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Abstract

The application of formal methods to the development of software depends on the
availability of adequate models and formalisms for each of the stages of the de-
velopment process. In this work, we focus on the level of design called Software
Architecture. At this level, the system is described as a collection of interrelated
components, and it is here where the properties derived from system’s structure
can be naturally analyzed. Our approach uses process algebras as a formal basis for
the description and analysis of software architectures. Process algebras are widely
accepted for the specification of software systems. In particular π-calculus addresses
the description of systems with a dynamic or evolving topology, and permits their
analysis for bisimilarity and other interesting properties. Though bisimilarity deter-
mines the equivalence of behavior, more flexible relations are needed in the context
of Software Engineering, in order to support formally the notions of conformance
and refinement of behavior. In this paper we present a relation of compatibility in
the context of π-calculus which formalizes the notion of conformance of behavior
between software components. Our approach is enhanced with the definition of a
relation of inheritance among processes. This relation preserves compatibility and
indicates whether a process can be considered as a specialization or extension of
another one. The suitability of our approach is shown by its application to the field
of Software Architecture 1 .

Keywords: theory of concurrency, process calculi, π-calculus, software architecture,
compatibility and inheritance of behavior
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1 Introduction

Process algebras are widely accepted for the specification of software systems,
in particular for communication protocols and distributed systems. One of
the most popular and expressive formalisms in this family is the π-calculus,
which have been successfully applied in a number of different and heteroge-
neous contexts. Although the calculus has evolved from its original definition
[1], incorporating several extensions (e.g. higher order, asynchronous commu-
nication, etc.), the basic ideas have remained without substantial changes.

Unlike other process calculi, such as CCS or CSP, the π-calculus can express
mobility in a direct manner by allowing references to processes, or links, to be
passed as values in communication. This makes the π-calculus specially suited
for describing the structure of software systems in which components can be
dynamically created and removed, and in which attachments between compo-
nents are also dynamically established and modified, leading to an evolving
communication topology. We say that these systems present a dynamic archi-
tecture. Typical examples of this kind of applications are open and distributed
software systems. The specific characteristics of these large and dynamic sys-
tems require to make changes in the methods and tools of Software Engineering
in order to cope with the new requirements. In this context, the applicabil-
ity of the ideas and results presented in this paper is shown in [2], where
we propose the extension of standard component interfaces with protocol in-
formation, specified using the π-calculus, and their analysis by means of the
formal underpinnings presented here.

The advantage of using an algebraic calculus to specify concurrent systems
is the capability to make some kind of analysis on the expected behavior of
the system. In this way, some properties of safety and liveness can be verified
when the system is specified in terms of a set of interacting agents. Moreover,
the corresponding analysis can be automated [3]. Thus, it is usual to obtain
information about the equivalence of two processes, or about situations of
deadlock. The latter is specially relevant in the specification of concurrent
systems. In fact, one of the most common mistakes when programming or
specifying this kind of systems is the presence of behavioral mismatches lead-
ing to undesirable deadlocks. On the other hand, processes in π-calculus can
be compared in order to know whether they are “equivalent”, that is, whether
their behavior coincides or not. This information can be used either to substi-
tute parts in a system by equivalent ones, or to justify a certain strategy for
program transformation. In any case, the fundamental notion which is behind
of these ideas is that of (weak or strong) bisimilarity. This relationship defines
when two processes present a “similar” behavior.
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However, some interesting properties which characterize the components (i.e.
parts) of a system are not directly related with bisimilarity. On the contrary,
we can find situations where other ways for comparing processes are more
convenient from the software engineer’s point of view. In this sense, one of the
properties that we may analyze is whether the components of the system con-
form to each other or not. This has been traditionally limited to type checking
of component interfaces, but we are also interested in checking whether the
behavior of a component is compatible with that of its environment.

That is the situation in several fields of Software Engineering currently deserv-
ing active research, such as Software Architecture, Component-Orientation, or
Framework-based software development. Following these approaches, software
systems are structured as a collection of interacting computational and data
components [4], focusing on those aspects of design and development which
cannot be suitably treated inside the modules which compose the system [5].
However, no specific relation among processes, able to capture the notion of
compatibility, has been defined in π-calculus. Thus, we propose a relation of
compatibility in this context. This relation ensures that two processes will be
able to interact successfully until they reach a well-defined final state. Sim-
ilar studies have been made by Allen and Garlan [6] in the context of CSP,
although their results cannot be easily extended to π-calculus due to the char-
acteristics of mobility present in this calculus.

Compatibility could be determined by global analysis of the system. However,
this is impractical for complex systems. Instead of that, we use partial inter-
face specifications or roles to describe the behavior of each component. Thus,
the system is described by a set of role-to-role attachments, representing the
interconnection of the corresponding components, and each pair of attached
roles is locally checked for compatibility [7]. This reduces the complexity of
the analysis, and justifies the use of the compatibility relation as an analysis
tool.

On the other hand, strong bisimilarity is a congruence in the context of the
π-calculus, which supports the replacement of processes, guaranteeing that
the global behavior of the system is not affected. However, effective reuse of
a software component often requires that some of its parts can be removed,
reconfigured or specialized to accommodate them to new requirements [8].
Again, current works on process algebras, in general, and on π-calculus in
particular, do not deal with this kind of problem. In this way, our approach
is completed with the definition of new relations of inheritance and extension
for processes in the context of π-calculus. These relations preserve compatibil-
ity, allowing the specification of polymorphic behaviors, and promoting both
incremental specification and reusability.
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The relations of compatibility and inheritance of behavior presented in this
paper have been applied in the development of LEDA [9], an Architecture
Description Language (ADL) based on the π-calculus. However, it should be
noticed that these relations are applicable not only to the context of Software
Architecture, but also to the analysis of processes in general.

The rest of this work is structured as follows. First, we present a short intro-
duction to the π-calculus. In Section 3 we propose the use of the π-calculus for
the specification and validation of software architectures, and we formalize the
notions of role, attachment and architecture in the context of this calculus,
giving also a methodology for the derivation of roles from components. Then,
Section 4 contains the definition of a relation of behavioral conformance or
compatibility, and presents some interesting results on how role compatibility
ensures successful composition of the corresponding components. Next, Sec-
tion 5 defines compatibility-preserving relations of inheritance and extension
among processes. We conclude discussing the originality and relevance of our
approach, comparing it with some related works.

2 The π-calculus

The π-calculus is a process algebra specially suited for the description and
analysis of concurrent systems with dynamic or evolving topology. Systems are
specified in the π-calculus as collections of processes or agents which interact
by means of links or names. These names can be considered as shared bidi-
rectional channels, which act as subjects for communication. Scope restriction
allows to establish links that are private to a group of agents. The π-calculus
allows direct expression of mobility which is achieved by passing link names
as arguments or objects of messages. When an agent receives a name, it can
use this name as a subject for future transmissions, which allows an easy and
effective reconfiguration of the system. In fact, the calculus does not distin-
guish between channels and data, all of them are called generically names.
This homogeneous treatment of names is used to construct a very simple but
powerful calculus.

Let (P ,Q ∈)P range over agents and (w , x , y ∈)N range over names. Se-
quences of names are usually abbreviated using tildes (w̃). Then, agents are
recursively built from names and agents as follows:

0 | (x )P | [x = z ]P | τ.P | x̄ y .P | x̄ (y)P | x (w).P | P | Q |
P + Q | A(w̃)

Empty or inactive behavior is represented by the inaction 0. Restrictions are
used to create private names. Thus, in (x )P , the name x is private to P .
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Communication using x as subject is prohibited between P and any other
agent, but it is allowed inside P , i.e. between its components. The scope of a
name can be widened simply by sending it to another agent (see bound output
below). A match [x = z ]P behaves like P if the names x and z are identical,
and otherwise like 0. Though matching is unnecessary for computations over
data types, which can be achieved by other means, we use it in order to obtain
easier encodings.

Silent transitions, given by τ , model internal actions. Thus, an agent τ.P will
eventually evolve to P without interacting with its environment. An output-
prefixed agent x̄ y .P sends the name y (object) along name x (subject) and
then continues like P . An input-prefixed agent x (w).P waits for a name y to be
sent along x and then behaves like P{y/w}, where {y/w} is the substitution
of w with y . Apart from these three basic transitions, there is also a derived
one –bound output, expressed x̄ (y)–, which represents the emission along a
link x of a private name y , widening the scope of this name. Bound output is
just a short form for (y)x̄ y , but it must be considered separately since it has
slightly different transition rules than free output actions.

In the monadic π-calculus, only one name at a time can be used as object in
an input or output action. However, a polyadic version, allowing the commu-
nication of several names in one single action, can be found in [10]. Using the
so called molecular actions, it is trivial to translate any polyadic encoding into
monadic. In this work we use polyadic encodings when required.

The composition operator is defined in the expected way: P | Q consists of P
and Q acting in parallel. The summation operator is used for specifying alter-
natives: P + Q may proceed to P or Q . The choice may be locally or globally
taken. In a global choice, two agents agree synchronously in the commitment
to complementary actions, as in

(· · ·+ x̄ y .P + · · ·) | (· · ·+ x (w).Q + · · ·) τ−→ P | Q{y/w}

On the other hand, local choices are expressed combining the summation op-
erator with silent actions. Hence, an agent like (· · · + τ.P + τ.Q + · · ·) may
proceed to P or Q with independence of its context. We use local and global
choices to state the responsibilities for action and reaction.

Both the composition and summation operators can be applied to a finite
set of agents {Pi}i . In this case, they are represented as

∏
i Pi and

∑
i Pi ,

respectively.

Finally, A(w̃) is a defined agent. Each agent identifier A is defined by a unique
equation A(w̃) = P . The use of agent identifiers allows modular and recursive
definition of agents.
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The set of names in an agent P is denoted by n(P). The free names of P ,
fn(P), are those names in n(P) not bound by an input action or a restriction.
We denote by bn(P) the bound names of P .

Structural congruence for the π-calculus, is defined in several papers, in par-
ticular in [10].

Definition 2.1 Structural congruence, denoted by ≡, is the smallest congru-
ence relation over P such that

• P ≡ Q if they only differ by a change of bound names.
• (N / ≡, +,0) is a symmetric monoid.
• (P/ ≡, | ,0) is a symmetric monoid.
• (x )0 ≡ 0, and (x )(y)P ≡ (y)(x )P.
• If x 6∈ fn(P) then (x )(P | Q) ≡ P | (x )Q.

