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Abstract

The ability of reconfiguring software architectures in order to adapt them to new
requirements or a changing environment has been of growing interest. We propose
a uniform algebraic approach that improves on previous formal work in the area
due to the following characteristics. First, components are written in a high-level
program design language with the usual notion of state. Second, the approach deals
with typical problems such as guaranteeing that new components are introduced in
the correct state (possibly transferred from the old components they replace) and
that the resulting architecture conforms to certain structural constraints. Third,
reconfigurations and computations are explicitly related by keeping them separate.
This is because the approach provides a semantics to a given architecture through
the algebraic construction of an equivalent program, whose computations can be
mirrored at the architectural level.

1 Introduction

One of the topics which is raising increased interest in the Software Archi-
tecture community is the ability to specify how an architecture evolves over
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time, in particular at run-time, in order to adapt to new requirements or new
environments, to failures, and to mobility [25,5,34,19]. This topic raises several
issues [24], among which:

modification time and source Architectures may change before execution,
or at run-time (called dynamic reconfiguration). Run-time changes may be
triggered by the current state or topology of the system (called programmed
reconfiguration [6]) or may be requested unexpectedly by the user (called
ad-hoc reconfiguration [6]).

modification operations The four fundamental operations are addition and
removal of components and connections. Although their names vary, those
operators are provided by most reconfiguration languages (like [6,21,1]). In
programmed reconfiguration, the changes to perform are given with the
initial architecture, but they may be executed when the architecture has
already changed. Therefore it is necessary to query at run-time the state of
the components and the topology of the architecture.

modification constraints Often changes must preserve several kinds of prop-
erties: structural (e.g., the architecture has a ring structure), functional, and
behavioural (e.g., real-time constraints).

system state The new system must be in a consistent state.

There is a growing body of work on architectural reconfiguration, some of it
related to specific Architecture Description Languages (ADL), and some of
a formal, ADL-independent nature. Most of the proposals exhibit one of the
following drawbacks.

• Arbitrary reconfigurations are not possible: Darwin [17] only allows compo-
nent replication; ACME [23] only allows optional components and connec-
tions; Wright [1] requires the number of distinct configurations to be known
in advance.

• The languages used for the representation of computations are very simple
and at a low level of abstraction; for instance, rewriting of labels [14], process
calculi [22,2,1,18], term rewriting [29,10], graph rewriting [28]. They do not
capture some of the abstractions used by programmers and often lead to
cumbersome specifications.

• The combination of reconfiguration and computation, needed for run-time
change, leads to additional formal constructs: [14] uses constraint solving,
[22,1,2] define new semantics or language constructs for the process calculi,
[10] must dynamically change the rewriting strategies, [28] imposes many
constraints on the form of graph rewrite rules because they are used to ex-
press computation, communication, and reconfiguration. This often results
in a proposal that is not very uniform, or has complex semantics, or does
not make the relationship between reconfiguration and computation very
clear.
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To overcome some of these disadvantages, we propose to use a uniform alge-
braic framework based on Category Theory and a program design language
with explicit state. The former allows us to represent both architectures and
their reconfigurations, and to explicitly relate the computational with the ar-
chitectural level in a direct and simple way. On the other hand, the language
incorporates some of the usual programming constructs while keeping a simple
syntax to be formally tractable.

To be more precise, architectures are graphs whose nodes are programs—
written in CommUnity, a Unity-like language with the usual notion of
state—and arcs denote superposition relationships. Reconfiguration is spec-
ified through conditional graph rewriting rules that depend on the state of
the involved components. Rules are based on the double-pushout approach to
graph transformation and are defined in a way which guarantees that:

• components are removed in a quiescent state [15] (i.e., when not interacting
with other components);

• new components are introduced in a correctly initialised state;
• the resulting architecture conforms to certain structural constraints spec-

ified by a fixed graph constraining the possible interconnections between
components.

The rules also allow to transfer state between old components and their re-
placements. Moreover, the categorical underpinnings provide a semantics for
configurations in terms of a construction that returns a program equivalent
to the given architecture. Computations are performed on the components of
the architecture in a way that is consistent with the semantics.

We assume the reader is familiar with basic notions of Category Theory and
with the double-pushout approach to graph transformation. The appendix
contains a brief review of typed graphs and introduces the notation used.

The running example is inspired by the airport luggage distribution system
used to illustrate Mobile Unity [27]. One or more carts move continuously
in the same direction on a U units long circular track. A cart advances one
unit at each step. Along the track there are stations. There is at most one
station per unit. Each station corresponds to a check-in counter or to a gate.
Carts take bags from check-in stations to gate stations. All bags from a given
check-in go to the same gate. A cart transports at most one bag at a time.
When it is empty, the cart picks a bag up from the nearest check-in.

Carts must not bump into each other, e.g., if a cart is moving and the cart in
front of it is stopped at a station loading or unloading a bag. This is avoided
by changing the movement interactions between carts, depending on their
location. We also consider that management decides to equip each cart with
two counters to compute how many bags are processed on average for each
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completed lap. The rationale is to check how e�cient is the track layout, i.e.,
the distribution of the stations along the circuit.

2 CommUnity

CommUnity [8] is a parallel program design language initially developed to
show how programs fit into Goguen’s categorical approach to General Systems
Theory. It is an action based version of Unity [3], but it also draws elements
from IP [11]. Since then, the language and its framework have been extended
to provide a formal platform for architectural design of open, reactive, recon-
figurable systems [7,32,31,16].

