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Abstract

We describe models of Mandarin prosody that allow us to make quan-
titative measurements of prosodic strengths. These models use Stem-ML,
which is a phenomenological model of the muscle dynamics and planning
process that controls the tension of the vocal folds, and therefore the
pitch of speech. Because Stem-ML describes the interactions between
nearby tones, we were able to capture surface tonal variations using a
highly constrained model with only one template for each lexical tone
category, and a single prosodic strength per word. The model accurately
reproduces the intonation of the speaker, capturing 87% of the variance
of f0 with these strength parameters. The result reveals alternating met-
rical patterns in words, and shows that the speaker marks a hierarchy of
boundaries by controlling the prosodic strength of words. The strengths
we obtain are also correlated with syllable duration, mutual information
and part-of-speech.
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1 Introduction

Intonation production is generally considered a two-step process: an accent or
tone class is predicted from available information, and then the tone class is used
to generate f0 as a function of time. Historically, most attention has been paid
to the first, high level, step of the process. We here show that by focusing on f0

generation, one can build a model that starts with acoustic data and reaches far
enough up to connect directly to linguistic factors such as part-of-speech, word
length and position in the text.

Specifically, we present a model of Mandarin Chinese intonation that makes
quantitative f0 predictions in terms of the lexical tones and the prosodic strength
of each word. The model is able to generate tonal variations from a few tone
templates that correspond to lexical tones, and accurately reproduce f0 in con-
tinuous Mandarin speech with a 13 Hz RMS error. The result is comparable to
machine learning systems that may use more than one hundred tone templates
to account for Mandarin tonal variations.

We find that some parameters of the model can be interpreted as the prosodic
strength of a tone. We determine the prosodic strengths (and the values of the
other global parameters) by executing a least-squares fit of the model to the
time-series of f0 from a corpus of speech data. The resulting best-fit strengths,
tone shapes, and metrical patterns of words can be associated with linguistic
properties. We show that strengths computed from the model exhibit strong and
weak alternation as in metrical phonology [31], and the values are correlated with
the part-of-speech of words, with mutual information, and with the hierarchy of
the prosodic structure [49, 46, 26] such as the beginning and ending of sentences,
clauses, phrases, and words.

We will also show that values of parameters from a fit to one half of the corpus
match equivalent parameters fit to the other half of the corpus. Further, we can
change the details of the model, and show that the values of many parameters
are essentially unaffected by the change. This consistency is important because
if we hope to interpret these parameters (and thus the models that contain them)
as statements about the language as a whole, they must at least be consistent
across the corpus and between similar models.

The model we use is described in Section 3. It is written in Soft Template
Mark-up Language (Stem-ML)[24, 22], and depends upon its underlying math-
ematical model of prosody control. We write a Stem-ML model in terms of a
set of tags (parameters) then find the parameter values that best reproduce f0

in a training corpus. Fitting the model to the data can be done automatically.
Stem-ML calculates an intonational contour from a set of tags. Some of

the tags set global parameters that correspond to speaker characteristics, such
as pitch range, while others represent intonational events such as lexical tone
categories and accent types. The tags can contain adjustable parameters that
can explain surface variations.

Stem-ML does not impose restriction on how one define tags. In our view,
a meaningful way is to use the tags to represent linguistic hypotheses such as
Mandarin lexical tones, or English accent types. We call tags that define tones

3



or accents templates because they define the ideal shapes of f0 in their vicinity.
In this paper, our usage of tone tags (tone templates) corresponds directly to
Mandarin lexical tone categories, and we interpret the Stem-ML strength param-
eters as the prosodic strengths of these tone templates. The actual realization
of f0 depends on the templates, their neighbors, and the prosodic strengths. We
show in the paper that this treatment successfully generates continuous tonal
variations from lexical tones.

Described another way, a Stem-ML model is a function that produces a
curve of f0 vs. time. The resulting curve depends on a set of adjustable (free)
parameters which describe things like the shape of tones, how tones interact,
and the prosodic strength of each syllable. When Stem-ML is generating a f0

curve, one can set these parameters to any values, and each setting will get you
a different curve. In the reverse, one can find the best values for the parameters
via data fitting procedures.

We use a least-squares fitting algorithm to find the values for the parameters
that best describe the data. The algorithm operates iteratively by adjusting
the parameter values, and accepting steps that reduce the sum of the squared
differences between the model and the data. The values of the parameters that
make the summed squared difference as small as possible, for a given model, are
called the best-fit (or fitted) parameters.

2 Chinese Tones

Tonal languages, such as Chinese, use variations in pitch to distinguish otherwise
identical syllables. Mandarin Chinese has four lexical tones with distinctive
shapes: high level (tone 1), rising (tone 2), low (tone 3), and high falling (tone
4). The syllable ma with a high level tone means mother, but it means horse
with a low tone. Thus, in a text-to-speech (TTS) system, good pitch prediction
is important not just for natural sounding speech but also for good intelligibility.
There is a fifth tonal category, traditionally named neutral tone, which refers
to special syllables with no lexical tone assignment. The pitch values of such
syllables depend primarily on the tone shape of the preceding syllable.

Superficially, modeling Chinese tones seems straightforward. One might
concatenate lexical tones to generate continuous speech. The challenge is that
tone shapes vary in natural speech to the extent that the realized f0 contour
sometimes bears little obvious relationship to the concatenation of the tones.
Figure 1 shows a Mandarin phrase fan3 ying4 su4 du4 (“reaction time”), along
with the tones from which it is constructed [57, 54]. The last three syllables
are all recognized as tone 4 by native speakers, but have drastically different f0

contours. The second syllable ying4 has an inverted tone shape while the last
syllable du4 is lower than expected.

In previous Chinese intonation generation models, variations of a lexical tone
are either ignored, or are treated as discrete classes. These discrete classes may
be linked to the lexical tone by rules [51, 28], or by a machine learning method
such as a neural network [3, 4]. It is not uncommon for these systems to use up
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Figure 1: Tones vs. realization. The upper panels show shapes of tones 3 and
4 taken in a neutral environment and the lower panel shows the realization of
an actual sentence containing those tones. The grey curves (or green in color
display) show the templates, and the black curve (or red) shows the f0 vs. time
data.
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to a hundred discrete classes to represent tonal variations. Both rule-based and
machine learning methods link the lexical tone and their surface forms in an ad
hoc manner, using factors such as lexical tones, tonal contexts, and positions in
the sentence, yet neither method offers an explanation of the relations between
lexical tone and their variations, or the relationship among discrete classes.