Transitions are represented by labeled arrows. Hence, P
α−→ P ′ indicates that

the process P performs an action α and then becomes P ′. Apart from this
basic transition, we use the following shorthand along this paper:

• =⇒ stands for (
τ−→)∗, the reflexive and transitive closure of

τ−→.
• α

=⇒ stands for =⇒ α−→=⇒ when α 6= τ .
• P

α−→ stands for ∃P ′ . P
α−→ P ′.

• P =⇒ 0 stands for ∃ 0P . P =⇒ 0P and 0P ≡ 0.

The transition system that we are considering is that proposed in [1], and it is
shown in Figure 1. The transition system is closed with respect to structural
congruence.

Substitutions, represented by σ, are defined in the expected way. On the other
hand, distinctions, defined as sets of names, forbid the identification of certain
names. Thus, a substitution respects a distinction if it does not bind any two
names in the set. As it will be shown, we use distinctions to avoid conflicts
among free names in an agent.

Constants are considered as names in the π-calculus, with the particularity
that they are never instantiated. In order to avoid confusion with other names
in the specification we write them in small capitals (Constant). For simplic-
ity, they are not included among the free names of any agent identifier that
uses them.

Several relations of equivalence have been proposed for this calculus. In this
paper we refer to Milner’s strong and weak bisimilarity, respectively denoted
by ∼ and ≈.
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TAU:
-

τ.P
τ−→ P

OUT:
-

x̄ y.P
x̄y−→ P

IN:
-

x(z ).P
x(w)−→ P{w/z}

w 6∈ fn((z )P)

MATCH:
P

α−→ P ′

[x = x ]P
α−→ P ′

IDE:
P{ỹ/x̃} α−→ P ′

A(ỹ)
α−→ P ′

A(x̃) =def P

SUM:
P

α−→ P ′

P + Q
α−→ P ′

PAR:
P

α−→ P ′

P | Q α−→ P ′ | Q bn(α) ∩ fn(Q) = ∅

COM:
P

x̄y−→ P ′ Q
x(z)−→ Q ′

P | Q τ−→ P ′ | Q ′{y/z} CLOSE:
P

x̄(w)−→ P ′ Q
x(w)−→ Q ′

P | Q τ−→ (w)(P ′ | Q ′)

RES:
P

α−→ P ′

(y)P
α−→ (y)P ′

y 6∈ n(α) OPEN:
P

x̄y−→ P ′

(y)P
x̄(w)−→ P ′{w/y}

y 6= x ∧ w 6∈ fn((y)P ′)

Fig. 1. Transition System for π-calculus

Definition 2.2 S is a simulation if PSQ implies that

(1) If P
τ−→ P ′, then for some Q ′,Q τ−→ Q ′ and P ′SQ ′.

(2) If P
xy−→ P ′, then for some Q ′,Q

xy−→ Q ′ and P ′SQ ′.

(3) If P
x(y)−→ P ′ and y 6∈ n(P ,Q),

then for some Q ′,Q
x(y)−→ Q ′ and ∀w P ′{w/y}SP ′{w/y}.

(4) If P
x(y)−→ P ′,and y 6∈ n(P ,Q),

then for some Q ′,Q
x(y)−→ Q ′ and P ′SQ ′.

A binary relation S is a bisimulation if both S and its reverse are simulations.
Ground bisimilarity, written ∼̇ , is defined as the largest bisimulation. Finally,
P and Q are strongly bisimilar, written P ∼ Q , if Pσ ∼̇ Qσ for all substitu-
tions σ. The weak version, written ≈, is obtained ignoring silent τ actions by
replacing the arrows

α−→ from Q with
α

=⇒ if α 6= τ , or with =⇒ if α = τ .

The definition of bisimilarity involves universal quantification over substitu-
tions, which increases largely the size of the relations needed to define a bisim-
ulation. However, it is possible to develop a more efficient transition system,
as it is done [11], and also automatizable algorithms for the relations of bisim-
ilarity [12], which allows the development of analysis tools.

Some examples of agents written in π-calculus can be found in the following
sections, but for a detailed description of the calculus we refer to [1].
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3 Specification of Software Architectures

As software technology becomes a core part of business corporations in all
market sectors, customers demand more flexible systems. In this context, the
increasing use of personal computers and easy access to local and global com-
munication networks provide an excellent infrastructure for building open dis-
tributed systems. However, the specific problems of those large and dynamic
systems are currently challenging the Software Engineering community, whose
traditional methods and tools are finding difficulties for coping with the new
requirements.

In the last few years, the term Software Architecture (SA) has been adopted for
referring to the level of software design in which the system is represented as a
collection of computational and data components interconnected in a certain
way [4]. SA focuses in those properties of software systems which derive from
their structure, i.e. from the way in which their components are combined. The
importance of explicit architectural specifications is widely accepted. First,
they raise the level of abstraction, making easier the comprehension of complex
systems. Second, they promote reuse of both architectures and components.

We propose the use of the π-calculus for the specification of software archi-
tectures. Apart from the opportunities for formal analysis that are present
in process algebras, direct expression of mobility in the π-calculus allows the
description of architectures with changing communication topology, what can
be hardly done using other formalisms like CSP or CCS. In fact, the kind of
dynamic reconfiguration present in open and distributed software systems is
expressed very naturally in the π-calculus by passing link names among agents
in the same way that references to components, sockets or URL addresses are
interchanged among software components in a dynamic and distributed sys-
tem.

It should be noticed that although we always represent software composition
by means of the parallel operator (|) of the π-calculus, our approach is not re-
stricted only to the specification and validation of architectures consisting just
of a concurrent composition of components. On the contrary, parallel compo-
sition is the natural representation in process algebras of any form of software
composition. Hence, even sequential systems can be naturally represented as
a parallel composition of its components.

Software systems can be described in π-calculus by composing the specifica-
tions of their components. Connections among components will be represented
by shared names in the corresponding component specifications. However, this
approach has two main drawbacks. First, the architecture of the system, which
derives from the relations that each component maintains with the rest of the
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system, won’t be explicitly represented, and it will be hidden by the details of
components’ specifications. Second, state explosion would prevent the analysis
of the specifications of complex systems.

Instead of that, we use partial interface specifications, or roles, for expressing
the behavior of each component, and describe explicitly system architecture
as a set of attachments between roles, representing the interconnection of the
corresponding components. Behavioral conformance or mismatch among sys-
tem components will be determined by analyzing the compatibility of the roles
that represent them, reducing the complexity of the analysis to a great ex-
tent. This kind of local analysis cannot ensure global properties such that the
whole system is deadlock-free, but this is not our goal. As it will be shown,
local analysis of compatibility guarantees deadlock-freedom while combining
a component with the roles specified in a given architecture, ensuring that the
component “matches” the architecture, and that there is no behavioral mis-
match between component interfaces, which stands for system composability.
Attachments between compatible roles are able to interact successfully, indi-
cating full conformance of the corresponding components. On the other hand, a
mismatch detected when analyzing the compatibility of an attachment among
roles stands for a mismatch in the behavior of the corresponding components,
which will lead to a system crash or failure.

3.1 Roles, attachments and architectures

Before giving a formal definition for the notion of role, some issues must be
addressed. First of all, roles will be specified by agents on the π-calculus.
Hence, we must be able to distinguish between successful termination and
failure in the context of this process algebra. However, in the π-calculus both
process which are the inaction, like 0 | 0, and those which behave like the
inaction, like (a, b)(a(w).0 | b̄y .0) are strongly bisimilar, so bisimulation does
not provide a way to differentiate them.

Termination, deadlock, and divergence in process algebras has been addressed
in several works, particularly in [13]. Following a similar approach, we intro-
duce here a definition of success and failure in the context of the π-calculus in
which structural congruence plays a significant role.

Definition 3.1 (Success and Failure) An agent P is a failure if exists P ′

such that P =⇒ P ′, P ′ 6 τ−→, and P ′ 6≡ 0.

On the contrary, an agent P is successful if it is not a failure.

Thus, we consider successful those agents which are always able to proceed
without interaction with their environment, and failures those which would
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deadlock in the same conditions.

The definition of role below is based on the notion of abstraction in process
algebras, as first established in [14]. Ours is an adaptation to the π-calculus
based on a Hiding operator (/x̃ ) similar to that defined in [15] for CCS, but
taking into account the characteristics of mobility present in the π-calculus:

Definition 3.2 (Hiding) Let P be an agent and x̃ ⊆ fn(P), then

P/x̃ = (x̃ )(P | ∏

x∈x̃

Ever(x ))

where Ever(x ) = x (y).(Ever(x ) | Ever(y)) + (y)(x̄ y .(Ever(x ) | Ever(y)))

For each link name x ∈ x̃ the agent Ever(x ) hides x in P . Ever(x ) is always
willing to perform input and output actions along x (and also along any other
link name sent or received through x ). Thus, it satisfies the need of commu-
nication of P along these links and avoids deadlocks. Hence, the actions in
P along link x are shown in the agent P/x , which hides this name, as silent
actions τ .

Now, we can define roles as follows:

Definition 3.3 (Role) An agent P is a role of a component Comp if

fn(P) ⊆ fn(Comp) and P ≈ Comp/(fn(Comp)−fn(P))

Notice that in the definition above, roles are a semantic notion, defined up
to weak bisimilarity. Thus, given a component Comp and a subset of its free
names, several roles can be derived. However, not all of them will be mean-
ingful abstractions of the interface of Comp. Furthermore, some may not be
even correct abstractions, and a certain method for deriving roles from compo-
nents is required. We will address these topics in Definition 3.5 and Section 3.2
below.

Definition 3.3 states that the free names in a role are a subset of those of
the corresponding component. Hence, roles are obtained from components by
hiding the names which are not relevant to the partial interface represented
by the role, and a role only contains a subset of the non-silent transitions of
the corresponding component. Any component action using hidden names will
appear in the role as a silent transition. When these actions are combined in
the component with the sum operator, they will appear as local choices in the
role, since from the point of view of a component connected to this role, we
can’t say if these transitions will take place or not.

Example 3.4 Consider a Translator, a very simple component which copies
the data received in its input links i1 and i2 to its output links o1 and o2, hence

10



performing a sort of translation between input and output link names.