We assume a fixed algebraic data type specification. In this paper we use sorts
int (integers) and bool (booleans) with the usual constants and operations,
including a function if : bool⇥int⇥int! int with the obvious meaning. We
also need list(int) for lists of integers. A value for a list is written [l

1

, l
2

, . . .]
and thus [] is the empty list. The operations ‘head’ and ‘tail’ perform as usual,
and ‘+’ represents list concatenation.

Formal definitions and proofs of the results in this and the next section can
be found in [30,16].

2.1 Programs

The syntax of a CommUnity program is

prog P
in in(V )
out out(V )
prv prv(V )
init I
do []

a2sh(A)

a : G(a)! k
l2D(a)

l := E (a, l)

[] []
a2prv(A)

prv a : G(a)! k
l2D(a)

l := E (a, l)

where

• in(V ) is the set of input variables. They are imported from the environment
of the program, i.e., they are to be connected with output variables of other
components in the environment. Their values can be read but not modified
by the program.
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• out(V ) and prv(V ) are the sets of output and private variables, respectively.
They are called local to the program, because the environment cannot mod-
ify them. Output variables are accessible to the environment (can be read)
but private variables are not. We define loc(V ) = out(V ) [ prv(V ).

• I is a proposition over the local variables, defining their admissible values
in the initial state, i.e., the state in which the component is added to the
system.

• prv(A) is the set of private actions. Their execution is uniquely under the
control of the program and, thus, it is the program that determines when a
private action is performed.

• sh(A) is the set of shared actions. Their execution is also under the control
of the environment, i.e., their execution may require synchronisation with
actions of other components. In a sense, shared actions provide interaction
points as in IP.

• G(a), a boolean expression over the variables, is the guard of a, i.e., when
G(a) is false, a cannot be executed. Normally, we omit the guard when it
is ‘true’.

• D(a) is the domain of a, defined as the set of local variables that action a
can change—its write frame.

• For every local variable l in D(a), l:=E (a,l) is an assignment, with E (a, l)
an expression of the same sort as l. When an action has empty domain we
use skip to denote the absence of assignments.

The behaviour of a closed program, i.e., a program with no input variables,
is as follows. The program starts its execution in some state that satisfies the
initial condition. At each step, one of the actions whose guard is true is selected
and its assignments are executed simultaneously. Furthermore, private actions
that are infinitely often enabled are selected infinitely often. The behaviour
of an open program can only be given in the context of a configuration in
which its input variables have been connected to output variables of other
components. We address this issue in Section 2.3.

We now present programs to be used in the remaining of the paper. The
program that controls a cart is

prog Cart
in idest, ibag : int
out obag : int
prv loc, dest : int
init 0  loc < U ^ -1  dest < U ^ (dest = -1 , obag = 0)
do move: loc 6= dest ! loc := loc +U 1
[] get: dest = -1 ! obag := ibag k dest := idest
[] put: loc = dest ! obag := 0 k dest := -1

where +U is addition modulo U .
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Locations are represented by integers from zero to the track length minus one.
Bags are represented by integers, the absence of a bag being denoted by zero.
Whenever the cart is empty, its destination is an impossible location, so that
the cart keeps moving until it gets a bag and a valid gate location through
action ‘get’. When it reaches its destination, the cart unloads the bag through
action ‘put’. Notice that since input variables may be changed arbitrarily by
the environment, the cart must copy their values to output variables to make
sure the correct bag is unloaded at the correct gate.

To be able to compute how many bags are processed per lap on average, we
add two counters.We memorise the current position so that we know when a
lap has been completed. The bag counter is incremented when a bag is fetched
from the check-in.

prog Cart Stat
in idest, ibag : int
out obag : int
prv loc, dest, sloc, laps, bags : int
init 0  loc < U ^ -1  dest < U ^ (dest = -1 , obag = 0)

^ sloc = loc ^ laps = 0
do move: loc 6= dest ^ loc +U 1 6= sloc ! loc := loc +U 1
[] lap: loc 6= dest ^ loc +U 1 = sloc ! loc := loc +U 1 k laps := laps + 1
[] get: dest = -1 ! obag := ibag k dest := idest k bags := bags + 1
[] put: loc = dest ! obag := 0 k dest := -1

A check-in counter starts with a non-empty queue of bags, and loads one by
one onto passing carts.

prog Check In
out bag, dest : int
prv loc : int; next : bool; q : list(int)
init 0  dest < U ^ 0  loc < U ^ q 6= [] ^ next
do prv new: q 6= [] ^ next ! bag := head(q) k q := tail(q) k next := false
[] put: ¬next ! next := true

Variable ‘next’ is used to impose sequentiality among the actions. To build a
system for our example, the ‘put’ action must be synchronised with a cart’s
‘get’ action and variables ‘bag’ and ‘dest’ must be shared with ‘ibag’ and
‘idest’, respectively.

A gate starts with an empty queue of bags and adds each new bag to the
front.
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prog Gate
in bag : int
prv loc : int; q : list(int)
init 0  loc < U ^ q = []
do get: q := [bag] + q

In an architecture for our example, action ‘get’ must be synchronised with a
cart’s ‘put’ action, and variable ‘bag’ must be shared with ‘obag’.

To take program state into account, we introduce a fixed set LV of typed
variables, called logical variables. A program instance is then defined as a pair
hP, ✏i with P a program and ✏ : loc(V ) ! Terms(LV ) assigns to each local
variable l of P a term—built from the logical variables and the functions of
the data type signature—of the same sort as l. No valuation is assigned to
input variables because those are not under control of the program. Notice
also that the valuation may return an arbitrary term, not just a ground term.
Although in the running system the value of each program variable is given
by a ground term, we need logical variables to be able to write reconfiguration
rules whose left-hand sides match components with possibly infinite distinct
combinations of values for their variables (see Section 4).