We explain the phenomenon displayed in Figure 1 as a natural consequence
of tone shapes interacting via articulatory constraints. These severely distorted
tone shapes occur when the shape of a weak tone is contradictory to the trajec-
tory defined by strong neighbors. In those cases the weak tone accommodates
the shapes of neighboring strong tones to maintain smooth surface f0 contours.

Our model of Chinese intonation starts with a linguistically reasonable as-
sumption: that all tonal variations of a lexical tone are generated from the
lexically determined tonal templates. From these, we calculate f0 at each time
point as a function of the nearby templates and their prosodic strengths. We
will show that this conceptually simple representation is capable of capturing
the drastic tonal variations such as shown in Figure 1.

Given surface f0 curves, and assuming that the lexical tone is known, learn-
ing the Chinese prosody description reduces to learning the lexical tone tem-
plates and the prosodic strengths of the templates.

3 Modeling Intonation

We build our model for Mandarin on top of Stem-ML[22] because it captures
several desirable properties. A positive feature of Stem-ML is that the represen-
tation is understandable, adjustable, and can be transported from one situation
to another.

Unlike most engineering approaches, this model cleanly separates into local
(word-dependent) and global (speaker-dependent) parameters. For instance,
one can generate acceptable speech by using the templates of one speaker with
prosodic strengths from another[54], where a female speaker’s tone templates
were used as part of a model to predict a male speaker’s f0 contours. Unlike
some descriptive models, we predict numerical f0 values, and so our model is
subject to quantitative test. Few other approaches to intonation have all these
properties.

3.1 Concepts Behind the Model

Stem-ML brings together several ideas into intonation modeling:

• we assume that people plan their utterances several syllables in advance,

• we assume that people produce speech that is optimized to meet their
needs,

• we apply a physically reasonable model for the dynamics of the muscles
that control pitch and skilled movements [19, 40], and
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• we introduce the concept of prosodic strength, a continuous parameter
assoicated with linguistic units such as syllable, tone, and word, to control
variations.

Pre-planning in speech was first shown in terms of the control of inhaled air
volume[65, 66, 64, 37]: people will inhale more deeply when confronted with
longer phrases, hence we see a positive correlation of longer phrase and higher
initial f0 [52]. This fact implies that at least a rough plan for the utterance
has been constructed about 500 ms before speech begins. As another example,
Figure 8 in Bellegarda et al. [1] shows that in an upwards pitch motion, the rate
of the motion is reduced as the motion becomes longer, presumably to avoid
running above the speaker’s comfortable pitch range. We take this as evidence
for pre-planning of f0 over a 1.5 second range, at least in practiced, laboratory
speech.

Next, we assume that speech is optimized for the speaker’s purposes. The
idea of representing muscle motions as the solution to an optimization problem
has been developed in the biomechanics literature[73, 18, 48], and there have
been comparisons of these models to actual movements [12] and to electromyo-
gram signals [7]. Nelson [40] modeled jaw movement and arm movement during
violin bowing and showed that skilled movements are influenced by minimum-
cost solutions which balance performance trade-offs between competing objec-
tives.

Speech is a skilled movement, and native speakers of Mandarin are skilled
practitioners of tonal production. A speaker of Mandarin has the opportunity
to practice and optimize all the common 3-tone or perhaps 4-tone sequences,
even if one assumes that each tone needs to be practiced at several distinct
strength levels. For instance, if we count tone N-grams in the ROCLING Chinese
corpus [6], we find that the most common 64 of the 179 tone 3-grams cover 90%
of the corpus (we count phrase boundaries in the N-grams). Likewise, the most
common 358 of the 881 4-grams cover 90% of the corpus. A speaker could
practice the common tonal combinations in an hour of speech.

A more realistic model, such as the one we propose in this paper, would add
a strength parameter to each tone, but one could then still expect to practice
the common tonal combinations with several levels of strength in a short time.

The question then arises, “optimal in what sense?” It has been proposed
that optimality be defined by a balance between the ability to communicate
accurately and the effort required to communicate [41, 24, 22], and such models
have been applied by ourselves [24, 55, 23] and others [45, 44].

Our works extend the concept of optimizing communication needs and
the ease of articulatory efforts to account for tonal variations in continuous
speech [24, 22]. The optimal pitch curve is the one that minimizes the sum
of effort plus a scaled error term. Certainly, when we speak, we wish to be
understood, so the speaker must consider the error rate on the speech channel
to the listener. Likewise, much of what we do physically is done smoothly,
with minimum muscular energy expenditure, so minimizing effort in speech is
also a plausible goal. Different from most previous works, our view is that the
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trade-off relations between different objectives change dynamically during con-
tinuous speech. We introduce a scale factor (the prosodic strength) to describe
the shifting dynamics of how the speaker optimize communication needs and
articulatory efforts in continuous speech.

3.2 Mathematical Definition of Model

The assumption that pitch is produced to optimize the sum of effort plus error
can be converted into a quantitative mathematical model. We will describe the
equations below, and the variables involved will be defined in Table 1.

The effort expended in speech, G (Equation 1), is based upon the literature
on muscle dynamics and energetics [61, 72, 12, 71, 68]. Qualitatively, our effort
term behaves like the physiological effort: it is zero if muscles are stationary
in a neutral position, and increases as motions become faster and stronger.
Minimizing G tends to make the pitch curve smooth and continuous, because it
minimizes the magnitude of the first and second derivatives of the pitch.

Note that we do not depend on the assumption that the effort term is an
actual measurement of the energy expenditure in the muscle. The effort term
could very well be a measure of competition for resources in the central nervous
system, could be due to neural feedback loops local to the muscle (similar to the
Equilibrium Point Hypothesis [25, 11]) or could be entirely phenomenological.
It does seem, however, that the effort term is not just a way to express the
nonzero response time of a muscle fiber: measurements of single-fiber twitches
(i.e. the force-vs-time curve of a single muscle fiber triggered by a single nerve
impulse) show a contraction time of ≈ 19 ms [34], which is too short to account
for inverted tone shapes and other phenomena that can last for 100 ms or more.

The error term, R (Equations 2 and 3), behaves like a communications
error rate: it is zero if the prosody exactly matches an ideal tone template,
and it increases as the prosody deviates from the template. The choice of
template encodes the lexical information carried by the tones. The speaker
tries to minimize the deviation, because if it becomes too large, the speaker
will expect the listener to mis-classify the tone and possibly misinterpret the
utterance.