Translator(i1, i2, o1, o2) = i1(x ).ō1x .Translator(i1, i2, o1, o2)
+ i2(y).ō2y .Translator(i1, i2, o1, o2)

The interface of this component can be divided into two roles, Input and Out-
put, with free names i1, i2 and o1, o2 respectively. One specification of these
roles satisfying Definition 3.3 is as follows:

Input(i1, i2) = i1(x ).τ.Input(i1, i2) + i2(y).τ.Input(i1, i2)

Output(o1, o2) = τ.ō1(x ).Output(o1, o2) + τ.ō2(y).Output(o1, o2)

If we observe the Translator from its output role, we can’t say in advance which
output action will be performed, since it depends on the previous input action,
which is part of a different role. This internal decision is modeled in the role
above as a local choice by combining τ -actions with the sum operator.

Notice that output actions through links o1 and o2 are free in component Trans-
lator while the same actions are bound in its role Output. This transformation
of free output actions to bound ones is subtle, but it occurs very often in roles,
so it deserves some explanation. The names x and y used as objects in the
output actions of the Translator were obtained as a result of a previous input
action on links i1 and i2, respectively. Hence, these output actions are free in
the component.

However, in the role Output, links i1 and i2 are hidden, and input actions
through these names simply appear as τ -actions. Therefore, the names in the
output actions of the role must be considered as fresh, and these actions are
now bound. This transformation, which satisfies Definition 3.3, is also mean-
ingful. From the point of view of a component connected to Translator’s role
Output, the names x and y received from this component are new, and cannot
be traced to its origin in the hidden input actions through links i1 and i2.

As we have stated before, roles are defined up to weak bisimilarity, but not
every agent which satisfies the conditions in the definition of roles can be
considered as a correct role for a given component. For instance, consider the
component Comp(a, b) = a(x ).Comp(a, b) + b(y).0, and two agents which
satisfy Definition 3.3, P1(a) = a(x ).P1(a) + τ.0, and P2(b) = b(y).(c)c.0.
While P1 is a correct role for Comp, P2 is not, since action b(z ) leads Comp
to success, and P2 to failure. The aim of the definition below is to establish
the correction of roles.
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Definition 3.5 (Correctness) Let Comp be a component and P = {P1 . .
Pn} a set of its roles. Comp is correctly specified by P iff

(1) fn(Pi) ∩ fn(Pj ) = ∅ ∀ i 6= j
(2) Comp =⇒ 0 iff ∀ i Pi =⇒ 0
(3) If ∃α (α 6= τ) . Comp

α
=⇒ Comp ′, then ∃ i ,P ′

i . Pi
α

=⇒ P ′
i , and Comp ′ is

correctly specified by P ′ = {P1, . . . ,P
′
i , . . . ,Pn}

Definition 3.5 indicates that a component will be specified by a set of roles,
each of them referring to the interaction with another component. These roles
are disjoint abstractions partially describing the behavior of the component
as seen from its environment, and abstracting behaviors which are not rel-
evant to the role. Furthermore, the interface of the component Comp must
be completely specified by the roles in P , and the sets of free names in the
roles must be disjoint. The latter ensures that the specification of the com-
ponent is made modularly, in such a way that different roles cannot syn-
chronize. Thus, when P1 | · · · | Pi | · · · | Pn

τ−→ P some Pi performs
a τ -transition to P ′

i and P = P1 | · · · | P ′
i | · · · | Pn . Similarly, when

P1 | · · · | Pi | · · · | Pn
α−→ P (α 6= τ), exactly one Pi has a transition α

to P ′
i and P = P1 | · · · | P ′

i | · · · | Pn . Definitions 3.3 and 3.5 make possible
the derivation of roles from the specification of the corresponding components.

Example 3.6 Consider a Buffer which provides common put and get opera-
tions.

Buffer(put , get) = BufferSpec(put , get ,Null,T)

BufferSpec(put , get , node, empty) =
put(it).(n)(Node(n, it , node, empty) | BufferSpec(put , get , n,F) )

+ [empty =F]get .node(it , next , last).get it .BufferSpec(put , get , next , last)

Node(node, it , next , last) = node it next last .0

This component can play two different roles in a system: data storage and data
retrieval. Then, the interface of the Buffer is divided into roles – Storage and
Retrieval –, in which actions referring to hidden names would be represented
by τ -actions. Since these internal actions do not stand for local choices they
are omitted in the roles, which specify correctly and completely the Buffer.

Storage(put) = put(it).Storage(put)

Retrieval(get) = get .get(it).Retrieval(get)

In a typical Producer/Consumer system, these roles will represent the Buffer
in its attachment to the roles representing the producer and the consumer, re-
spectively. These attachments among roles are enough to describe and analyze
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the architecture of the Producer/Consumer system, with no need of reasoning
about the complete specification of the buffer, the producer, or the consumer.

The connection of several components in a certain architecture will be repre-
sented by an attachment among roles of these components. In order to avoid
synchronization between different attachments, the free names of the roles
must be conveniently restricted. Hence, attachments are defined as follows.

Definition 3.7 (Attachment) Let {Pi}i be a set of roles. Their attachment
is defined as

(∪i fn(Pi))(
∏

i

Pi)

Finally, we can define an architecture, formed by the composition of several
components, as a set of attachments between roles of these components.

Definition 3.8 (Architecture) Consider a software system formed by sev-
eral components {Compj}n

j=1. Let Rj = {Rji}nj

i=1 be the roles that specify cor-
rectly each Compj (j = 1 . . n). Then, an architecture of the system is defined
as a disjoint partition Ψ of Roles = ∪n

j=1Rj , representing the attachments
among roles that build the system from its components {Compj}j . That is,

Ψ = {Roles1, . . . ,Rolesm}, s .t . Roles =
⋃̇m

k=1
Rolesk

In order to simplify some of the results of the following sections, we will first
consider binary architectures, where each Rolesk attaches only a pair of roles.
Then, these results will be extended to general architectures.

3.2 Obtaining roles from components

Definitions 3.3 and 3.5 establish the conditions for finding out if a group of
agents are correct roles for a given component. However, these definitions do
not identify only one suite of roles for representing a component. Hence, a sort
of methodology is required. Some of the basic ideas of this methodology are
scattered through all this work, here we try to organize them, giving useful
hints for obtaining roles from components.

The first issue that may raise refers to how many roles a given component
should have. There is no definite answer to this question. If we choose to
specify the whole interface of the component using one single role, we wouldn’t
achieve much abstraction, and only some internal details of the component
could be hidden in the role, resulting in a complex role, difficult to analyse.
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If we choose to specify one role for each free name in the interface of the
component, probably we will break the component into too many separate
pieces, each of them giving a vision of its behavior too narrow to be meaningful
and useful. As a general rule, the correct answer is to divide the interface of
the component into as many roles as components are connected to that one
under consideration. Then, each role will refer to the interaction between two
components –the one being described and another one which is connected
to it– and will represent one of the rôles that the component plays in the
system. Each role will hide all the free names in the component but those
used for communication with the component connected to it. Following this
rule, most of the components described in the examples shown in this work are
represented by two roles, since they are connected to two other components
(see for instance Examples 3.4 and 3.6).

However, Definition 3.5 indicates that a set of correct roles must make a
disjoint partition of the interface of a component. Hence, if several components
interact with a certain one through a common name or names, we will probably
have a multiple (not binary) attachment among roles of all these components.

Once we have decided which are the roles of a component (and consequently
which are the free names considered in each role), roles are obtained by hiding
in the component all link names but these. Input and output actions involving
hidden names are transformed into τ -actions in the role, causing a local choice
when combined with the sum operator, as shown in Example 3.4 for role
Output. Names sent or received in the so hidden actions, are also hidden. On
the contrary, actions through names which are still free in the role, remain
the same (provided some free output actions maybe transformed into bound
outputs, as shown in the already mentioned role Output). Finally, a recursive
definition in a component causes also recursion in the corresponding role.

In the same way as input and output actions in a component may appear as
local choices in the corresponding role when these actions are through hidden
link names, also component actions constrained by match operators on hidden
names should appear as local choices in the role. Once again, the reason is
that, from the point of view of the environment, the commitment to these
transitions will be locally decided. This transformation of match operations
into silent transitions is done in two steps. As stated in [1], match operations
over data types are unnecessary in the π-calculus, and they can be replaced by
actions among the names involved. Then, as these actions use hidden names,
they are abstracted by silent transitions in the role.

Example 3.9 Consider an Observer, a component which receives colored balls
from a BallGenerator and sends “red” or “black” events through its output
port depending on the color of the ball. These components can be specified
using matching as follows,
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Observer(ball , red , black) = ball(color).
( [color =Red] red .Observer(ball , red , black)
+ [color =Black] black .Observer(ball , red , black) )

BallGenerator(ball) = ( τ.ball Red.BallGenerator(ball)
+ τ.ball Black.BallGenerator(ball) )

but we can easily obtain an equivalent encoding without matching,

Observer(ball , red , black) = ball(color).color(redcolor , blackcolor).
( redcolor .red .Observer(ball , red , black)
+ blackcolor .black .Observer(ball , red , black) )

BallGenerator(ball) = ball(new).new(red , black).
( τ.red .BallGenerator(ball) + τ.black .BallGenerator(ball) )

and now if we specify the output port of the Observer using Definition 3.3, we
have

Output(red , black) = τ.red .Output(red , black) + τ.black .Output(red , black)

where the matching operations in the original Observer have been abstracted
by silent transitions.

One may ask whether it is possible to obtain these role specifications automat-
ically. Notice that Definition 3.3 defines roles up to weak bisimilarity. Taking
into account the additional conditions for role correctness in Definition 3.5,
we would only reject those roles which do not succeed or fail when the corre-
sponding component does (as shown in the example previous to the definition
of correctness), but given a component and a partition of its free names, a
set of suites or categories of weak bisimilar roles can be obtained, all of them
satisfying the conditions for correctness. Finding out which is the best role
in each suite for representing meaningfully this partial view of the compo-
nent is equivalent to find out the best understandable canonical form within
a category of weak bisimilar agents. Though this process may be carried out
with tool support, probably it cannot be fully automated, requiring certain
supervision or guidance.