For the rest of the paper, LV = {ln, bn, dn, in : int; rn : bool; qn : list(int) | n =
0, 1, 2}. We write x

0

simply as x. We represent program instances in tabular
form (see next section). If P has no local variables, ✏ is empty and we write

simply P .

2.2 Superposition

A morphism � : P ! P 0 from a program P to a program P 0 states that P
is a component of the system P 0 and, as shown in [8], captures the notion
of program superposition [3,11]. Mathematically speaking, the morphism is
defined as follows.

Each variable v of P is mapped to a variable �(v) of P 0 of the same sort as v.
Moreover, output (resp. private) variables of P are mapped to output (resp.
private) variables of P 0. However, if v is an input variable, �(v) may be either
an input or output variable. The latter case accounts for v being shared with
an output variable of another component of P 0. Because colimits compute a
composition that is “minimal”, it does not internalise variables (i.e., they do
not become private). If required, this must be done explicitly through a hiding
operation, for which a categorical semantics can also be given [16].

Each action name a of P is mapped to a (possibly empty) set of action names
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�(a) = {a0i | i = 1, . . . , n} of P 0. Those actions correspond to the di↵erent
possible behaviours of a within the system P 0. If a is shared (resp. private),
so is each a0i. Moreover, if a and b are distinct actions of P , then �(a) and
�(b) are disjoint, i.e., internal synchronisation is not allowed. Each action a0i
must preserve the functionality of a, possibly adding more things specific to
other components of P 0. In particular, the guard of a0i must not be weaker
than the guard of a, and the assignments of a must be contained in a0i, up to
the variable renaming introduced by the morphism.

Finally, each action a0 of P 0 that modifies a given variable �(l) must be in the
image set of some action of P that changes l. In other words, the new actions
of P 0—i.e., those unrelated to the actions of P— are not allowed to change
the local variables of P . This enforces that a program’s local variables are only
under its control, even if the program is combined with other programs into a
larger one. It corresponds to the requirement in Unity that new actions may
only modify the superposed variables, they cannot contain assignments to the
underlying variables.

We define refinement morphisms as a subset of superposition morphisms,
namely those that do not alter the border between a program and its en-
vironment. More precisely, for � to be a refinement morphism, it must map
input variables of P into input variables of P 0, and it must be injective over
the non-private variables of P , i.e., P 0 may not collapse the externally vis-
ible variables of P . Moreover, if a is a shared action of P , then �(a) must
be non-empty, i.e., shared actions of P must be implemented by P 0. Finally,
for P 0 to refine P , there must be a refinement morphism � : P ! P 0 and
the initialization condition of P 0 must imply that of P (after renaming the
variables according to �).

It is obvious that ‘Cart Stat’ refines ‘Cart’, i.e., that morphism

Cart

idest 7!idest, ibag 7!ibag

obag 7!obag, loc 7!loc, dest 7!dest

move 7!{move,lap}, get7!get, put7!put

// Cart Stat

obeys the above conditions and that ‘Cart Stat’ strengthens the initialisation
condition of ‘Cart’. Notice how action ‘move’ is divided in two sub-cases,
each strenghening the guard and adding more assignments. Henceforth, when
presenting superposition morphisms we omit the identity mappings.

A morphism � : hP, ✏i ! hP 0, ✏0i between program instances is simply a super-
position morphism � : P ! P 0 that preserves state. To be more precise, the
algebraic data type axioms must entail ✏(l) = ✏0(�(l)) for any local variable l
of P and any substitution of the logical variables.

The previous refinement may be extended to the following morphism, where
the instance on the right represents a cart that has completed at least one lap
and will complete another one with the next move:
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Cart
loc l
dest �1
obag l � l

move 7!{move,lap} //

Cart Stat
loc l
dest �1
obag 0
sloc l +U 1
laps i + 1
bags b

Programs and their morphisms constitute a category Prog, and program in-
stances and their morphisms form a category Inst. Moreover, there is a forget-
ful functor IP : Inst! Prog. Given a diagram D in Inst, we write Vars(D)
for the set of logical variables that appear in the program instances of D.

2.3 Configurations

Interactions between programs are established through action synchronisation
and memory sharing. This is achieved by relating the relevant action and
variable names of the interacting programs.

In Category Theory, all relationships between objects must be made explicit
through morphisms. In the particular case of CommUnity programs, it means
that names are not global. To state that variable (or action) a

1

of program P
1

is the same as variable (resp. action) a
2

of P
2

one needs a third, “mediating”
program C—the channel—containing just a variable (resp. action) a and two
morphisms �i : C ! Pi that map a to ai. A channel is a degenerate program
that provides the basic interaction mechanisms (synchronisation and memory
sharing) between two given programs and adds no computations of its own.
Thus a channel has only input variables and shared actions with true guards
and no assignments.

To make examples clearer and more compact, we indicate the non-private
variables and actions of a program around its name, and connect directly
the shared variables and the synchronised actions. Inspired by the Darwin
notation [17], we use black circles for output variables and white circles for
input variables. Actions have no special notation. For example,

P

a

cQQQQQQQQQQQQQ

b Q
•

out

in

�

is an abbreviation for

P
prog C
in i : int
do d: skip

in [ i
{a,b} [ d

oo i 7!out

d 7!c

// Q

We point out that this notation is only for the “horizontal” interconnection of
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non-private variables and actions of programs. For the “vertical” relationships
(i.e., general superposition involving also the private names) we continue to
use arrows labelled with the mappings.