Stem-ML makes one physically motivated assumption. It assumes that f0

is closely related to muscle tensions [38]. There must then be smooth and
predictable connections between neighboring values of f0 because muscles can-
not discontinuously change position. Most muscles cannot respond faster than
150 ms, a time which is comparable to the duration of a syllable, so we expect
the intonation of neighboring syllables to affect each other. Because our model
derives a smooth f0 contour from muscle dynamics, our model is an extension
of those of Ohman[42], Fujisaki[15], and Lindblom[39, 33], and is similar to that
of Xu and Sun[70].

In Stem-ML, a “tag” is a tone template, along with a few parameters that
describe the scope of the template and how the template interacts with its envi-
ronment. It corresponds to the mathematical description of an intonation event
(e.g., a tone or an accent). Tags have a parameter, type, which controls whether
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errors in the shape or average value of the pitch curve are most important. In
this work, the targets, y, consist of a tone component riding on top of the phrase
curve, p.

In order to efficiently solve the optimization problem, and calculate the sur-
face realization of prosody, we write simple approximations to G and R so that
the model can be solved efficiently as a set of linear equations:

G =
∑

t

ė2
t + (π · smooth/2)2ë2

t + adroop2 · e2
t (1)

R =
∑

k∈tags

s2
krk (2)

rk =
∑

t∈tag k

cos(type · π/2)(et − yk,t)2 + sin(type · π/2)(ēk − ȳk)2, (3)

where
ēk =

∑

t∈tag k

et/
∑

t∈tag k

1 (4)

and
ȳk =

∑

t∈tag k

yt/
∑

t∈tag k

1. (5)

and
Finally, f0 is e, scaled to the speaker’s pitch range:

f̂0 = g(e, add) · range + base (6)

the scaling allows p and e to be dimensionless quantities, typically between 0
and 1. The function g() handles linear (add = 1) or log (add = 0) scaling,
and has the properties that g(e, 1) = e for any e, and that g(0, add) = 0 and
g(1, add) = 1 for any add.

Figure 2 shows how the G (effort) term depends on the shape of e. The
curves we show all go through the same set of pitch targets (dashed circles).
The G values increase with the RMS curvature and slope of e. In this case,
optimal pitch curve has the smallest value of G, G1.

Note that there are two distinct optimizations in this paper, and they should
not be confused. First (Section 3.2), we represent the Stem-ML model as an
optimization problem, minimizing effort+error to find f0 as a function of the
model parameters. This first minimization is actually done analytically, to con-
vert the Stem-ML model into a set of linear equations that are solved by matrix
techniques.

Second (Section 4.2), we adjust the parameters to minimize the difference
between the model and the data. This gives us best-fit values for the parameters
that best describe the data. This second minimization treats the evaluation of
the Stem-ML model as a black box, calculating many models to find the best
fit.
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Figure 2: Schematic diagram showing the dependence of G on the shape of the
pitch curve. The large, left axis shows values of G (speech effort) for each of the
displayed curves (G1 . . .G5). Each small axes show sample curves of pitch as a
function of time. The resulting Stem-ML pitch curve is the one with the optimal
(smallest) value of G + R. Because we have chosen R = 0 in this example, the
solution here is G1, the one with the smallest G.
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Symbol Location Meaning

add† Eq. 6 Controls the mapping between e and f0. See g().

adroop† Eq. 1 Rate at which e droops toward the phrase curve
in the absence of a tag.

base† Eq. 6 The speaker’s relaxed f0.

smooth† Eq. 1 Response time of muscles.

type† Eq. 3 Is tone defined by its shape (0) or f0 value (1).

ML,i Eq. 8 Metrical pattern of the ith syllable in a L syllable
word.

sk† Eqs. 2 , 7, 8 Strength of syllable k.

Sw Eqs. 8 Strength of word w.

atype Eq. 7 Controls how the size of the template depends on
the strength of a syllable.

ctrshift §4.3 Position of center of template relative to center of
syllable.

wscale §4.3 Width of a tone template, relative to a syllable.

P , D, d Eq. 9 Parameters defining the phrase curve.

f0 many places Measured pitch.

f̂0 Eq. 6 Modeled pitch.

p† Eq. 9 Phrase curve.

e†, et §3.2 Emphasis, i.e., f̂0 relative to the speaker’s range.

ē† Eqs. 3, 4 Mean emphasis over the scope of a tag.

y†, yt §3.2 Tone template.

ȳ† Eqs. 3, 5 Mean value of a tone template.

G† Eq. 1 Effort expended in realizing the pitch contour.

ri Eq. 3 The summed error for syllable i between the tem-
plate and the realized pitch.

R† Eq. 2 The summed error for an utterance between the
ideal templates and the realized pitch contour.

g()† Eq. 6 Function to map between subjective emphasis (e)
and objective f0.

Table 1: Definitions of parameters and variables used in this paper. Daggers (†)
denote parameters defined more fully in [22].
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As an additional complication, we then take some of the best-fit parameter
values (specifically the values of the prosodic strength parameters) and fit them
with an additive linear model (Section 5.5). This final fit helps us understand
which linguistic features have the most influence on the strength of a syllable.

3.3 Prosodic Strength

Effort is ultimately measured in physical units, while the communication error
probability is dimensionless. Since one can only sensibly add numbers with the
same units (e.g., 1 kilogram + 1 meter = ?), a scale factor is needed to convert
one into the units of the other. This scale factor, sk (in Equation 2), can vary
from a tone, a syllable or a word to the next, and we identify it with the prosodic
strength.

If a syllable’s strength is large, the Stem-ML pitch contour will closely ap-
proximate the tone’s template and the communication error probability will be
small. In other words, a large strength indicates that the speaker is willing to
expend enough effort to produce precise intonation on a syllable. On the other
hand, if the syllable is de-accented and its strength is small, the produced pitch
will be controlled by other factors: neighboring syllables and ease of production.
For prosodically weak syllables, minimizing the effort term will have the most
effect: when sk is small, smoothness becomes more important than accuracy.
The listener then may not be able to reliably identify the correct tone on that
syllable. Presumably, the listener can infer the tone from the surrounding con-
text.

The concept that strength is related to how carefully speech is articulated
was discussed by Browman and Goldstein [2], in the context of phoneme changes
in casual speech. Flemming [14, 13] discusses optimization models with contin-
uous parameters (into which class this model falls), and their relationship with
Optimality Theory [47].