Anyway, some useful hints can be provided. The application of these hints will
lead to the obtention of meaningful roles from a component. As we have seen,
some component actions are transformed into τ -actions by means of hiding.
We can obtain a weak bisimilar version of the role simply by removing most of
these τ -actions. This can be done in role Input of Example 3.4. Its intermediate
silent transitions could be omitted resulting in:
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Input(i1, i2) = i1(x ).Input(i1, i2) + i2(y).Input(i1, i2)

However, some of these internal actions may stand for local choices and they
cannot be removed without affecting the behavior described in the role. This
is the case of the role Output of the Translator. If the leading τ -actions are
omitted, the resulting agent is not weak bisimilar with that in Example 3.4.

Also recursion can be omitted when it is unguarded, or prefixed only by τ -
actions. Then, we will obtain a simplified version of the original role. This
kind of transformations has been applied in roles Storage and Retrieval of the
Buffer in Example 3.6. The original agents could be:

Storage(put) = put(it).(τ.0 | Storage(put) + τ.τ.τ.τ.Storage(put)

Retrieval(get) = τ.(τ.0 | Retrieval(get) + τ.get .τ.get(it).Retrieval(get)

but we can arrive to the respectively weak bisimilar roles specified in Exam-
ple 3.6 by removing all the silent transitions and unguarded recursions.

4 Process Compatibility in the π-calculus

The notion of compatibility that will be introduced in this section tries to
formalize a way to recognize when two roles, specified by π-calculus agents,
conform each other.

A formal characterization of compatibility is given in Definition 4.3 below.
Roughly, we may say that two roles are compatible if they can engage in at
least one transition (1), any local choice in one of them is supported by the
other (2), and any pair of complementary transitions will lead to compatible
agents (3,4). Intuitively, these are the conditions we need to ensure that no
mismatch will occur when these roles are composed in parallel, representing
the attachment of the corresponding components.

Compatible agents must be able to synchronize at least in one common com-
plementary transition. This is a necessary but not sufficient condition for com-
patibility, preventing to consider compatible agents which cannot interoperate
like a(x ).0 and b̄y .0, which would deadlock when attached to each other.

Definition 4.1 An agent P provides an input for an agent Q if P ′,Q ′ exist
such that

(1) P
x̄ y

=⇒ P ′ and Q
x(z )
=⇒ Q ′, or

(2) P
x̄(z )
=⇒ P ′ and Q

x(z )
=⇒ Q ′
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Definition 4.2 (Synchronizable agents) Two agents P and Q are syn-
chronizable if P provides an input for Q or Q provides an input for P.

Definition 4.3 (Relation of (ground) compatibility) A binary relation
C on agents is a semi-compatibility if P C Q implies

(1) if P is not successful then P and Q are synchronizable,
(2) if P

τ−→ P ′ then P ′ C Q,

(3) if P
x(w)−→ P ′ and Q

x̄ y−→ Q ′ then P ′{y/w} C Q ′

(4) if P
x(w)−→ P ′ and Q

x̄(w)−→ Q ′ then P ′ C Q ′

A relation C is a compatibility if both C and C−1 are semi-compatibilities. The
(ground) compatibility on agents ¦̇ is defined as the largest compatibility.

Remark 4.4 Notice that if P ∼ 0 but P 6≡ 0 (e.g. P = (a)a(x ).0) we have
that ∀Q P 6 ¦̇ Q.

The different treatment of silent and non-silent transitions in Definition 4.3
deals with global and local choices. Consider the agents R1 = a(x ).0 + b(y).0
and R2 = τ.a(x ).0 + τ.b(y).0. Though they present the same input actions,
these actions appear as global choices in R1, while in R2 the commitment to a
particular action a(x ) or b(y) is locally decided. This causes that some agents
which are compatible with R1 are not compatible with R2. Consider, for in-
stance, R2 = τ.au.0 + τ.bv .0. We have that R1 ¦̇ R2, since the former is able
to accept any choice indicated in the latter, fulfilling condition (2) in Defini-
tion 4.3. On the other hand, R2 6 ¦̇ R2, since condition (2) is not fulfilled, as
R2 may proceed to b(y).0, and R2 to au.0, both performing silent transitions,
and b(y).0 6 ¦̇ au.0, since they are neither successful nor synchronizable.

Global choices which are not complementary in both agents are ignored in
Definition 4.3 above. Consider an agent that presents an undesirable behavior
when engaged in a certain action c, as R3 = au.0 + bv .0 + cError. Then
we have that R1 ¦̇ R3 and R2 ¦̇ R3, since action c will never take place when
composing R3 with R1 or R2. However, an agent which could chose locally to
engage in this action, like R4 = au.0 + bv .0 + τ.cError is not compatible
with any of the agents above.

Definition 4.5 (Compatible agents) P and Q are compatible, written
P 3 Q, if Pσ ¦̇ Qσ for all substitutions σ that respect the distinction
fn(P) ∪ fn(Q).

In order to understand why we avoid substitutions binding free names, consider
the roles P = ā(x ).x̄ .0 and Q = a(y).y .0+ b(z ).0. We have that P ¦̇ Q under

most substitutions, but for {a/b}, we have that P{a/b} ā(x)−→ x̄ .0, Q{a/b} a(x)−→
0 and x̄ .0 6 ¦̇ 0.
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The restriction set upon substitutions reflects the situation with real software
components. If two components follow a certain protocol for their interaction,
we must distinguish between the different channels or messages used in this
protocol, if not communication would be impossible. The same applies to roles.
The free names in a role stand for the different words used in the interaction
with other roles, and these names must be distinguished. Notice that, when
several roles are attached, their free names are restricted (see Definition 3.7),
thus ensuring their distinction.

Like Milner’s relation of bisimilarity, our definition of compatibility involves
universal quantification over substitutions. However, following a strategy sim-
ilar to that in [11] it is possible to define an efficient and automatizable tran-
sition system for the relation, which allows the development of analysis tools.

4.1 Properties of Compatibility

Our relation of compatibility is symmetric, but as it requires the presence
of complementary actions, it does not satisfy several common properties like
reflexivity or transitivity. Even if we abstract the sign of the actions, these
properties are not satisfied, and there is no logical implication between com-
patibility and bisimilarity. Consider again the examples above, where R1 3 R3

though they present different transitions, but R2 63R2. In fact, similarity is
not well suited for our purposes, since we don’t need the processes related
to behave identically or to match exactly. Thus, compatibility is not defined
with the idea of comparing processes, but to have a safe and flexible way to
connect them, and this lack of common properties seems reasonable. That is,
whereas bisimilarity is defined to see when two process simulate each other,
compatibility looks for the “safe” composition of processes.

However, other desirable properties are satisfied by the relation of compatibil-
ity. First of all, equivalence should preserve compatibility. Let’s consider the
following agents: P = 0, P ′(a) = (a)a(x ).0 and Q = τ.0. Though P ∼ P ′ and
P 3 Q we have that P ′ 63Q . The reason is that, unfortunately, neither strong
nor weak bisimulation can differentiate between successful and unsuccessful
termination. Since, this distinction is crucial for our purposes, we define a
slightly finer relation, 0-simulation, as follows.

Definition 4.6 S0 is a 0-simulation, if P S0 Q satisfies the conditions in
Definition 2.2 and also

• If P ≡ 0 then Q ≡ 0

Obviously, PS0Q =⇒ PSQ . Then, definitions of strong and weak 0-bisimilarity
on agents, respectively ∼0 and ≈0 , and weak and strong 0-bisimilar pro-
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cesses can be derived. Now, we can derive from Definition 4.3 that both strong
and weak 0-bisimilarity preserve compatibility.

Theorem 4.7 Let P and Q be two compatible processes. If P ′ ≈0 P and
Q ′ ≈0 Q then,

P ′ 3 Q ′

Proof. It can be directly derived from Definition 4.3. We only have to prove
that 3weak = {(P ′,Q ′) : ∃P ,Q . P ≈0 P ′ ∧Q ≈0 Q ′ ∧P 3 Q} is a relation
of compatibility. Since compatibility is symmetric, it is enough to prove that
f P 3 Q and R ≈0 P then R 3 Q . In other words, we must prove that
3weak = {(R,Q) : ∃P . P ≈0 R ∧ P 3 Q} is a relation of compatibility.
Assume R 3weak Q , then we check for the conditions in Definition 4.3.

(1) a) If R is not successful then, since R ≈0 P , P is also not successful. Then,
from P 3 Q and Def. 4.3.1 we have that P and Q are synchronizable.

Thus, ∃α,P ′,Q ′. P
α

=⇒ P ′ and Q
α

=⇒ Q ′ (where α stands for an action
complementary to α). Since R ≈0 P we have that ∃R′. R

α
=⇒ R′. Hence,

R and Q are synchronizable.
b) On the other hand, if Q is not successful, then from P 3 Q and

Def 4.3.1 we have that ∃α,P ′,Q ′. P
α

=⇒ P ′ and Q
α

=⇒ Q ′. Since R ≈0 P
we have that ∃R′. R

α
=⇒ R′. Hence, R and Q are synchronizable.

(2) a) If R
τ−→ R′, since R ≈0 P then ∃P ′ . P =⇒ P ′ and R′ ≈0 P ′. On the

one hand, if P ′ is P (no τ -transition is performed), then from R′ ≈0 P ′

and P ′ 3 Q , we infer R′ 3weak Q . On the other hand, if P(−→)+P ′ (at
least one τ -transition is performed), since P 3 Q , we have (Def. 4.3.2)
that P ′ 3 Q . Again, from R′ ≈ P ′ and P ′ 3 Q , we infer R′ 3weak Q .

b) If Q
τ−→ Q ′, from P 3 Q and Def. 4.3.2 we have that P 3 Q ′.

From that and also R ≈0 P we infer that R 3weak Q ′.

(3) a) If R
x(w)−→ R′ and Q

x̄ y−→ Q ′, since R ≈0 P then ∃P ′ . P =⇒ P ′′ x(w)−→
P ′′′ =⇒ P ′ and R′ ≈0 P ′. Then, from P 3 Q and Def. 4.3.2 and 4.3.3 we
have that P ′′ 3 Q , P ′′′{y/w} 3 Q ′, and P ′{y/w} 3 Q ′. From that and
R′ ≈0 P ′ we infer R′{y/w} 3weak Q ′

b) If Q
x(w)−→ Q ′ and R

x̄ y−→ R′, since R ≈0 P then ∃P ′ . P
x̄ y

=⇒ P ′ and
R′ ≈0 P ′. Then, from Def. 4.3.2 and 4.3.3 we infer that P ′ 3 Q ′{y/w}.
From that and R′ ≈0 P ′ we infer R′ 3weak Q ′{y/w}.