Problems arise if two synchronised actions update a shared variable in distinct
ways. As actions only change the values of local variables, it is su�cient to
impose that output variables are not shared, neither directly through a single
channel nor indirectly through a sequence of channels. We call such diagrams
configurations. This restriction forces interactions between programs to be
synchronous communication of values (from output to input variables), a very
general mode of interaction that is suitable for the modular development of
reusable components, as needed for architectural design.

It can be proved that every finite configuration has a colimit, which returns the
minimal program that simulates the execution of the overall system. Briefly
put, the colimit is obtained by taking the disjoint union of the variables (mod-
ulo shared variables) and the cartesian product of actions (modulo synchro-
nized ones) to denote parallel execution of non-synchronised actions. Actions
are synchronized by taking the conjunction of the guards and the parallel
composition of assignments. An example is provided in the next section.

A configuration instance is a diagram D in Inst such that IP(D) is a con-
figuration. Since output variables are not shared, they have no conflicting
valuations. Therefore every configuration instance has a colimit, given by the
colimit of the underlying configuration together with the union of the valua-
tions of the program instances.

3 Architectures

3.1 Connectors

Software Architecture has put forward the notion of connector to encapsu-
late the interactions between components. An n-ary connector consists of n
roles Ri and one glue G stating the interaction between the roles. These act
as “formal parameters”, restricting which components may be linked together
through the connector. We represent a connector (instance) by a configuration
(instance) of the form

C
1

�1
vvllllll

⇢1 // R
1

G ...
...

Cn

�nhhRRRRRR ⇢n // Rn

where each channel Ci indicates which variables and actions of role Ri are
used in the interaction specification, i.e., the glue. An n-ary connector can be
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applied to components P
1

, . . . , Pn when Pi refines Ri, for each i = 1, . . . , n.
This corresponds to the intuition that the “actual arguments” (i.e., the com-
ponents) must instantiate the “formal parameters” (i.e., the roles).

An architecture is then a configuration where all programs interact through
connectors, and all roles are instantiated, i.e., there are no “dangling” roles.
An architecture instance is the obvious extension to Inst. Therefore any ar-
chitecture (instance) has a semantics given by its colimit.

We now present the connectors necessary for the remaining of this paper.

3.1.1 Subsumption

The logical analogy to synchronisation is equivalence. However, to avoid a cart
c
1

colliding with the cart c
2

right in front of it we only need implication: if c
1

moves, so must c
2

, but the opposite is not necessary. The analogy with im-
plication also extends to the counter-positive: if c

2

cannot move, e.g., because
it is (un)loading a bag, then neither can c

1

. We call this “one-way” synchro-
nisation action subsumption. For our example, the movement of c

1

subsumes
the movement of c

2

. The connector is only possible because our morphisms
allow an action to ramify into a set of actions. In this case, the movement
action of c

2

ramifies in two: one for the case in which it must co-occur with
the movement of c

1

, the other when it can occur freely. The generic action
subsumption connector and its application to two carts is

Subsume

Subsumer

a 7!move

✏✏

a

ab

eeeeeeeeeeeeeeeeeeee YYYYYYYYYYYYYYYYYYYYY

b

bQQQQQQQQQQQQQQQQ

Subsumed

b 7!move

✏✏

Cart Cart

with prog Subsumer
do a: skip

prog Subsume
do ab: skip

[] b: skip

prog Subsumed
do b: skip

.

Although the two roles are isomorphic, the binary connector is not symmetric
because the connections treat the two actions di↵erently: ‘b’ may be executed
alone at any time, while ‘a’ must co-occur with ‘b’. Hence, action ‘a’ is the one
that we connect to the ‘move’ action of c

1

, while action ‘b’ is associated to the
movement of c

2

. The colimit object of the above configuration is given in Figure
1. Notice how it contains all possible combinations of the non-synchronised
actions ‘get’ and ‘put’ of each cart.
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prog CollisionFreeCarts
in idest1, ibag1, idest2, ibag2 : int
out obag1, obag2 : int
prv loc1, loc2, dest1, dest2 : int
do move1move2: loc1 6= dest1 ^ loc2 6= dest2

! loc1 := loc1 +U 1 k loc2 := loc2 +U 1
[] move2: loc2 6= dest2 ! loc2 := loc2 +U 1
[] get1: dest1 = -1 ! obag1 := ibag1 k dest1 := idest1
[] put1: loc1 = dest1 ! obag1 := 0 k dest1 := -1
[] get2: dest2 = -1 ! obag2 := ibag2 k dest2 := idest2
[] put2: loc2 = dest2 ! obag2 := 0 k dest2 := -1
[] get1get2: dest1 = -1 ^ dest2 = -1

! obag1 := ibag1 k dest1 := idest1 k obag2 := ibag2 k dest2 := idest2
[] get1put2: dest1 = -1 ^ loc2 = dest2

! obag1 := ibag1 k dest1 := idest1 k obag2 := 0 k dest2 := -1
[] put1get2: loc1 = dest1 ^ dest2 = -1

! obag1 := 0 k dest1 := -1 k obag2 := ibag2 k dest2 := idest2
[] put1put2: loc1 = dest1 ^ loc2 = dest2

! obag1 := 0 k dest1 := -1 k obag2 := 0 k dest2 := -1

Fig. 1. The program resulting from applying Subsume to two carts.

3.1.2 Inhibition

To inhibit an action we must let its guard become false. Due to the semantics
of colimit, this can be done without changing the guard directly. It su�ces to
synchronise the action with one that has a false guard, obtaining the unary
connector

Inhibit a a Action

with glue prog Inhibit
do a: false ! skip

and role prog Action
do a: skip

.