Traditionally, prosodic strength is expressed as abstract categories S (strong)
and W (weak) in metrical phonology [31], where one of the goals is to capture
the rhythmic alternation in natural sentences even though words typically do
not come in iambic or trochaic pairs. One can build a prosodic structure with
strong and weak nodes to describe sentence prosody in relative terms.

Our model is related to conventional views of accents and intonation, except
that we consider strength to be a continuous parameter associated with a word
or a syllable. We suggest that listeners might treat strong tones as categorically
different from weak tones, so these strength measurements might be equivalent
to the presence or absence of accents (strong implies present). The strength
numbers are associated with a particular rendition of the sentence. They vary
somewhat even among utterances that were spoken with the same intent, but
they seem to vary more between utterances where the sentence focus, the into-
nation type, or other prosodic features differ.
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4 Experiment

4.1 Data Collection

The corpus was obtained from a male native Mandarin speaker reading para-
graphs from newspaper articles, selected for broad coverage of factors in the text
that are associated with prosodic effects, including tonal patterns in the begin-
ning, medial, and final positions of utterances, phrases, and words. To select
sentences from a corpus, we used the greedy algorithm described in [63]. Pause
and emphasis were transcribed manually after text selection and recording. A
complete description of the factors, procedures, and evaluation of the algorithm
were described in [53].

We fit two subsets (10 sentences each, 347 and 390 syllables), that were
randomly chosen from the corpus. The speaking rate was 4 ± 1.4 syllables per
second, with a phrase duration of 1.2± 0.7 s. We define a phrase as speech ma-
terials separated by a perceptual pause. We measured these pauses acoustically,
and found that the speech power dropped by at least 10 dB relative to a 50 ms
window on either side in 94% of the pauses, and the median duration of pauses
was 240 ms.

Tones were identified by automatic text analysis, including the tone sandhi
rule in (Shih [50]), then checked by two native speakers. Neutral tones were
manually identified prior to fitting, because they cannot be reliably identified
from a dictionary. Phone, syllable, and phrase boundaries were hand-segmented,
based on acoustic data.

We computed f0 with an automatic pitch tracker [62], then cleaned the
data by hand, primarily to repair regions where the track was an octave off. If
uncorrected, the octave errors would have doubled the ultimate error of the fit,
and systematically distorted tone shapes.

Because word boundaries are not marked in Chinese text, different native
speakers can assign word boundaries differently. Even so, the concept of a
word is present, and is reflected in the prosody. We obtained word boundaries
independently from three native Mandarin speakers: A, J, and S (J and S are
authors). All three had a generally consistent segmentation of the text into
words. Pairwise comparison indicates that J and S have the highest level of
agreement: J identified 395 word boundaries, S identified 370 boundaries, 99%
of which were also identified by J. A identified 359 word boundaries, of which
98% were also marked by J and 92% were also marked by S.

Most disagreements were related to the granularity of segmentation: whether
longer units were treated as single words or multiple words, and whether neutral
tone syllables were attached to the preceding words. The labelers exhibited
strong and consistent personal preferences on words that could be segmented
more than one way. Labeler A had the longest words, 2.04 syllables on average.
J and S divided words at a finer granularity: S’s words averaged 1.98 syllables,
and J’s words averaged 1.86 syllables per word. Labeler A consistently cliticized
neutral tone syllables to the preceding word, while the other two labelers rarely
did so.
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We also created a random word segmentation (called “R”). The random
segmentation provides a check that the metrical patterns (Section 5.4) we found
are indeed significant.

4.2 Fitting

The Stem-ML model is built by placing tags on tone templates, with adjustable
parameters defining the tag shapes and positions (details below). We built sev-
eral different models, focusing on models with one parameter (prosodic strength)
for each word, plus a set of 36, 39, or 42 shared parameters. The models dis-
cussed here have between 210 and 246 free parameters, or an average of 0.6
parameters per syllable. The parameters that define the strength of words are
correlated only with a few neighbors, but the shared parameters are correlated
with everything.

The algorithm obtains the parameters’s values by minimizing the RMS fre-
quency difference between the data and the model. Unvoiced regions were ex-
cluded. We fit the two subsets separately, to allow comparisons.

We used a Levenberg-Marquardt algorithm [29, 35] with numerical differenti-
ation to find the parameter values that give the best fit. The algorithm requires
about 30 iterations before the RMS error and parameter values stabilize.

Levenberg-Marquardt, like many data fitting algorithms, can become
trapped in a local minimum of χ2, and may miss the global best-fit. If we start
the fit with parameter values randomly chosen from “reasonable” ranges, it will
converge to what we believe to be the global minimum in about 1 in 4 tries.
Consequently, we believe there are only a small number of minima. The global
minimum seems to be characterized by values of adroop < 1 (see Table 3.2), and
its χ2 is often 10% smaller than the next best minimum. Convergence to the
global minimum seems fairly reliable if a fit is started with values of the shared
parameters taken from a previous successful fit, even if the model or data subset
differs, and even if the strengths are initialized randomly.

4.3 Mandarin-specific Model

Our model for Mandarin is a more predictive, stronger model than bare Stem-
ML, and is stronger than our previous works on Mandarin tone modeling [21]
where an independent strength parameter is fitted for every syllable.

The current model, which is an extension of [23], starts with a Stem-ML
stress tag specifying the lexical tone templates associated with the syllable.
The syllabic strength is tied to the strength of the word via metrical patterns.
This model fits less parameters but still achieve comparable results.

We assume that each of the five lexical tone classes is described by one
template. A template is defined by 5 (2 for neutral tones) pitch values, spaced
across its scope. It is merely stretched (in time) and scaled (changing its pitch
range) to describe all syllables which have that tone. Each tone class has a
Stem-ML type parameter. Tone classes also have an atype parameter, which
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controls how the template scaling depends on each syllable’s strength. The
pitch excursions of the template on syllable k are scaled by a factor

Fk = atype · sk
|atype| (7)

before the Stem-ML tag is generated. Thus, if |atype| > 1, the pitch range of
the generated Stem-ML tag will change a lot for a small change in strength,
while if |atype| < 1, the pitch range of the tag will be relatively independent of
strength.

In the general Stem-ML model, each tone template has a strength value,
which controls how it interacts with its environment. In a pitch generation
process this gives us enough parameters to describe a pitch contour [54, 22].
In the reverse process of fitting the strength values from data [21], we found
that the data cannot support the estimation of one parameter per syllable and
that the fitting process was often trapped in a local minima. Increasing the
size of the database would not help to disambiguate syllable strengths, since the
number of strength parameters to be estimated increases with the number of
syllables in the database.