(4) a) If R
x(w)−→ R′ and Q

x̄(w)−→ Q ′, since R ≈0 P then ∃P ′ . P =⇒ P ′′ x(w)−→
P ′′′ =⇒ P ′ and R′ ≈0 P ′. Then, from P 3 Q and Def. 4.3.2 and 4.3.4 we
have that P ′′ 3 Q , P ′′′ 3 Q ′, and P ′ 3 Q ′. From that and R′ ≈0 P ′ we
infer R′ 3weak Q ′

b) If Q
x(w)−→ Q ′ and R

x̄(w)−→ R′, since R ≈0 P then ∃P ′ . P
x̄(w)
=⇒ P ′ and

R′ ≈0 P ′. Then, from Def. 4.3.2 and 4.3.4 we infer that P ′ 3 Q ′. From
that and R′ ≈0 P ′ we infer R′ 3weak Q ′. ¥
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Compatibility is not a congruence with respect to all constructions in π-
calculus, but some related properties hold. These properties can be used to
simplify the analysis of the compatibility among processes.

Theorem 4.8

(a) From P 3 Q infer τ.P 3 τ.Q,
(b) From P{y/w} 3 Q infer x (w).P 3 xy .Q,
(c) From P 3 Q infer x (w).P 3 x (w).Q,
(d) From P1 3 Q and P2 3 Q infer P1 + P2 3 Q,
(e) From P1 3 Q1 and P2 3 Q2 infer P1 | P2 3 Q1 | Q2,

when fn(P1) ∩ fn(P2) = ∅ and fn(Q1) ∩ fn(Q2) = ∅,

Proof. The proof is straightforward, so it is omitted here. As an example,
property (d) is proven in Theorem 5.14. ¥

4.2 Compatibility and successful composition

Compatibility must ensure that no mismatch will arise from the interaction
of the agents involved. This is the aim of Proposition 4.9 below.

Proposition 4.9 Let P and Q be compatible agents. Then we have that their
attachment is successful.

Proof. It can be directly derived from Definitions 3.7 and 4.3. We have to
prove that if P 3 Q then (fn(P) ∪ fn(Q))(P | Q) is successful. Since all
free names are restricted we can reformulate the attachment as (N )(P | Q)
for short, where N contains any name. The proof is done supposing that the
attachment is not successful, and then finding a contradiction.

Suppose that P 3 Q but that (N )(P | Q) is not successful. Hence, exists a
process Failure such that (N )(P | Q) =⇒ Failure, where Failure 6≡ 0 and
Failure 6 τ−→. The proof is done by induction on the number n of τ -transitions
leading to Failure.

(1) Base Case. Suppose first n = 0. Then, from (N )(P | Q) 6 τ−→ we have
both P 6 τ−→ and Q 6 τ−→. Now, from (N )(P | Q) 6≡ 0 we have either P 6≡ 0
or Q 6≡ 0. Hence, P or Q are not successful. Since P 3 Q , from Def.4.3.1

we have that ∃α . P
α

=⇒ and Q
α

=⇒ (where α stands for an action
complementary to α). Hence, (N )(P | Q)

τ−→, which is a contradiction.
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(2) Inductive hypothesis. ∀P ′,Q ′ . P ′ 3 Q ′, if (N )(P ′ | Q ′)( τ−→)kF with
k < n, then either F

τ−→ or F ≡ 0.
(3) General Case. Suppose that (N )(P | Q)

τ−→ (N )(P ′ | Q ′) (
τ−→

)n−1Failure. Then, the initial τ -transition is one of the following:
• P

τ−→ P ′. Then, since P 3 Q we have that P ′ 3 Q .
• Q

τ−→ Q ′. Then, since P 3 Q we have that P 3 Q ′.

• P
x(w)−→ P ′ and Q

x̄ y−→ Q ′. Then, since P 3 Q we have that P ′{y/w} 3 Q ′.

• P
x(w)−→ P ′ and Q

x̄(w)−→ Q ′. Then, since P 3 Q we have that P ′ 3 Q ′.

• Q
x(w)−→ Q ′ and P

x̄ y−→ P ′. Then, since P 3 Q we have that P ′ 3 Q ′{y/w}.
• Q

x(w)−→ Q ′ and or P
x̄(w)−→ P ′. Then, since P 3 Q we have that P ′ 3 Q ′.

Hence, if (N )(P | Q)
τ−→ (N )(P ′ | Q ′) we have that P ′ 3 Q ′, and using

the inductive hypothesis, we infer that either Failure
τ−→ or Failure ≡ 0.

¥

The following result goes one step beyond, showing the effect of combining a
component with roles compatible with its own roles.

Theorem 4.10 Let Comp be a component correctly specified by a set of roles
{Pi}i , which represent Comp in its attachment to several other components
{Compi}i . Let Qi be the role that represents respectively each Compi in its
attachment to Comp. Assume that ∀ i Pi 3 Qi . Then we have that

Comp | ∏

i

(fn(Qi)− fn(Pi))Qi

is successful.

Proof. It can be derived from Definitions 3.3, and 3.5. Definition 3.5 ensures
that the free names in {Pi}i are disjoint, but some Qi may have additional
free names that collide with other names in Comp or even in some other role
in {Qi}i . However, these additional free names are restricted, thus ensuring
the independence of the attachments of Comp. Then, from ∀ i Pi 3 Qi and
Definitions 3.3 and 3.5, we can derive the success of the composition of Comp
with the roles {Qi}i . ¥

Notice that the result above refers to the composition of a component with
compatible roles, but not to its composition with the corresponding compo-
nents. In fact, if two components are attached we cannot derive that their
parallel composition is successful, since these components may in turn be
connected to other components in the system. Furthermore, local analysis of
compatibility in system attachments cannot prove either that the whole sys-
tem is successful, since deadlock could arise from the global interaction of a
set of components whose roles are compatible. However, the compatibility of
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system attachments serves to prove that no crash will arise from a behavioral
mismatch between the interfaces of the interconnected components. This is
enough to prove the composability of a certain system from its components
and also the reusability of a certain component in a system different from that
it was originally developed for.

Example 4.11 Consider again the Buffer in Example 3.6, and two additional
components: a Producer and a Consumer, whose behavior is represented by the
roles:

Producer(put) = put(item).Producer(put)

Consumer(get) = get .get(item).Consumer(get)

From Definition 4.3, it is trivial to find out that Storage(put) 3 Producer(put)
and Retrieval(get) 3 Consumer(get). Hence, from Theorem 4.10 we have also
that

Producer(put) | Buffer(put , get) | Consumer(get)

is successful. Therefore those components can be safely composed to build a
Producer/Consumer system

Now, we can define a composable architecture, formed by the composition of
several components, as a set of attachments between compatible pairs of roles
of these components. This definition allows the extension of the results of
theorems 4.9 and 4.10 to architectures.

Definition 4.12 (Composable Architecture) Consider a binary architec-
ture Ψ under the conditions of Definition 3.8. Ψ is a composable architecture
if ∀P ,Q ∈ Roles, such that {P ,Q} ∈ Ψ we have that P 3 Q.

Hence, the composability of an architecture is determined by testing the com-
patibility of its attachments. For simplicity, we have defined architectures as
sets of attachments between pairs of roles, committing ourselves to binary
relations. However, a more general definition could be considered, in which
attachments involved more that two roles. This will be the aim of the next
section.

4.3 Compatibility for groups of roles

The relation of compatibility in Definition 4.3 refers only to pairs of roles.
However, compatibility can be extended to groups of more than two roles,
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allowing the analysis of more complex attachments, as they were defined in
Definition 3.7.

Definition 4.13 (Set of synchronizable agents) A set of agents P is syn-
chronizable if ∃P ,Q ∈ P such that P provides an input for Q.

Definition 4.14 (Ground compatibility for a set of agents) A set of
agents P is ground compatible if

(1) if ∃P ∈ P . P is not successful then P is a set of synchronizable agents,
(2) if ∃P ∈ P . P

τ−→ P ′ then (P − {P}) ∪ {P ′} is ground compatible,

(3) if ∃P ,Q ∈ P . P
x(w)−→ P ′ and Q

x̄ y−→ Q ′ then (P−{P ,Q})∪{P ′{y/w},Q ′}
is ground compatible.

(4) if ∃P ,Q ∈ P . P
x(w)−→ P ′ and Q

x̄(w)−→ Q ′ then (P − {P ,Q}) ∪ {P ′,Q ′} is
ground compatible.

Definition 4.15 (Compatibility for a set of agents) A set of agents P =
{Pi}i is compatible if Pσ = {Piσ}i is ground compatible for all substitutions
σ that respect the distinction ∪i fn(Pi).

Proposition 4.16 Let P be a set of compatible agents. Then, their attach-
ment is successful.

Proof. It can be directly derived from Definitions 3.7 and 4.14. ¥

Example 4.17 Consider a certain component which uses our Buffer as a
temporary store for some data that it produces and that will be required af-
terwards. The interface of this component could be represented by the role
ProdCons (from Producer/Consumer):

ProdCons(put , get) = put(item).ProdCons(put , get)
+ get .get(item).ProdCons(put , get)

Now we have an attachment between three different roles: ProdCons, Storage,
and Retrieval. Using Definition 4.14 we can find out that these agents are
compatible. Thus, their attachment is successful.

5 Inheritance and Extension of Behavior

The relation of compatibility among roles establishes the conditions for safe
composition. However, in order to promote component and architecture reuse,
it would be very interesting if we could check whether a certain existing com-
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ponent can be used in any context or architecture where another one ap-
pears. This idea is related to the concept of inheritance in the object-oriented
paradigm, which refers to a relation among object classes by which a child
class inherits the properties declared by its parents, while adding its own
properties. Inherited properties may be redefined, usually under certain re-
strictions. Inheritance is a natural precondition for polymorphism, allowing
dynamic replacement of an object by a derived version in any context where
the original object appeared, and it promotes both reusability and incremental
development.

Hence, we have defined a relation of agent inheritance in the context of the π-
calculus, with the requirement that inheritance preserves compatibility, allow-
ing safe replacement in any architecture of a component by a derived version
whose roles inherit from those of the former. In our approach, roles represent
the behavior of the corresponding components, i.e. how they react to external
stimuli. Thus, a child role agent must maintain its parents’ behavior, while
redefinition and addition of behavior must be restricted in order to ensure that
the parent component may be replaced by a derived version while maintaining
compatibility. We consider inheritance as a form of strengthening the reliabil-
ity of a role. Thus, derived roles are more predictable than their parents, by
making fewer local choices, (and we call this role inheritance), while they may
also offer new globally chosen behavior (which we call in turn role extension).