3.1.3 Asynchronous Communication

We assume a sender wants to transmit a message M , which is a set of output
variables. If a receiver wants to get the message, it must provide input variables
M 0 which correspond in number and sort to those of M . The sender produces
the values, stores them in M , and waits for an acknowledge to produce new
values for M . For that purpose, we assume the sender has an action ‘put’
which must be executed before the new message is produced. Similarly, the
receiver must be informed when a new message has arrived, so that it may
start processing it. For that purpose we assume that a receiver has a single
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action ‘get’ which is the first action to be executed upon the receipt of a new
message.

The connector explicitly models message transmission as the parallel assign-
ment of the message variables. For this to be possible, the output variables
M of the sender must be input variables of the glue, and the input variables
M 0 of the receiver must be output variables of the glue. The glue’s actions
are also symmetrical to those of the sender and receiver: there is a ‘get’ ac-
tion to be synchronised with the action ‘put’ of the sender, thus performing
the transmission and the notification of the sender, and there is a ‘put’ ac-
tion to be synchronised with the ‘get’ action of the receiver. This decouples
the sender’s action from the receiver’s, thus imposing the asynchronicity. The
message passing connector presented next only transmits a single variable of
sort t. It can be trivially generalised to messages as a set of variables.

Sender
•o i�

put get

Msg •o i�

put get

Receiver

prog Msg
in i : t
out o : t
prv ready : bool
init ready
do get: ready ! o := i k ready := false
[] put: ¬ready ! ready := true

prog Sender
out o : t
do put: skip

prog Receiver
in i : t
do get: skip

3.2 Initial Architectures

An important architecture instance for system specification is the one that
provides the initial values for the variables. For that purpose, each local vari-
able is associated to a ground term such that all initialisation conditions are
satisfied. An example initial architecture, using instances of the previous con-
nectors, is given in Figure 2. Notice that the ‘put’ action of the check-in
counter is inhibited because there is no cart yet at that location to load the
bag. Similarly for the carts’ and gate’s ‘get’ actions.

3.3 Architectural Styles

In general, a role may be instantiated by di↵erent components, and it may
be even the case that the same component can instantiate the same role in
di↵erent ways (e.g., there are three morphisms from ‘Action’ to ‘Cart’). But
normally only a few of all the possibilities are meaningful to the application at
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Subsume Inhibit
a

a

Inhibit
a

a

Subsumer

a 7!move

✏✏

a

ab

XXXXXXXXXXXXXXXXXXX

b

bNNNNNNNNNNNNNN

Subsumed

b 7!move

✏✏

Action

a 7!put

✏✏

Action

a 7!get

✏✏Cart
loc 0
dest �1
obag 0

Cart
loc 1
dest �1
obag 0

Check In
loc 4
bag 0
dest 9
next true
q [11, 22]

Gate
loc 9
q []

Action

a 7!get

OO

a a Inhibit Action

a 7!get

eeKKKKKKKKKKKKKKKKKK
a a Inhibit

Fig. 2. An initial architecture with two carts and two stations.

hand. The allowed ways to apply connectors to components can be described
by typed graphs. This leads to a declarative notion of architectural style: it
consists of a set of components, a set of connectors, and a diagram AS in
Prog using only those connectors and components. It is important to notice
that AS is not necessarily a configuration: since it shows in a single diagram
all morphisms that may occur in architectures, it may happen that output
variables are shared in AS.

Every architecture instance written by the user must then come equipped
with a morphism to AS proving that it obeys the restrictions imposed by AS.
Additionally, the typing must be meaningful. For example, in our case, a cart
in the architecture instance cannot be typed by a gate in the style.

Definition 1 An architecture instance D conforming to a style AS, also called

AS-architecture instance, is a pair hD, tDi with tD such that the following

diagram in Graph commutes.

1

G
Prog

G
InstIP

oo

�AS

�AS

OO

�D
tDoo

�D

OO

Another approach (introduced by [22] and adopted by [14,29]) is to view styles
as graph grammars that generate all graphs (i.e., architectures) belonging to
the style. In this case it is necessary to prove explicitly that the reconfiguration
rules do not generate graphs that do not belong to the style, while in the typing

1 See the end of the appendix for the meaning of the notation.
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approach this is automatically enforced (Proposition 6 in the next section).
On the other hand, the graph grammar approach to style is more expressive
than the typed graph approach: for instance, it allows to state constraints on
the number of components or abstract architectural patterns like pipe-filter
and layer. Since a graph grammar is just a set of graph productions and a
given start graph, that approach can be straightforwardly used within our
framework, where graph productions are substituted by reconfiguration rules
(described in the next section). However, we believe that typed graphs are
su�cient, simpler, and more straightforward in many occasions, namely when
only the kinds of interactions between the components have to be restrained.

The style for our example states, for instance, that the action subsumption
connector is only to be used for carts’ movement; it prevents the ‘put’ action
of a counter to subsume the ‘get’ action of a gate, among other combinations.

Inhibit a a Action

a 7!put

✏✏

Sender
•
o

i�

put

get

o 7!bag // Check In Sender
•
o

i�

put

get

dest [ ooo

Msg
•
o

i�

put

get

Msg
•
o

i�

put

get

Receiver
i 7!ibag // Cart Receiveridest [ ioo

Inhibit a a Action

a 7!get

66llllllllllllllll

Subsumer

a 7!move

OO

Sender
•
o

i�

put

get

obag [ o

hhQQQQQQQQQQQQQQQ

Subsumed

b 7!move

<<zzzzzzzzzzzzzzzzzzzzzzz

Subsume
b

b

fffffffffff

ab

a

""""""

Msg
•
o

i�

put

get

Inhibit a a Action
a 7!get // Gate Receiver

ibag [ ioo

4 Reconfiguration

Basically, dynamic reconfiguration is a rewriting process over architecture in-
stances, i.e., graphs typed over the objects and morphisms of Inst. This en-
sures that reconfiguration and computation are kept separate because, due to
the preservation of the typing enforced by typed graph morphisms, the state
of components and connectors that are not deleted nor added by a rule does
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not change.

