the
framework of the European ASSAVID project, which is concerned with automatic indexing of sports
videos, and a demonstration of initial results of the scheme on a sample audio segment is available
at http://www.idiap.ch/~jitendra/speech-music. The demonstration consists of an MPEG file
which plots the value of the speech confidence measure calculated over segments as the audio signal
is played. While this remains the topic of ongoing research, these initial results give a (subjective)
indication of the potential of the confidence measure for speech/music mixtures.

6 Conclusion

In this paper we have presented a new approach for speech/music discrimination. Entropy and dy-
namism features based on posterior probabilities of speech phonetic classes are used to form a two-
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dimensional observation vector sequence which is used in a HMM classification framework. We compare
the use of both GMM and MLP experts to estimate the probability density functions of the HMM
states. The relative performances of entropy/dynamism and GMM/MLP are demonstrated and dis-
cussed in the context of an experimental evaluation.

The system was tested with different speech and music styles, as well as different distributions of
speech and music signals. The results of these tests illustrate the robustness of the approach, with
the system achieving consistent frame accuracies from 93% to 96% across a variety of realistic test
scenarios. From these results, we conclude that entropy and dynamism together make a powerful
feature set for speech/music discrimination. While the overall performances of the GMM and MLP
systems are comparable, we find that the MLP system tends to work consistently better for detecting
speech segments, and would thus be preferable when the speech/music segmentation is a pre-processing
step for speech recognition.

In addition, a confidence measure was proposed and investigated for the purpose of removing short
low-confidence segments, further improving the frame accuracy over the baseline system. The potential
use of such a confidence measure in the context of speech/music mixtures was also briefly discussed.

In summary, the proposed speech/music discrimination system provides a powerful, robust tech-
nique for reliable segmentation of audio streams.
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