A compatibility-preserving relation of inheritance among processes requires
the fulfillment of several conditions, related to inheritance of parent’s behavior,
redefinition, and extension. For this reason, the relation will be introduced in
several steps.

Definition 5.1 (Semantics-preserving inheritance) A binary relation H
on agents is a relation of semantics-preserving inheritance if RHP implies that

(1) if P
x̄ y−→ P ′ then ∃R′. R

x̄ y−→ R′ and R′HP ′

(2) if P
x(y)−→ P ′ and y 6∈ n(P ,R) then ∃R′. R

x(y)−→ R′

and ∀w ,R′{w/y}HP ′{w/y}
(3) if P

x̄(y)−→ P ′ and y 6∈ n(P ,R) then ∃R′. R
x̄(y)−→ R′ and R′HP ′

Semantics-preserving requires that any globally chosen behavior offered by
the parent agent is also present in the child. However, no condition is imposed
over τ -actions, thus local choices may be converted into global by the child
agent, or even suppressed. Assume that P3 = {Q : P 3 Q} is the set of
processes which are compatible with a certain P . Assume RHP . Then, the
conditions above implies that any process in P3 which takes a decision over
global choices in P will be also compatible with R, while some processes not
in P3 will be in R3, since some of the requirements of P (i.e. some of its
local decisions) may be relaxed or suppressed in R. Hence, P3 ⊆ R3.
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Example 5.2 Consider the agent P(a) = a(x ).0. Since P offers action a(x )
as a global choice, some agent Q ∈ P3, may commit to the complementary
action by a local choice, for instance Q(a, b) = τ.ā(u).0 + b̄(v).0. Hence, any
agent which wishes to inherit from P must preserve the action a(x ) as a global
choice. For instance, R(a, c) = a(x ).0 + c(z ).0. Attending to Definition 5.1,
we have that RHP and also R ¦̇ Q. Furthermore, some agents, like S (a, c) =
τ.ā(u).0+τ.c̄(w).0 which were not compatible with P are now compatible with
R.

Semantics-preserving is a necessary but not sufficient condition for inheritance,
as shows the following example.

Example 5.3 Consider the agents P(a, b) = a(x ).0 + τ.b(y).0, Q(b, c) =
b̄(u).0 + c̄(v).v .0, and R(a, b, c) = a(x ).0 + b(y).0 + c(z ).0. We have that
P ¦̇ Q, and also that RHP, attending to Definition 5.1. However, R 6 ¦̇ Q,

since R
c(v)−→ 0, Q

c̄(v)−→ v .0, and 0 6 ¦̇ v .0.

Hence, we must impose additional conditions to semantics-preserving inheri-
tance, which can be extended as follows:

Definition 5.4 (Non-extensible inheritance) A binary relation H on
agents is a relation of non-extensible inheritance if RHP implies the con-
ditions in Definition 5.1, and also

(1) if R
τ−→ R′ then ∃P ′. P

τ−→ P ′ and R′HP ′

(2) if R
x̄ y−→ R′ then ∃P ′. P =⇒ x̄ y−→ P ′ and R′HP ′

(3) if R
x(y)−→ R′ and y 6∈ n(P ,R) then ∃P ′. P =⇒ x(y)−→ P ′

and ∀w ,R′{w/y}HP ′{w/y}
(4) if R

x̄(y)−→ R′ and y 6∈ n(P ,R) then ∃P ′. P =⇒ x̄(y)−→ P ′ and R′HP ′

The conditions above require that the child agent R does not extend its parent
P by offering new local or even global choices. (However, notice that the
child roles may have converted some of its parent local choices into global.)
The reason for this restriction to extension of behavior is that, as shown in
Example 5.3, any new transition in R may interact with a complementary
transition in a certain Q ∈ P3, where this transition was not considered
when analyzing the compatibility of P and Q , since Definition 4.3 refers only
to common complementary transitions in both agents. Observe that now, for
the agents in Example 5.3, we have that R does not inherit from P . Thus,
in order to preserve compatibility, our definition of inheritance must be very
restrictive. However this restrictions will be overcome in the Definition 5.12 of
agent extension.

Once again, non-extensible inheritance is a necessary condition for inheritance,
but two additional conditions are required.
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Definition 5.5 (Relation of inheritance) A binary relation H on agents
is a relation of inheritance if RHP implies the conditions in Definitions 5.1
and 5.4, and also

(1) if P ≡ 0 then R ≡ 0
(2) if P

τ−→ then ∃P ′,R′. P
τ−→ P ′ and R =⇒ R′ and R′HP ′

The inheritance on agents ¤̇ is defined as the largest relation of inheritance.

The first condition states which agents inherit from the inaction. The second
one is less intuitive. It refers to τ -actions in the parent agent (which were not
considered in Definition 5.1), and indicates that at least one of them must
be inherited by the child role. This is a sufficient condition for maintaining R
synchronizable with any agent in P3, since only transitions complementary
to local decisions in P are required for any agent Q ∈ P3.

Example 5.6 Consider now the agents P(a, b) = a(x ).0 + τ.b(y).0, and
R(a) = a(x ).0, which fulfill all conditions for inheritance but that of Defi-
nition 5.5.2. We have that R ¦̇ Q for most Q ∈ (3P), for instance Q(a, b) =
a(u).0 + b(v).0, but for Q ′(b) = b(v).0 we have that P ¦̇ Q ′ but R 6 ¦̇ Q ′. On
the contrary, for P ′(a, b) = τ.a(x ).0 + τ.b(y).0 we have that RHP ′ (fulfilling
now all the conditions for inheritance), P ′ ¦̇ Q, and also that R ¦̇ Q.

Definition 5.7 (Inheritance of behavior) R inherits from P, written R ¤

P, if Rσ ¤̇ Pσ for every substitution σ that respects the distinction fn(P) ∪
fn(R).

Theorem 5.9 below shows that inheritance of behavior preserves compatibility.
However, an additional condition is necessary to prove the theorem, and for
this reason, we reject processes that are semantically divergent, which –as
considered in [13]– are those processes that may present an infinite sequence
of local computations (represented by τ -actions). Since we are interested in
checking interactions among roles, this is not a restriction, as shown in the
following example:

Example 5.8 Consider the agent Comp(a, b) = a(x ).Comp(a, b) + b(y).0
and two roles Role1(a) = a(x ).Role1(a) + τ.0, and Role2(b) = τ.Role2(b) +
b(y).0, obtained according to Definitions 3.3 and 3.5. Though Comp(a, b) is
not divergent, Role2 may perform an infinite trace of τ -actions, but we can
always find a different representation of Comp(a, b)/a , in this case Role ′2(b) =
b(y).0, without infinite traces of τ -actions. Notice that Role ′2 ≈ Role2, and also
that {Role1,Role ′2} is a correct set of roles for Comp.

Theorem 5.9 Let P and Q be two processes, where P does not present any
infinite trace of τ -actions. Let P 3 Q. Let R ¤ P. Then we have that
R 3 Q.
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Proof. It can be derived from Definitions 4.3 and 5.5. We only have to prove
that 3her = {(R,Q) : ∃P . P 3 Q∧R ¤ P } is a relation of compatibility.
Assume R 3her Q , then we check for the conditions in Definition 4.3.

(1) a) If R is not successful, then from Def. 3.1 ∃R′ . R =⇒ R′, where R′ 6≡ 0
and R′ 6 τ−→.

Suppose first that R′ is R. Since R ¤ P , R 6≡ 0, and R′ 6 τ−→, from
Def. 5.5 we infer that P 6≡ 0 and P 6 τ−→, i.e. P is not successful. Then,
from P 3 Q and Def. 4.3.1 we have that P and Q are synchronizable.

Therefore, ∃α . P
α−→ P ′ and Q

α
=⇒ Q ′, (where α stands for an action

complementary to α). Now, from P
α−→ P ′ and Def. 5.1 we have that

R
α−→ R′. Hence, R and Q are synchronizable.

Suppose now that R′ is not R, i.e. R(
τ−→)nR′, with n > 0. From

R ¤ P and Def. 5.4.1 we have that ∃P ′ . P(
τ−→)nP ′ and R′ ¤ P ′. Again,

R′ 6≡ 0, R′ 6 τ−→ and Def. 5.5 imply that P ′ 6≡ 0 and P ′ 6 τ−→. Since P 3 Q ,
from Def. 4.3.2 we have that P ′ 3 Q and, as P is not successful, from

Def. 4.3.1, ∃α . P ′ α−→ P ′′ and Q
α

=⇒ Q ′, ( without τ -transitions from
P ′). From that, R′ ¤ P ′, and Def. 5.1, we infer that R′ α−→ R′′. Hence,
R

α
=⇒ R′′, and R and Q are synchronizable.
b) If Q is not successful, then from Def. 3.1 ∃Q ′ . Q =⇒ Q ′, where

Q ′ 6≡ 0 and Q ′ 6 τ−→. Since P 3 Q , from Def. 4.3.2 we have that P 3 Q ′,
and as Q ′ is not successful, we have that P and Q ′ are synchronizable.
Therefore ∃α . P

α
=⇒ P ′′ and Q ′ α−→ Q ′′ (without τ -transitions from

Q ′).
Suppose first that P

α
=⇒ P ′′ is P

α−→ P ′′. Then, from Def. 5.1 we have
that R

α−→ R′′. Therefore, R and Q ′ are synchronizable, and also R and
Q are synchronizable.

Suppose now that P
τ−→ α

=⇒ P ′′ (i.e. there is at least one τ -transition
between P and P ′′). From Lemma 5.10 below we have that ∃P ′,R′. P =⇒
P ′,R =⇒ R′,R′ ¤ P ′ and P ′ 6 τ−→. Then, from P 3 Q ′ we have that

P ′ 3 Q ′. Since Q ′ is not successful, we have that ∃ β . P ′ β−→,Q ′ β−→
(without τ -transitions). Then, as R′ ¤ P ′, from Def. 5.1 we have that

R′ β−→. Hence we have both R′ and Q ′ are synchronizable, and R and Q
are synchronizable.