However, we noticed that syllable strength within a word is not independent
of each other, and that they tend to exhibit alternating metrical patterns. If
there are consistent strength patterns within a word, then we should be able
to describe the observed prosody with word-level strength and a few metrical
patterns. In the current model, we allow words of different length to have their
own metrical patterns. This turns out to be a viable method. Compared to the
syllable model, the word model reduces the number of parameters by 40% while
maintaining the same level of performance.

In the model, each word has its own adjustable strength parameter, Sw, and
we derive strengths for each syllable via

sw,i = Sw · ML(w),i , (8)

where sw,i is the strength of the ith syllable of word w, ML,i is the metrical
strength of the ith position in a word of L syllables, and L(w) is the length of
word w. That means we allow the strengths of words to vary independently1

while restricting the strength relationship of syllables within the word. Each
word is associated with a word strength and the strengths of the component
syllables are derived from the word strength and the metrical pattern. This
metrical pattern is assumed to be the same for all words that have the same
number of syllables. The word strengths, Sw, are the only place in our model
where linguistic information can influence the f0 contour beyond selection of
the lexical tone. In Section 4.2, the word strengths will be adjusted to fit the
model to the data.

1One alternative to the assumption that each word has its own strength parameter would
be to assume that (for example) all sentence-initial words have the same strength. Instead, we
chose to let each word have its own strength so that we could search for relationships among
the strengths we obtain by fitting the model to a corpus of data.
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There are several parameters that are shared by all syllables. Two parame-
ters describe the scope of templates: ctrshift is the offset of the template’s center
from the syllable’s center, and wscale sets the length of the template relative to
the syllable. Phrases are described by a straight-line phrase curve:

p(t) = P · L − (D · Ld) · t , (9)

where t is time, p(t) is the phrase curve, and L is the length of the phrase (in
seconds). All phrase curves share three parameters: D, the declination rate; d,
the dependence of the declination on the sentence length; and P , which tells how
the initial height of the phrase curve depends on sentence length. To complete
the model, We used Stem-ML step to tags to implement the phrase curve, and
phrase tags were placed on phrase boundaries. Four other Stem-ML parameters
control overall properties: adroop, add, smooth, and base.

We created and fit a set of different models to the data, using a factorial
design. We used two subsets of the corpus times the four different word seg-
mentations (A, J, S, R) times three different parameterizations. We refer to
the three parameterizations as ‘w’, ‘wA’, and ‘wAT’. These form a nested set of
models with a decreasing number of parameters. In the ‘w’ parameterization,
each tone class has its own atype and type parameters: we allow tone templates
to scale differently as the strength increases, and we allow some tones to be
defined by their shape while others are defined by their position relative to the
phrase curve. In the ‘wA’ parameterization, we force all tone classes to share
one atype parameter, so that all tone templates scale with the same function of
strength. Finally, in the ‘wAT’ parameterization, we force all tones to share the
type parameter, so all tone classes exercise the same trade-off between control
of shape and control of average pitch.

Of these 24 models, 15 converged to comparably small χ2 values, and we
believe those sets of parameters to be globally optimal for their model. Of the
remainder, several were not attempted, due to limits on the available CPU time,
and the rest seemed to land on local minima, with χ2 values more than 30%
larger than the global minimum.

5 Analysis of Best-Fit Parameters

5.1 Results of Fit

Overall, our word-based models fit the data with a 13 Hz RMS error, approxi-
mately 1.5 semitones. In Figure 3, we show the beginning of an utterance from
the best-fit model (subset1-J-wA). In Figure 4, we show the phrase with median
error from that model, and in Figure 5, the phrase containing the worst-fit pair
of syllables in the worst model (subset2-S-wAT). Generally, the worst-fitting syl-
lables tend to be the ones with the largest and fastest pitch excursions. These
are conditions where Stem-ML’s approximation to muscle dynamics may break
down, or where the simple approximation that we use to estimate the error
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Figure 3: The beginning of an utterance. Fit (solid) vs. data (dots). Syllable
centers are marked with vertical dashed lines. The tones are marked above (in
an open face font) and fitted prosodic strength, si, is marked as a subscript.
(Syllable strength is calculated from word strength and metrical patterns.) The
text is marked below. Stem-ML phrases, as defined by pauses, are marked with
“�”.

between templates and the realized pitch curve may be furthest from the actual
perceptual metric.

These models explain 87% of the variance of the data, and much of the rest
may be explainable by phoneme-dependent segmental effects [27, 59]. Thus,
essentially all the prosodic information in the f0 contour is captured by the
parameter values we obtain from the fits. Of the parameters, only the word
strengths have localized effects so that only they can capture localized prosodic
features like emphasis, focus, and marking of sentence structure. We expect,
then, that the word strengths resulting from the Stem-ML analysis are nearly a
complete description of Mandarin prosody2. The rest of the paper will attempt
to show that they are simple, useful descriptions of prosody in addition to being
nearly complete descriptions.

We can show that the strength values that we obtain are robust against
small changes in the assumptions that define the model. For example, Figure 6
shows a plot of syllable strengths obtained for the first subset with the S-wA
model, plotted against strengths obtained from the J-wAT model. Despite the
different word segmentations and the different sets of shared parameters the
strength values are quite consistent. Comparisons between different models
using the same segmentation are even closer. Nearly all of the values fall on
a narrow band about a smooth curve that maps the strength from one fit to
the other. This mapping is the result of differences of shared parameters (most
importantly atype) between the two fits. The strength values that are least
reproducible are single syllable words, especially single syllable neutral tones.

For Stem-ML to be a model of a language, instead of just a scheme for
efficiently coding f0 contours, we should be able to correlate the results of the
fit with linguistic features. In the following sections, we will discuss the results
of the fit and see how they correlate with linguistic expectations.

2Prosody as it affects intonation, not necessarily duration or articulation.
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Figure 4: Typical fit (solid) vs. data (dots), for model subset1-J-wA. Displayed
as above.
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Figure 5: Phrase containing the worst-fit pair of syllables in the worst model.
Displayed as above.
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Figure 6: Comparisons of strength values of syllables between the S-wA and
J-wAT models. The strength of most syllables is measured nearly independently
of the details of the model.