Dynamic reconfiguration rules depend on the current state. Thus they must
be conditional rewrite rules. Within the algebraic graph transformation frame-
work it is possible to define conditional graph productions in a uniform way,
using only graphs and graph morphisms [13]. However, for our representa-
tion of components it is simpler, both from the practical and formal point of
view, to represent conditions as boolean expressions over the logical variables
appearing on the left-hand side instances.

As for components introduced by the rule, we provide full control to the rule
writer, letting him specify exactly in which state new components are added
to the architecture. For that purpose we require that the logical variables
occurring on the right-hand side of a rule also occur on the left-hand side.

Definition 2 A dynamic reconfiguration rule hp, mci is a graph production

p typed over G
Inst

where L, K, and R are architecture instances, Vars(R) ✓
Vars(L), and the matching condition mc is a proposition over Vars(L).

If there is an architectural style, then the three instances in a reconfiguration
rule must conform to the style, and the morphisms between them must also
preserve the typing given by the style.

Definition 3 An AS-dynamic reconfiguration rule for a style AS is a pair

hpAS : (hL, tLi l � hK, tKi r�! hR, tRi), mci where

• hL, tLi, hK, tKi, hR, tRi are AS-architecture instances,

• hp : (L
l � K

r�! R), mci is a dynamic reconfiguration rule,

• l; tL = tK = r; tR.

When a production only adds nodes and arcs, it may be reapplied again im-
mediately because the left-hand side is a sub-graph of the right-hand side. If
the left-hand side is matched more than once to the same part of the graph
to be rewritten, then no real new information is being added. Moreover, this
leads to infinite rewriting sequences. We thus restrict the allowed derivations.

Definition 4 A direct derivation G
p,m
=) H typed over a graph TG is called

productive if there are no typed morphisms lr : L ! R and x : R ! G such

that lr; x = m.

The existence of morphism lr indicates that it may be possible to apply the
production in such a way that no node or arc is deleted. The remaining condi-
tions check that the match m is being applied to a part of G that corresponds
to the right-hand side and therefore can have been generated by a previous
application of this production. Our definition is a particular case of produc-
tions with application conditions in the sense of [13]: a derivation G

p,m
=) H is
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productive if p is applicable to G using the negative application condition lr.

As an example, consider the labelled graph without edges a b a and

the production a b a boo // a
f // b . A sequence of two

direct derivations might lead to the graph a
f

&&

f

88b a whereas a sequence

of two productive derivations can only result in a
f //b a

foo and then no
further productive derivation is possible.

We can now define a dynamic reconfiguration step as a productive direct
derivation from a given architecture instance G to an architecture instance
H. In the algebraic graph transformation approach, there is no restriction on
the obtained graphs, but in reconfiguration we must check that the result is
indeed an architecture instance, otherwise the rule (with the given match) is
not applicable. For example, two separate connector addition rules may each
be correct but applying them together may yield indirect sharing of output
variables.

At any point in time, the current system is given by an architecture instance
without logical variables. Therefore applying a rule to an architecture instance
must also involve a compatible substitution of the logical variables occurring
in the rule by ground terms. Applying the substitution to the whole rule,
we obtain a rule without logical variables whose left hand side can be directly
matched to the current architecture. The reconfiguration proceeds as a normal
derivation (i.e., as a double pushout over typed graphs). However, the notion of
state introduces two constraints. First, the substitution must obviously satisfy
the matching condition. Second, the state of each program instance added by
the right-hand side satisfies the respective initialisation condition.

Definition 5 Given a style AS, an AS-architecture instance hG, tGi, an AS-

dynamic reconfiguration rule hpAS, mci, and a substitution � : Vars(L) !
Terms(;), an AS-dynamic reconfiguration step hG, tGi

�(pAS),m
=) hH, tHi is a

productive direct derivation G
�(pAS),m

=) H typed over G
Inst

such that

• �(pAS) is the rule obtained through replacement of every program instance

hP, ✏i by hP, ✏0i, with ✏0(l) = �(✏(l)) for every l 2 loc(V ),
• �(mc) is true,

• for each hP, ✏i in R \ r(K), �(✏(I)) is true,

• H is an architecture instance,

• m; tG = tL.

A rule conforming to a given style can only be applied to architecture instances
conforming to the same style, and the last condition states that the match
must preserve the typing given by the style. This guarantees that the resulting
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architecture also conforms to the style.

Proposition 6 The result of a dynamic reconfiguration step conforming to a

style AS is always an AS-architecture instance hH, tHi with unique tH .

PROOF. Consider the following diagram in Graph.