(2) a) If R
τ−→ R′ then, from R ¤ P and Def. 5.4.1, we have that ∃P ′ . P

τ−→
P ′ and R′ ¤ P ′. Since P 3 Q , from Def. 4.3.2, we have that P ′ 3 Q .
Hence, R′ 3her Q .

b) If Q
τ−→ Q ′ then, from P 3 Q and Def. 4.3.2, we have that P 3 Q ′.

From that and R ¤ P , then we infer R 3her Q ′.

(3) a) If R
x(w)−→ R′ and Q

x̄ y−→ Q ′, from R ¤ P and Def. 5.4.3, we have that

∃P ′ . P =⇒ P ′′ x(w)−→ P ′ and ∀ z R′{z/w} ¤ P ′{z/w}, where possibly P ′′

is P . Then, from Def. 4.3.2 we have that P ′′ 3 Q . From Def. 4.3.3, and

Q
x̄ y−→ Q ′ we have that P ′{y/w} 3 Q ′. In particular, for z = y we have
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that R′{y/w} ¤ P ′{y/w}. Hence, R′{y/w} 3her Q ′.

b) If Q
x(w)−→ Q ′ and R

x̄ y−→ R′, from R ¤ P and Def. 5.4.2 we have

that P =⇒ P ′′ x̄ y−→ P ′ where R′ ¤ P ′ and possibly P ′′ is P ′. Then,
from P 3 Q and Def. 4.3.2 and 4.3.3 we have that P ′′ 3 Q and also
P ′ 3 Q ′{y/w}. Hence, R′ 3her Q ′{y/w}.

(4) a) If R
x(w)−→ R′ and Q

x̄(w)−→ Q ′, from R ¤ P and Def. 5.4.3, we have that

∃P ′ . P =⇒ P ′′ x(w)−→ P ′ and ∀ z R′{z/w} ¤ P ′{z/w}, where possibly P ′′

is P . Then, from Def. 4.3.2 we have that P ′′ 3 Q . From Def. 4.3.4, and

Q
x̄(w)−→ Q ′ we have that P ′ 3 Q ′. In particular, for z = w we have that

R′ ¤ P ′. Hence, R′ 3her Q ′.

b) If Q
x(w)−→ Q ′ and R

x̄(w)−→ R′, from R ¤ P and Def. 5.4.4 we have

that P =⇒ P ′′ x̄(w)−→ P ′ where R′ ¤ P ′ and possibly P ′′ is P ′. Then, from
P 3 Q and Def. 4.3.2 and 4.3.4 we have that P ′′ 3 Q and also P ′ 3 Q ′.
Hence, R′ 3her Q ′. ¥

Lemma 5.10 Let R ¤ P, where P does not present any infinite trace of τ -
actions, and P

τ−→. Then, ∃P ′,R′ . P =⇒ P ′,R =⇒ R′,R′ ¤ P ′ and P ′ 6 τ−→.

Proof. It can be derived from Def. 5.5. Under the conditions of the Lemma,
we have that ∃P1,R1 . P

τ−→ P1,R =⇒ R1 and R1 ¤ P1. Then, while Pi
τ−→

we apply the definition again, obtaining Pi+1,Ri+1, where Ri+1 ¤ Pi+1. Since
P does not present any infinite trace of τ -actions, ∃Pn ,Rn . Rn ¤ Pn and
Pn 6 τ−→. ¥

Thus, inheritance preserves compatibility, and a single proof of inheritance
ensures that any child role can be a substitute for any of its parents in any
context, with no need to recheck compatibility. This result defines when a
certain existing component can be used in an architecture; the roles of the
component must inherit from those specified in the architecture.

Example 5.11 A typical example of SA is that of Client/Server systems.
Such an architecture is composed of two components –Client and Server– which
behave as indicate the roles:

Client(request) = request(reply , error).
( reply(service).Client(request) + error .Client(request) )

Server(request) = request(reply , error).
( τ.reply(service).Server(request) + τ.error .Server(request) )

The Client requests a service, and either obtains it or gets an error. (Notice
that mobility allows us to use private reply and error links in each request).
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On the other hand, the Server may fail to serve some of the requests (local
choices are used to represent this internal decision). Using definition 4.3 it is
trivial to find out that Client 3 Server.

Suppose now a component which behaves as describes role Client’ below, crash-
ing when an error is received.

Client ′(request) = request (reply , error).
( reply(service).Client ′(request) + error .0 )

This component is not compatible with our Server (which can be proved using
Definition 4.3 again), so we have to develop a fault-tolerant server, which we
call FTServer, wrapping our server with a component FrontEnd which collects
requests from the Client and retransmits them to the server until the service
is obtained.

FTServer(request) = (server)( FrontEnd(request , server) | Server(server) )

FrontEnd(request , server) =
request(reply , error).FTService(request , server , reply)

FTService(request , server , reply) = server(rep, err).
( rep(service).reply service.FrontEnd(request , server)
+ err .FTService(request , server , reply) )

From the point of view of the server, FrontEnd behaves as a client, so Client
is a correct role of FrontEnd/{request}. This ensures the composability of the
FTServer from its subcomponents; since Client 3 Server, we can compose
safely FrontEnd with our server component.

On the other hand, agent Server’ below is a correct role of FTServer, and from
Definition 4.3 we find that Client’ 3 Server’.

Server ′(request) = request(reply , error).reply(service).Server ′(request)

In addition, it can be proved using Definition 5.5 that Server’ ¤ Server, since
it has suppressed the local choices of the latter. Hence, Server’ 3 Client,
and we can claim that the corresponding component FTServer conforms the
requirements of our Client/Server architecture. Although the example is very
simple, it shows how compatibility and inheritance can be applied to the incre-
mental development of complex systems.

The relation of inheritance presented above is too restrictive: Definition 5.1
states that the child role cannot extend its parents, adding new behavior or
functionality. We can overcome these restrictions defining extension as follows:
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Definition 5.12 (Extension of behavior) R extends P, written R ¤¤ P,
iff

(fn(R)− fn(P))R ¤ P

This definition relates extension to inheritance, and establishes the conditions
which ensure that the extended role R can be successfully attached to any
Q ∈ P3. In order to preserve compatibility, additional behavior in the child
agent R is restricted, ensuring that, when R and Q are attached, R will behave
as P did (with the only difference that some local choices in P may be redefined
or omitted in R). Additional functionality provided for the child agent R will
not be used. However, this additional behavior of R may be successfully used
in other contexts or architectures, even in combination with Q .

Example 5.13 John, Paul, and Mary are friends. They usually meet in pairs
to chat for a while. When they meet, they greet each other saying “hi”, and
agree on talking about a certain “topic”. They part after saying “bye”. John
only talks about a single topic in each conversation. On the contrary, Mary
can agree with her partner in changing to a new topic during the conversation.
Finally, Paul seems to accept a change of topic, but he goes on talking about the
same, hindering the conversation. Their behavior is specified by the following
roles:

John(hi , bye) = hi(topic).JohnTalking(hi , topic, bye)
JohnTalking(hi , topic, bye) = τ.topic.JohnTalking(hi , topic, bye)

+ τ.bye.John(hi , bye)

Paul(hi , change, bye) = hi(topic).PaulTalking(hi , topic, change, bye)
PaulTalking(hi , topic, change, bye) =

topic.PaulTalking(hi , topic, change, bye)
+ change(newtopic).PaulTalking(hi , topic, change, bye)
+ bye.Paul(hi , change, bye)

Mary(hi , change, bye) = hi(topic).MaryTalking(hi , topic, change, bye)
MaryTalking(hi , topic, change, bye) =

τ.topic.MaryTalking(hi , topic, change, bye)
+ change(newtopic).MaryTalking(hi , newtopic, change, bye)
+ τ.bye.Mary(hi , change, bye)

Notice first that John 3 Paul, since the former will never change topics, and
won’t notice Paul’s unkind behavior. However, Mary will notice it, and she is
not compatible with Paul. Notice also that Mary 7 John, but Mary ¤¤ John.
Hence, we can conclude that (change)Mary 3 Paul, that is, provided Mary
doesn’t try to change topics, her behavior will be compatible with Paul’s.
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This example can be read with a different light if we look at John as a connection-
oriented server (like a TCP server), in the sense that it uses a single channel
(topic) for each session or conversation with a client. On the contrary, Mary
acts like a connectionless, transaction-oriented server, since she may change
the communication channel during the transmission (like an UDP server). Fi-
nally Paul is a somehow mischievous client.

Therefore, the relation of extension ensures safe replacement, but without
changing the characteristics of the architecture where the replacement occurs.
However, it is also possible that R 3 Q without restricting the additional
behavior. In that case, the replacement of P by R implies a change in the
characteristics of the architecture, and the additional behavior of R is used in
the resulting system. Thus, the architecture in which the attachment of P and
Q occurs describes a whole family of similar but not identical software prod-
ucts. We can obtain result similar to Theorem 5.9 for this family of systems
with a common architectural pattern.

Theorem 5.14 Let P 3 Q. Let R = P +P ′. If P ′ 3 Q we have that R 3 Q.

Proof. (Notice that this is also a proof for Theorem 4.8.d.) It can be derived
from Definitions 4.3 and 5.5. We only have to prove that 3ext = {(R,Q) :
∃P ,P ′ . R = P +P ′∧P 3 Q ∧P ′ 3 Q} is a relation of compatibility. Assume
R 3ext Q , then we check for the conditions in Definition 4.3.

(1) a)If R is not successful then either P or P ′ (or both) are not successful.
Then, from P 3 Q , P ′ 3 Q and Def. 4.3.1 we have that Q is syn-
chronizable with both P and P ′. Hence, we have that R = P + P ′ is
synchronizable with Q .

b) On the other hand, if Q is not successful, from P 3 Q , P ′ 3 Q
and Def. 4.3.1 we have that Q is synchronizable with both P and P ′.

Thus, ∃α, β . P
α

=⇒,P ′ β
=⇒,Q

α
=⇒,Q

β
=⇒ (where α, β stand for actions

complementary to α and β, respectively). Hence, even in presence of τ -
actions before α or β we have that R = P + P ′ is synchronizable with
Q .

(2) a) If R
τ−→ R′, then either P

τ−→ R′ or P ′ τ−→ R′. In any case, from
P 3 Q , P ′ 3 Q and Def. 4.3.2 we have that R′ 3 Q . If we consider
R′′ = R′ + R′ we will have that R′′ 3ext Q , while obviously R′′ ≡ R′.

b) If Q
τ−→ Q ′, from P 3 Q , P ′ 3 Q and Def. 4.3.2 we have both

P 3 Q ′ and P ′ 3 Q ′. Since R = P + P ′, we infer R 3ext Q ′.