5.2 Analysis of Phrase Curve

Our phrase curve is Equation 9: simple linear declination. We included a phrase
curve in the model and fit it, because phrase curves are a common feature
in many qualitative descriptions of intonation. However, the data shows no
evidence that the phrase curve is necessary, and we see no systematic declination.
Neither P = −4 ± 3 Hz·s−1 nor D = 0 ± 4 Hz·s−1 is very large, and neither is
substantially different from zero (the error bars are derived from the standard
deviation of the values of equivalent parameters among the models).

In our model of Mandarin, a positive D would correspond to a systematic de-
crease in f0 during a phrase. This is distinguishable from a systematic decrease
in strength, which causes the magnitude of f0 swings to become smaller as the
phrase progresses. Our phrase curve roughly corresponds to the reference line of
Liberman and Pierrehumbert [30], and our strength is similar to the difference
between their base line and their top line.

5.3 Analysis of Tone Shapes

First, the fitted scope of the templates is well matched to a syllable. The best fit
templates are 68±4% of the length of their syllable, and the centers of the tone
templates are just 18±8% of the length of the syllable after the center. This
matches well with the intuition that tones are associated with syllables (but see
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Figure 7: Modeled shapes of isolated tones. The shapes match standard de-
scriptions, and interact to reproduce continuous speech. The two dashed vertical
bars mark the syllable boundaries, and dots mark the boundaries of the tone’s
template in each of the models (random segmentations were excluded). Each
tone was calculated with its strength set to the median of all the strengths in the
corpus.

Xu and Wang [69]).
Figure 7 shows the shapes of the four main Mandarin tone templates, cal-

culated for each of our models. The tone shapes are consistent among different
models, and across subsets. Overall, the shapes match standard descriptions
of Mandarin tones. The symmetry between tones 1 and 3 and tones 2 and 4
is striking, and was in no way imposed by the analysis procedure. The four
tones appear to have evolved to be nearly as different as possible, under the
constraint that the pitch changes can be accomplished by human muscles within
one syllable [70].

5.4 Analysis of Metrical Patterns

The RMS error from these word-based models, 13 Hz, is nearly the same as
the 12 Hz RMS error we obtain from similar models [21] that do not impose a
metrical pattern, but instead allow the strength of each syllable to vary indepen-
dently. Clearly, the metrical patterns in the words are successful at capturing
much of the strength variation from syllable to syllable within a word. The
models in this paper have approximately half as many free parameters (and
thus are more predictive) than our earlier models [21], and yet still provide an
accurate representation of the actual speech.
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Figure 8: Metrical patterns for the J and S segmentations of 4, 3, and 2 syl-
lable words. The words (ω) are plotted as trees, and syllables (σ) are repre-
sented by the black arrowheads at the end of the lines. The vertical position
of the ith arrowhead is proportional to the metrical strength of the ith syllable:
log(ML,i) · atype1/2. Differences of log(M) among leaves and nodes are shown
numerically, with the parenthesized number showing the uncertainty in the last
digit, as determined from the scatter among different models. The patterns for
four syllable words have larger errors, as they are rare: they are drawn with
double arrows to display the range of fitted solutions.

Figure 8 shows a tree diagram of the metrical patterns we observe. A direct
comparison of the metrical patterns from different models is not useful, because
atype differs from model to model. The metrical patterns are really measures of
relative syllable strength, and atype controls how the strength is related to the
amplitude of the template. Looking back at Equation 7, we see that tags with a
small value of atype will need a broad range of strengths to get a relatively small
change in the pitch excursion, and vice versa. This happens because the pitch
excursion is proportional to Fk (Equation 7), thus it increases at least as fast3

as the strength raised to the power atype. Since the pitch excursions are fit to
the data, we expect that models with a small atype will have the largest range
of strengths. This correlation between atype and variance(log(sk)) is indeed
strong. In order to make comparisons clearer, we scale the metrical patterns,
log(ML,i), by atype1/2 to make the strengths of different models comparable.
Recall that atype is a global parameter, so that this scaling does not change the
shapes or the metrical patterns, nor the relationship between metrical patterns
for different words.

All the real segmentations (A, J, S) show a clear strong-weak pattern for
two syllable words. This means that the initial syllable’s tone is realized more
precisely, and the f0 swings will tend to be larger. Although the details vary
by model, and depend on the neighboring words, our results indicate that RMS
swings on the first syllable should be about 30% larger than the second syllable.
While it has been generally expected that Mandarin words would show a consis-

3It will actually increase faster, because as the strength increases from zero, the f0 curve
will tend to follow the templates more and more closely. Note that this argument applies
to typical pitch excursions, and is not necessarily true for each syllable: the excursion in a
particular syllable depends on its tone class and the strengths and tone classes of its neighbors.
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Figure 9: Metrical patterns for the A-segmentation, plotted as above.
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Figure 10: Metrical patterns for random word segmentation, plotted as above.
As expected, the residual patterns are weak and inconsistent.

tent metrical pattern, previous expectations [32] tended more to a weak-strong
pattern, based primarily on evidence from duration and perceptual judgments.

In the A, J, and S segmentations, three-syllable words are predominantly
left-branching. Because of this, we applied the same metrical pattern to all
three-syllable words, and did not attempt to see if words with different internal
structure had different metrical patterns. Again, we see strong-weak patterns
at both levels of the metrical hierarchy, though the patterns are weaker than
the two-syllable case.

All of the four-syllable words in the data could be broken up into pairs
of two-syllable words. We know this both from comparison of the J and S
segmentations, where the primary difference was just such a splitting, but also
from plausibility judgments of the labelers. Consequently, we adopted the met-
rical tree shown in Figure 8. Expressed on that tree, we again get strong-weak
patterns at both levels.

In Figure 9, we show the metrical trees from the A-segmentation. While the
patterns differ in detail because of A’s tendency to attach particles to words,
the overall picture is similar to the J and S segmentations.

Figure 10 shows the corresponding pattern for a random word segmentation
(R). As expected, the R-segmentation does not yield a strong metrical pattern,
because there is no consistent relationship between the spoken words and the
random model. Further, the R-segmentation does not give as good of a fit to
the data: the χ2 values are 11% to 21% above the corresponding models with
real (A, J, or S) segmentations. This change in χ2 is substantial: it is an order
of magnitude larger than necessary for statistical significance at the 1% level,
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even if one makes allowance for correlations among the f0 measurements.
Our results are consistent with the prediction of metrical phonology [31]. We

find an alternating strong/weak relation within bisyllabic words. This pattern
repeats in a four syllable word with a higher order hierarchical relation that also
shows strong/weak alternation.