G
Inst

IP

✏✏

�L

m

����
��

��
��

��
��

��
��

��

�L

55

tL

⌧⌧9
9

9
9

9
9

9
9

9
9

9
9

9
9 �K

dwwwwwwww

{{wwwwwwww

loo r //

�K

cc

tK

��⌘
⌘
⌘
⌘
⌘
⌘
⌘
⌘
⌘
⌘
⌘
⌘

�R

m⇤

����
��

��
��

��
��

��
��

��

�R

kk

tR

zzu
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u

G
Prog

�G

�G

::

tG
++XXXXXXXXXXXXXXX �D

l⇤oo r⇤ //

�D

HH

tD ##G
G

G
G

G �H

�H

\\

tH
uul l l l l l l l

�AS

�AS

OO

The morphism tD exists and is unique because h�D, tDi is the pushout comple-
ment object in (Graph # �AS). We now prove hD, tDi is an AS-architecture,
i.e., that it satisfies Definition 1:

tD; �AS = l⇤; tG; �AS construction of tD in (Graph # �AS)

= l⇤; �G; IP hG, tGi is an AS-architecture

= �D; IP construction of �D in (Graph # G
Prog

)

Similarly, tH exists and is unique because hH, tHi is the pushout object in
(Graph # �AS) and we have

r⇤; tH ; �AS = tD; �AS construction of tH in (Graph # �AS)

= �D; IP hD, tDi is an AS-architecture

= r⇤; �H ; IP construction of �H in (Graph # G
Prog

)

From the uniqueness it results tH ; �AS = �H ; IP . ⇤

We now start presenting the reconfiguration rules for our running exam-
ple. Due to page width constraints, we omit the interface graph. A rule

L
l � K

r�! R is simply written as L ! R where the arrow is only used
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Cart
loc l

1

dest d
1

obag b
1

Cart
loc l

2

dest d
2

obag b
2

//

Subsume

Subsumer

a 7!move

✏✏

a

ab

XXXXXXXXXXXXXXXXXXX

b

bNNNNNNNNNNNNNN

Subsumed

b 7!move

✏✏
Cart
loc l

1

dest d
1

obag b
1

Cart
loc l

2

dest d
2

obag b
2

if l
2

= l
1

+U 1

Fig. 3. Adding an action subsumption connector.

Cart
loc l

1

dest d
obag b

Action

a 7!get

✏✏

a

aGate
loc l

2

q q
Inhibit

//

Msg
ready true
o 0

•
o

i�

put

get

Sender
o b

•o

i�

put

getssssssssss

o 7!obag

✏✏

Receiver

i 7!bag

✏✏Cart
loc l

1

dest d
obag b

Gate
loc l

2

q q

if l
1

= l
2

^ d = l
2

^ b 6= 0

Fig. 4. Before unloading a bag.

as a separator. It does not correspond to any total graph morphism. Also, a
dynamic rule hp, mci is written p if mc or simply p, if mc is a tautology.

The rule to avoid a cart colliding with the one in front of it is given in Figure 3.
Notice that although logical variables di and bi are not used in any way, they
must be stated explicitly because they are part of the program instances that
label the graph nodes. To remove the action subsumption connector when it
is not longer needed we just use the opposite rule, obtained by switching the
left- and right-hand sides, and negating the condition.

The rule in Figure 4 connects a cart to a gate when it passes in front of it.
Now only action ‘put’ can execute (because ‘get’ is inhibited by the initial
architecture and the guard of ‘move’ is false at this point). This will unload
the bag and trigger the opposite rule in Figure 5 to remove the connector.
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Msg
ready r
o i

•
o

i�

put

get

Sender
o b

•o

i�

put

gettttttttttt

o 7!obag

✏✏

Receiver

i 7!bag

✏✏Cart
loc l

1

dest d
obag b

Gate
loc l

2

q q

//

Cart
loc l

1

dest d
obag b

Action

a 7!get

✏✏

a

aGate
loc l

2

q q
Inhibit

if l
1

6= l
2

_ d 6= l
2

_ b = 0

Fig. 5. After unloading a bag.

A cart and a check-in station interact when they are co-located, the cart is
empty, and the check-in has undelivered bags. In that case the cart gets a new
bag and its destination (Figure 6).

To add statistics to the system, it is necessary to add to the style a diagram
similar to the one in Section 3.3, but using ‘Cart Stat’ instead of ‘Cart’. The
rules shown so far must also be duplicated for ‘Cart Stat’. Finally we need the
replacement rule given in Figure 7. The double-pushout approach guarantees
that a cart is replaced by one with statistics only when it is not connected
to any other component. This is important both for conceptual reasons—
components are not removed during interactions [15]—as technical ones: there
will be no “dangling” roles. This example also shows how a rule describes
transfer of state from an old to a new component. The transfer may involve
both copy of values and arbitrarily complex calculations of new values from
the old ones. In this case the initial value of the ‘bags’ counter depends on
whether the cart is carrying a bag or not.

An architecture instance is not just a labelled graph, it is a diagram with a
precise semantics, given by its colimit. We can define a computation step of
the system as being performed on the colimit and then propagated back to
the components of the architecture through the inverse of their morphisms to
the colimit. This keeps the state of the program instances in the architectural
diagram consistent with the state of the colimit, and ensures that at each
point in time the correct conditional rules are applied. As [20] we adopt a
two-phase approach: each computation step is followed by a reconfiguration
sequence. In this way, the specification of the components is simpler, because
it is guaranteed that the necessary interconnections are in place as soon as
required by the state of the components. In our example, a cart simply moves
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Action

a 7!get

✏✏

a

a

Cart
loc l

1

dest d
1

obag b
1

Inhibit

Action

a 7!put

✏✏

a

a

Check In
loc l
bag b
dest d
next r
q q

Inhibit

//

Msg
ready true
o 0

•
o

i�

put

get

Sender
o b

•o

i�

put

getssssssss

o 7!bag

✏✏

Receiver

i 7!ibag

✏✏Check In
loc l
bag b
dest d
next r
q q

Cart
loc l

1

dest d
1

obag b
1

Sender
o d

•
o

i�

put

getKKKKKKKK

o 7!dest

OO

Receiver

i 7!idest

OO

Msg
ready true
o 0

•o
i

�

put

get

if l = l
1

^ d
1

= �1 ^ b
1

= 0 ^ q 6= []

Fig. 6. Before loading a bag from a check-in station

Cart
loc l
dest d
obag b

//

Cart Stat
loc l
dest d
obag b
sloc l
laps 0
bags if(b = 0, 0, 1)

Fig. 7. Replacement of ‘Cart’ by ‘Cart Stat’.

forward without any concern for its location. Without the guarantee that an
action subsumption connector will exist whenever necessary, a cart would have
to know at all times the locations of the other carts to be sure it would not
collide with one of them. And this would make the system much more complex.