(3) a) If R
x(w)−→ R′ and Q

x̄ y−→ Q ′, then P
x(w)−→ R′ or P ′ x(w)−→ R′ (or

both). In any case, from P 3 Q , P ′ 3 Q and Def. 4.3.3 we have
that R′{y/w} 3 Q ′. If we consider R′′ = R′ + R′ we will have that
R′′{y/w} 3ext Q ′, while obviously R′′ ≡ R′.
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b) Similarly, if Q
x(w)−→ Q ′ and R

x̄ y−→ R′, then either P or P ′ (or both)
will present a transition x̄ y leading to R’. Then, from P 3 Q , P ′ 3 Q and
Def. 4.3.3 we have that R′ 3 Q ′{y/w}. Again, if we consider R′′ = R′+R′

we will have that R′′ 3ext Q ′{y/w}, while obviously R′′ ≡ R′.

(4) a) If R
x(w)−→ R′ and Q

x̄(w)−→ Q ′, then P
x(w)−→ R′ or P ′ x(w)−→ R′ (or both). In

any case, from P 3 Q , P ′ 3 Q and Def. 4.3.4 we have that R′ 3 Q ′. If
we consider R′′ = R′ + R′ we will have that R′′ 3ext Q ′, while obviously
R′′ ≡ R′.

b) Similarly, if Q
x(w)−→ Q ′ and R

x̄(w)−→ R′, then either P or P ′ (or both)
will present a transition x̄ (w) leading to R’. Then, from P 3 Q , P ′ 3 Q
and Def. 4.3.4 we have that R′ 3 Q ′. Again, if we consider R′′ = R′ + R′

we will have that R′′ 3ext Q ′, while obviously R′′ ≡ R′. ¥

Hence, once we have proved that an attachment among two roles P and Q
is compatible, for any role R = P + P ′ that extends P we only need to
test the compatibility of the additional behavior P ′. This result justifies the
introduction of linguistic constructions related to inheritance at the level of
a higher-order language, in order to hide the complexity of the relation of
inheritance to software engineers.

6 Discussion

The importance of specification and analysis is more evident as software sys-
tems become more complex. However, there is a lack of methods and tools
specifically developed for the specification and analysis of the structure of
software systems. Traditionally, software architectures have been described in
an informal manner, leading to problems in the development process.

In this work, we tried to show how the use of π-calculus, a well-known process
algebra, can be a solution to some of these problems. Mobility is easily specified
in π-calculus, which makes our proposal specially interesting for systems with
evolving communication topology, such as open systems. We have given a
definition of role in the context of π-calculus, and described how roles can be
derived from the specification of components.

However, the main contributions of this work are the relations of compatibil-
ity and inheritance defined in the context of the π-calculus, together with the
properties that we have proven are hold by these relations. Since bisimilarity is
not adequate for comparing roles, we have defined a relation of compatibility
which formalizes the notion of conformance of behavior among components.
We have also defined a relation of role inheritance and extension which pre-
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serves compatibility. This relation permits the replacement of components
with specialized versions, maintaining the compatibility of the system with no
need of checking the attachments modified by the replacement.

The examples included in this work are deliberately simple, and they are pro-
vided with the intention of illustrating the concepts described. More complex
and therefore more interesting examples, including not binary architectures,
can be found in [16] which contains a case study about a distributed auction
showing the applicability of our work.

In the last years, SA has deserved active research interest [4], and a great
number of proposals for architecture description, analysis and development
have been presented. The basic idea which is behind all these proposals is that
of focusing on identifying the main blocks or components for building software
systems, and describing the interaction patterns that these components follow.
However, some proposals [17,18] differentiate between components, described
by a set of ports, and connectors, for gluing components, and described by a
set of roles. From our point of view, the distinction between components and
connectors is often subtle. Usually software artifacts share characteristics of
components (they perform some computation) and connectors (they serve to
interconnect other components). Furthermore, the composition of components
and connectors would lead to hybrid composites with free ports and roles
which could be classified neither as components nor as connectors. In order to
maintain regularity and simplicity, we do not distinguish at the specification
level between these categories, and both – components and connectors – are
called generically components, and are described by a set of roles representing
their interface. This choice also simplifies the formalization of the definitions
of roles, compatibility, and inheritance, and the corresponding results about
successful composition.

A complete discussion about all the proposals related to SA would require a
separate work, but a good comparison on some of the most relevant can be
found in [19,20]. Many of these proposals have a formal basis, which allows
some kind of verification of the architectures described, either for checking
their conformance with architectural styles, or for checking diverse properties
of the architectures. Hence, process algebras, such as CSP [6], π-calculus [21],
or ACP [22], and also other formalisms, such as the CHAM [23], TLA [24], Z
[25], posets [26], and graph grammars [27], have been proposed as the formal
basis for different architectural description languages and frameworks. We
shall discuss now those which are closer to our approach.

The TOOLBUS architecture [22] uses interface specifications, which they call
scripts, for specifying the behavior of components. These scripts are written
in a timed extension of the process algebra ACP. However, their purpose is
mainly descriptive, and not analytical, and they restrict themselves to a fixed
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architecture, while we try to address the description of arbitrary software
architectures.

Rapide [26] is an event-based ADL in which the behavior of components is
given by event patters that describe partially ordered set of events or posets.
Then, simulation is used to check the consistency of interfaces. Each simula-
tion results in a poset that represents one particular interaction among the
components. Proper or correct orderings of events are described by imposing
constraints on posets.

In [28], the π-calculus is used for defining the semantics of the ADL Darwin
[21]. Although type checking was initially reduced in Darwin to name equiva-
lence, later works [29] propose the description of the behavior of components
using finite state Labeled Transition Systems, and their analysis by means
of reachability analysis with the TRACTA framework [30]. Like in our ap-
proach, interface description using roles and hierarchical composition are used
to minimize state explosion. However, the formalism used lacks expression of
mobility and is not suitable for describing dynamic architectures, nor they con-
sider aspects like inheritance or refinement of behavior. An interesting point
of these works is that the authors claim that their approach allows to check
not only for deadlock, but also for other safety and liveness properties, when
these properties are conveniently specified as finite state machines. The later
suggests an interesting research line which deserves further consideration.

Our definition of compatibility follows the ideas developed in [6], where CSP
is proposed for the specification of the behavior of components in the ADL
Wright. However, formalisms like CSP or CCS do not seem appropriate for
the description of structures with changing communication topology. At most,
CSP can be used in systems with a fixed number of configurations, at is shown
in [31], but not in highly dynamic systems, where formalisms like π-calculus
are best suited, making possible the specification of roles for dynamic systems.
Therefore, our definition of compatibility must take into account mobility.

Allen and Garlan’s work is based on the concept of refinement in CSP. In their
paper, refinement, which could be roughly described as a relation of inclusion
between processes, is used to define a relation of compatibility between asym-
metric ports (representing components) and roles (representing connectors
between components). A port is compatible with a role if the former refines
the later. Our approach differs from theirs in that we do not distinguish be-
tween components and connectors; a connector is considered as a special kind
of component, and like any other component is represented by a set of roles,
partial abstractions of its interface. This leads to a much simpler and regular
setting in which attachments are made between roles which present actions of
different sign, representing components of different sign, too.
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Another difference with [6] is that our approach gives a methodology for spec-
ifying the roles of a component, and need no transformation of the roles (e.g.
like their deterministic versions of roles) for compatibility checking. Further-
more, their work does not address issues of inheritance or extension which in
our work are used for defining the conditions of component substitutability
preserving the compatibility of the architecture.

The notion of compatibility is present in some other relevant works, such as
[32] or [33]. In [32] the CHAM is used for specifying software architectures
and two different kinds of analysis are used for checking liveness properties of
a certain architecture. However, they do not address issues of inheritance or
extension. In [33], finite-state diagrams are used for the specification of what
they call protocols, and relations of compatibility and protocol subtyping are
also provided. While our approach leads to similar results, we overcome some
limitations present in theirs. First, our proposal work addresses the specifi-
cation and analysis of dynamic systems, while theirs can be applied only to
static components. Second, we use name restriction to obtain modular specifi-
cations of components and roles, while in [33] messages are sent to a common
pool, from which they could be retrieved by any component in the system;
this being easily error-prone. Third, we use global and local choices to state
the responsibilities for action and reaction, while they only take into account
synchronous global decisions. Finally, in their approach, if a protocol presents
an output action, any compatible protocol must present a complementary in-
put action, in the sense that what they call undefined receptions can’t occur.
However, we can check the compatibility of agents with different sets of free
names and actions, allowing the combination of components which match only
partially.

The notion of inheritance and extension of behavior presented in this paper
has several analogies with the notion of Action Refinement in the context of
process algebras [34]. The underlying motivation of both approaches is similar;
both explore the relations among derived or refined versions of components and
specifications. However, action refinement refers to a relation among agents
by which an atomic action in one agent is replaced by a whole process in the
other. Both agents describe the same component, but at different levels of
abstraction, and action refinement can be used as a guide in the path from
specification to implementation [35] by adding further details to components
during the development process. On the other hand, our relation of inheritance
supports the replacement of a component (usually within the same level of
abstraction) with a different one whose roles describe weaker requirements
or offer a larger functionality, in a similar way as inheritance is used in the
object-oriented paradigm (which motivates the name of our relation). Hence,
both approaches are complementary.
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Our current work is related to the development of tools for checking the rela-
tions of compatibility and inheritance introduced in this work. In particular,
we are working with prototypes derived from the Mobility Workbench [3].
Another promising research line consists on the analysis of other properties
of software architectures, apart from deadlock-freedom. As shown in [30], if
we specify in π-calculus both a component (or its roles, to be exact), and
one certain property it must fulfill, it is possible to check if the behavior of
the component satisfies the property by analyzing the compatibility of these
agents.

Nevertheless, π-calculus is a low-level notation, which makes difficult its di-
rect application to industrial-size software development. Hence, we are also
developing LEDA [9], a higher-level Architecture Description Language which
is based on the calculus. LEDA integrates the relations of compatibility and
inheritance presented in this work, and will serve to evaluate their possibilities
to solve real problems in software development.
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