5.5 Analysis of Word Strengths

The strengths that result from the above fitting process can be correlated with
linguistic factors. We considered three features: the number of syllables in the
word, the position of the word in the utterance, and the part-of-speech of the
word. We did not include any semantic features, and syntax was only included
through part-of-speech and (to some extent) through our definition of pauses.
Also, there was no feature in the model equivalent to the concept of “the focus
of a sentence.” We limited ourselves to features that could be derived from the
text alone (with the exception of phrasal pauses). Phrasal pauses seem to be
clear enough to a listener, and their perception seems relatively independent
of the pitch, so we tolerated the slight circularity introduced by their use as
features.

We then fit the strengths with a trimmed linear regression [36] to separate
out the effects of the different factors. The model for the observed word strength,
Sw, is

Ŝw = c0 +
∑

i

ci · fi,w, (10)

where Ŝw is the modeled strength. In the sum, i ranges over the features
described below, fi,w is 0 or 1, depending on whether the ith feature is present
on word w, and ci is the regression coefficient for the ith feature. Coefficient
c0 shows the strength of words without any features. In this trimmed linear
regression, we find the regression coefficients that minimize

∑′
w(Sw − Ŝw)2,

where the primed sum excludes the 5 largest errors. Excluding a handful of wild
points prevents the regression from being dominated by words whose strength
cannot be accurately measured (i.e., monosyllabic words that have a neutral
tone), and leads to a much more reliable result. Such outliers comprise about
2% of the strength measurements, and can be clearly seen in Figure 6. We
calculated this regression separately for each of our models. In Figure 11, we
plot the distribution of the regression coefficients across models for each factor.

Overall, predicting strength via this linear model reduces the median abso-
lute deviation by 17%: these factors do not provide more than a partial pre-
diction of the strengths or f0. Again, we use a robust estimator like median
absolute deviation instead of variance to reduce the effect of the outliers. If
the strength distribution were Gaussian, this regression would have Pearson’s
r = 0.31.

We found that:
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Figure 11: Relation between strength and word positions. Each box shows the
range of the data (the shaded region extends from the 25th and 75th percentiles),
the median (white stripe in the box), and outlying points (brackets on the border).
All boxes are referenced to words that are not at any kind of boundary, which
are shown as the zero line.

5.5.1 Words at the beginning of a sentence, clause, or phrase have
greater strengths than words at the final positions.

Figure 11 shows the regression coefficients at different positions. We define a
sentence as a grammatical utterance that is marked with a period at the end, a
clause as a subset of a sentence that is marked by a comma, and a phrase as a
group of words that are separated by pause.

The hierarchy of linguistic units is displayed with strengths that increase
with the size of the unit. Note that the regression coefficient of words not at
a boundary is defined to be zero, and that zero (horizontal line) neatly divides
the initial words of units (sent-i, clau-i, phr-i) from the final words of the units
(phr-f, clau-f, sent-f). These results are consistent with previous findings that
speakers use high pitch to mark discourse initial segments [17].

5.5.2 Nouns and adverbs typically have more strength than words of
other part of speech, and particles have the lowest strengths.

Figure 12 shows the regression coefficients for different parts-of-speech (Equa-
tion 10). As we can see, adverbs on average have a greater strength than words
of other parts-of-speech. The strengths for nouns, verbs, and conjunctions are
slightly weaker than that for adverbs and their strengths are close to each other.
In contrast, the strength for particles (e.g., neutral tones) are much weaker than
that for other parts-of-speech. This may be related to the low information con-
tent of function words. These results are consistent with previous results which
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Figure 12: Relation between part-of-speech and strength. Regression coefficients
for Equation 10 are shown.

were obtained using human-annotated accents (e.g. Hirschberg [16]).

5.5.3 Words with more syllables have greater strength than words
with smaller number of syllables.

Figure 13 shows the regression coefficients (Equation 10) for strengths for words
of different lengths. The regression coefficient for 3-syllable words is defined as
zero, which is shown as the horizontal line in the figure. The plot shows three
populations of monosyllabic words, bisyllabic words, and longer words, where
word strength increases as a function of word length. The weak status of a
monosyllabic word is consistent with previous linguistic observations, where
such phenomenon prompted the postulation of the Monosyllabic De-stressing
Rule (Selkirk [49]).

The correlations between strength in our Stem-ML models and the above
linguistic features suggest that the strengths indeed represent the prosodic rela-
tions of syllables and words. This has two consequences: First, this knowledge
allows us to use features such as position, part-of-speech, and number of syllables
in word to predict the strength of a word, and thus improve prediction of f0 in
a Mandarin speech synthesizer. Second, it may be possible to apply it to speech
recognition systems, so that the recognizer can detect word boundaries and to
deduce whether a word is being emphasized (see Shih et al. [56] for discussion).

5.6 The Correlation of Strength and Duration

We can also calculate the correlation between the fitted strength values with
acoustic measurements such as duration. Many duration studies reported a
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Figure 13: Relation between strength and the number of syllables in a word.
The boxes are plotted relative to three-syllable words, which are shown as the
zero line.

lengthening effect of stressed vowels [20, 8]. It is generally expected that, ev-
erything else being equal, strong words would have longer duration than weak
words.

We calculated the correlation scores between strength and duration in our
models, excluding the models using random word segmentation. Outliers are
trimmed by excluding the 5% of the population that is farthest from the regres-
sion line that defines the correlation, again using a trimmed linear regression.
The mean correlation scores of these models are 0.40 in the sentence final posi-
tion, and 0.27 in the non-final positions.

Figure 14 show the strength/duration correlation from one of the models.
The left panel shows the population in the sentence final position, and the right
panel shows the population in the non-final position. All sample points are used
in these plots, where the correlation scores are 0.45 in the sentence final syllables
and 0.34 in the non-final syllables.

Phrase final syllables are subject to final lengthening effect [9] and this trend
is reflected in the discrepancies between the strength values of final and non-
final populations. The phrase final population is characterized by lower strength
values and longer duration.

5.7 Mutual Information and Observed Metrical Structure

Why should we observe word initial syllables with higher strength than other
syllables in the word? We investigate the hypothesis that the speaker is willing
to spend more effort to articulate a speech sound clearly when the material
is less predictable, but will accept sloppy pronunciation when the material is
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Figure 14: Correlation of strength values and duration. The left panel shows the
sentence final syllables, and the right panel shows the non-final syllables.

predictable. In this section, we use the point-wise mutual information between
adjacent syllables to estimate how well a syllable can be predicted from the
preceding one, and show that there is a correlation between mutual information
scores and prosodic strength.