Definition 7 Given a style AS, an initial architecture instance G conform-

ing to AS, and a set of AS-dynamic reconfiguration rules, the configuration
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manager performs the following steps:

(1) allow the user to change AS and the set of rules;

(2) find a maximal sequence of AS-dynamic reconfiguration steps starting

with G, obtaining a new diagram G0;
(3) compute the colimit S of G0;
(4) if none of the actions of S can be executed, stop, otherwise update the

valuation of S according to the chosen action;

(5) propagate back the changes to the valuations of the program instances of

G0, call the new diagram G, and go back to step 1.

The first step caters for ad-hoc reconfiguration. For our system, it allows to
make the necessary additions to handle ‘Cart Stat’ programs.

It should be stressed that the above definition only provides the semantics of
the reconfiguration process. An actual implementation would not compute the
colimit explicitly, but execute the architecture directly in a distributed way,
taking the sharing of variables and synchronisation of actions into account.

5 Concluding Remarks

This paper presents an algebraic foundation for software architecture recon-
figuration. The approach is based on three pillars: the general framework of
Category Theory; the category of typed graphs and their morphisms; the cat-
egory of CommUnity programs with morphisms that capture superposition
and refinement. The first two allow us to use in a straightforward way the
double pushout approach to graph transformation. The main advantages of
this approach are:

• Architectures, reconfigurations, and connectors are represented and manip-
ulated in a graphical yet mathematical rigorous way at the same language-
independent level of abstraction, resulting in a very uniform framework
based simply on diagrams and their colimits.

• The chosen program design language is at a higher level of abstraction than
process calculi or term rewriting, allowing a more intuitive representation
of program state and computations.

• Computations and reconfigurations are kept separate but related in an ex-
plicit, simple, and direct way through the colimit construction.

• Typed graph morphisms capture in a declarative way some simple architec-
tural invariants.

• Several practical problems—maintaining the style during reconfiguration,
transferring the state during replacement, removing components in a quies-
cent state, adding components properly initialized—are easily handled.
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Within project FAST, we are considering the following possibilities for future
work:

• Implement the approach, e.g., by incorporating a library to compute colimits
on graphs [35] into a CommUnity tool to be developed.

• Look into and try to adapt work on graph rewriting termination [26] and
sequential independence to be able to analyse the possible reconfiguration
sequences.

• Adapt and extend the logic presented in [9] for reasoning about the recon-
figuration process.

This future research lines are along the spirit of the work presented in this
paper, namely an investigation into solid formal foundations for dynamic re-
configuration, not the development of an actual specification language. For
that purpose we are currently designing a language to specify architectures,
complex constraints on them, and reconfiguration scripts. A preliminary at-
tempt has been already presented [33]. The goal is to be able to specify more
expressive invariants than those described by typed graphs, and to use high-
level programming constructs (like sequencing, choice, and iteration) to easily
control in which way the basic changes (i.e., addition and removal of com-
ponents and connectors) are executed. Practical feedback from this ongoing
research will be gathered by incorporating such reconfiguration primitives into
a tool being built to construct and manage coordination contracts among com-
ponents implementing core business functionalities [12].
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A Typed Graphs

A typed graph hG, ti is a graph G equipped with a morphism t : G ! TG
to a fixed graph TG, the type graph [4]. Intuitively, TG restricts the allowed
nodes and arcs, and t provides the typing of G’s nodes and arcs. A special
case of typed graphs are labelled graphs: TG contains one node for each node
label, and between each pair of nodes there is one arc for each arc label.

A typed graph morphism f : hG, ti ! hG0, t0i is a graph morphism f : G! G0

that preserves the typing, i.e., t = f ; t0. The category GraphTG of graphs typed
by TG is the comma category (Graph # TG). Computing the colimit in comma
categories amounts to calculate it in the underlying category, and the same
for pushout complements. Consider the following diagram in C:

x
0

f1

}}||
||

||
|| f2

!!B
BB

BB
BB

B

t0
✏✏

x
1

g1
!!CC

CC
CC

CC
t1 // y x

2

g2
}}{{

{{
{{

{{

t2oo

x

t

OO

If g
1

and g
2

are the pushout of f
1

and f
2

in C, then they are also the pushout
in (C # y). In fact, t

1

and t
2

are a cocone of f
1

and f
2

in C, and therefore t
exists and is unique due to the universal property of colimits. On the other
hand, if f

2

and g
2

are a pushout complement of f
1

and g
1

in C, they are also
in (C # y) with t

2

= g
2

; t.

All the underlying mathematical machinery for this work is based uniformely
on typed graphs. A category C can be seen as a graph G

C

with objects as
nodes and morphisms as arrows, subject to the usual conditions on identities
and compositionality. A diagram D = h�D, �Di in C is then simply a graph
�D typed (via �D) by G

C

.
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