Point-wise mutual information [10, 5] is a measure of how strongly two events
are associated, and is defined as

I(a; b) = log2(P (a, b)/P (a)P (b)) (11)

where P (a) is the probability of the event a, P (b) is the probability of the
event b, and P (a, b) is the probability of a and b occurring together.

If a and b are independent events, then the probability of them occurring
together is the product of the probabilities of a and b: P (a, b) = P (a)P (b) and
the mutual information is zero. Applying this measure to text, we can estimate
mutual information of two words by using frequency information obtained from
a database.

If two words tend to occur together, their mutual information score is posi-
tive. Negative mutual information scores suggest some level of mutually exclu-
siveness so that the two syllables occur together less often than chance.

In the speech channel, orthographic information is not represented. There-
fore, instead of using units like words or Chinese characters [60] that apply
to written text, we use the syllable, a sound-based unit, to compute mutual
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Figure 15: Mutual information scores of syllables, based on the preceding sylla-
ble. The mutual information is lower for initial syllables (i.e. a prediction across
a word boundary), thus they are less predictable from the preceding syllable than
word internal syllables are.

information. Syllables with different tones are considered different events.
We used a database with 15000 sentences (half a million characters). We

converted written text into syllable transcriptions using the text analysis compo-
nent of a text-to-speech system [58]. The system uses a dictionary together with
a homograph disambiguation component to allow context sensitive character-
to-sound mapping. We then compute the frequency count of each syllable and
each syllable pair from the database, and estimate their probability by dividing
the frequency with the total syllable count of the database.

Figure 15 compares the mutual information scores of the 737 pairs of adjacent
syllables in the speech corpus. The figure compares syllable pairs where the
second member is word initial (the syllable pair straddles a word boundary) vs.
pairs where both syllables are within the same word. The mutual information
is high within a word: if you hear the beginning of a word, you have more
information about the next syllable. On the other hand, knowing the syllable
at the end of one word is not as helpful for predicting the beginning of the next
word. We suggest that where the speech sound is less predictable, speakers
spend more effort in pronunciation to make the speech clearer. This may be
part of the explanation of the higher prosodic strength we obtained in the word
initial positions. Figure 15 uses word boundaries from the J segmentation, but
plots from the other two labelers are nearly identical to the one shown. These
results are consistent with those obtained by Pan and Hirschberg [43], using
human identification of accent locations.

5.8 Correlation of Strength and Mutual Information

We compute the correlation between mutual information and the prosodic
strength of the word initial syllables from three ‘wAT’ models, one from each
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word boundary labeler. We do not include word internal syllables in this compu-
tation, because the prosodic strength of the word internal syllables is distributed
by the metrical structure. The correlation scores of the three models for labelers
A, J, and S are -0.20, -0.17, and -0.16, all significant at the 95% confidence level.
As expected, there is a negative correlation between mutual information scores
and fitted prosodic strengths. Again we see that the less predictable syllable is
spoken with higher prosodic strength.

We note that the available database is barely sufficient for calculating mu-
tual information scores across word boundaries: the median syllable occurs
only 135 times, thus most possible pairs of syllables simply are not sampled.
Consequently, we view these correlations as suggestive, rather than conclusive.
However, the observed correlations in Section 5.5.1 are consistent with this
hypothesis that strength is at least partially controlled by mutual information.
We expect words at the beginning of sentences, clauses, and phrases to be less
predictable than words in the middle, because these boundaries can introduce
new topics.

As a comparison, we calculated the correlation between mutual information
and the high f0 region in each word. It has been generally expected that a
speaker will raise pitch to signal less predictable information. We calculated the
f0 mean of three consecutive voiced samples and took the highest value in each
word. The correlation scores of the three segmentations are -0.14, -0.12, and
-0.11, smaller than the correlation obtained from fitted prosodic strength, and
only the first is significant at the 95% level.

There are several reasons why the fitted strength performs better than sur-
face f0 values. The raw f0 values are not corrected for tone class or the effects of
the neighboring tones, while the Stem-ML strengths include those basic normal-
izations. For example, high f0 may be the result of a preceding rising tone, espe-
cially if that tone is emphasized. Not all high f0 correspond to local intentional
emphasis [51, 56]. Furthermore, speakers may use tone-dependent strategies to
convey the same prosodic meaning. For example, to express emphasis, people
may raise pitch for a high tone but lower pitch for a low tone.

5.9 The Scope of Prosodic Strength

What is the scope of prosodic strength in Mandarin? We cannot directly answer
this question because we assume that Equation 8 relates the word strengths to
the syllable strengths. All of our models assume that one is exactly proportional
to the other, therefore the models do not distinguish between the two.

However, we can compare our results here to previous work by Kochanski and
Shih [21] where we built models with a separate strength value for each syllable
(thus syllable-scope strengths) to fit the same corpus. Since the RMS errors
are only marginally worse when we tie the syllable strengths together to make a
word strength (13 Hz in this work, vs. 12 Hz in [21]), we can see that associating
strength with words works just as well as associating it with syllables, but leads
to a much simpler, more compact model with fewer parameters. Occam’s razor
thus leads us to associate strengths with words.
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However, a comparison of RMS errors has its limitations. It averages over the
entire data set, and so cannot exclude the possibility that while most words are
spoken in the default word-scope manner, the speaker exercises more detailed
syllable-scope control over a few words.

6 Conclusion

We have used Stem-ML to build a model of continuous Mandarin speech that
connects the acoustic level up to the results of text analysis (part-of-speech
information, and word, phrase, clause, and sentence boundaries). When fit to
a corpus, the model shows that prosody is used in a consistent way to mark
divisions in the text: sentences, clauses, phrases, and words start strong and
end weak. Our prosodic measurements also show a useful correlation with word
length, and the part-of-speech of words. We also show that the strength values
correlate in expected ways with other acoustic observables such as duration.
There is also a correlation between the strength values and mutual information,
which suggests that speakers apply a higher prosodic strength to less predictable
materials.

The results point to the conclusion that the mathematical models behind
Stem-ML provide a quantitative method for measuring prosodic strength. The
simplicity and compactness with which one can describe Mandarin using this
representation suggests that it captures some important aspects of human be-
havior during speech. For more information, see http://prosodies.org .
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