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ABSTRACT

We want to use the advanced language processing technology available in the ASF+SDF Meta-Environment

in combination with general purpose programming languages. In particular, we want to combine the syntax

definition formalism SDF and the associated components that support generalized LR parsing, with the object-

oriented language Java. To this end, we implemented JJForester, a tool that generates class structures from

SDF grammar definitions. The generated class structures implement a number of design patternsto facili-

tate construction and traversal of parse trees represented by object structures. In a detailed case study, we

demonstrate how program analyses and transformations can be constructed with JJForester.

1998 ACM Computing Classification System: D.1.2, D.1.5, D.2.3, D.2.13, D.3.4, E.2

Keywords and Phrases: Generalized LR parsing, tree traversal, program transformation, program analysis,

program generation, object-orientation.

Note: Work carried out under projects SEN 1.1, Software Renovation, and SEN 1.5, Domain-Specific Lan-
guages, sponsored by the Telematica Instituut.

1. INTRODUCTION

JJForester is a parser and visitor generator for Java that takes language definitions in the syntax definition
formalismSDF [13, 23] as input. It generates Java code that facilitates the construction, representation, and
manipulation of syntax trees in an object-oriented style. To supportgeneralized LR parsing[22, 21], JJForester
reuses the parsing components of theASF+SDF Meta-Environment [17].

TheASF+SDF Meta-Environment is an interactive environment for the development of language definitions
and tools. It combines the syntax definition formalismSDF with the term rewriting languageASF [2]. SDF

is supported with generalized LR parsing technology. For language-centered software engineering applica-
tions, generalized parsing offers many benefits over conventional parsing technology [8].ASF is a rather pure
executable specification language that allows rewrite rules to be written in concrete syntax.

In spite of its many qualities, a number of drawbacks of theASF+SDFMeta-Environment have been identified
over the years. One of these is its unconditional bias towardsASF as programming language. ThoughASF

was well suited for theprototypingof language processing systems, it lacked some features to build mature
implementations. For instance,ASF does not come with a strong library mechanism, I/O capabilities, or support
for generic term traversal. Also, the closed nature of the meta-environment obstructed interoperation with
external tools. As a result, for a mature implementation one was forced to abandon the prototype and fall back
to conventional parsing technology. Examples are the ToolBus [4], a software interconnection architecture and
accompanying language, that has been simulated extensively using theASF+SDF Meta-Environment, but has
been implemented using traditional Lex and Yacc parser technology and a manually coded C program. For
Stratego [25], a system for term rewriting with strategies, a simulator has been defined using theASF+SDF

Meta-Environment, but the parser has been hand coded using ML-Yacc and Bison. A compiler forRISLA, an
industrially successful domain-specific language for financial products, has been prototyped in theASF+SDF

Meta-Environment and re-implemented in C [7].
To relieve these drawbacks, the Meta-Environment has recently been re-implemented in a component-based

fashion [5]. Its components, including the parsing tools, can now be used separately. This paves the way to
adding support for alternative programming languages to the Meta-Environment.
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Figure 1: Global architecture of JJForester. Ellipses are tools. Shaded boxes are generated code.

As a major step into this direction, we have designed and implemented JJForester. This tool combinesSDF

with the main stream general purpose programming language Java. Apart from the obvious advantages of
object-oriented programming (e.g. data hiding, intuitive modularization, coupling of data and accompanying
computation), it also provides language tool builders with the massive library of classes and design patterns that
are available for Java. Furthermore, it facilitates a myriad of interconnections with other tools, ranging from
database servers to remote procedure calls. Apart from Java code for constructing and representing syntax
trees, JJForester generates visitor classes that facilitate generic traversal of these trees.

The paper is structured as follows. Section 2 explains JJForester. We discuss what code it generates, and
how this code can be used to construct various kinds of tree traversals. Section 3 provides a case study that
demonstrates in depth how a program analyzer (for the Toolbus language) can be constructed using JJForester.

2. JJFORESTER

JJForester is a parser and visitor generator for Java. Its distinction with respect to existing parser and visitor
generators, e.g. Java Tree Builder, is twofold. Firstly, it deploys generalized LR parsing, and allowsunre-
stricted, modular, anddeclarativesyntax definition inSDF (see Section 2.2). These properties are essential in
the context of component-based language tool development where grammars are used ascontracts[15]. Sec-
ondly, to cater for a number of reoccuring tree traversal scenarios, it generates variants on the Visitor pattern
that allow different traversal strategies. In this section we will give an overview of JJForester. We will give a
brief introduction toSDF which is used as its input language. By means of a running example, we will explain
what code is generated by JJForester and how to program against the generated code.

2.1 Overview
The global architecture of JJForester is shown in Figure 1. Tools are shown as ellipses. Shaded boxes are
generated code. Arrows in the bottom row depict run time events, the other arrows depict compile time events.
JJForester takes a grammar defined inSDF as input, and generates Java code. In parallel, the parse table
generatorPGENis called to generate a parse table from the grammar. The generated code is compiled together
with code supplied by the user. When the resulting byte code is run on a Java Virtual Machine, invocations of
parsemethods will result in calls to the parserSGLR. From a given input term,SGLR produces a parse tree as
output. These parse trees are passed through the parse tree implosion toolimplodeto obtain abstract syntax
trees.
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module Expr
exports

context-free syntax
Identifier -> Expr {cons("Var")}
Expr Expr -> Expr {cons("Apply"), left}
"\\" Identifier ":" Type "." Expr

-> Expr {cons("Lambda")}
"(" Expr ")" -> Expr {bracket}

module Type
exports

context-free syntax
Identifier -> Type {cons("TVar")}
Type "->" Type -> Type {cons("Arrow"),right}
"(" Type ")" -> Type {bracket}

module Identifier
exports

lexical syntax
[A-Za-z0-9]+ -> Identifier

lexical restrictions
Identifier -/- [A-Za-z0-9]

module Layout
exports

lexical syntax
[\ \t\n] -> LAYOUT

context-free restrictions
LAYOUT? -/- [\ \t\n]

Figure 2: ExampleSDF grammar.

2.2 SDF

The language definition that JJForester takes as input is written inSDF. In order to explain JJForester, we will
give a short introduction toSDF. A complete account ofSDF can be found in [13, 23].

SDF stands for Syntax Definition Formalism, and it is just that: a formalism to define syntax.SDF allows
the definition of lexical and context-free syntax in the same formalism.SDF is a modular formalism; it allows
productions to be distributed at will over modules. For instance, mutually dependent productions can appear
in different modules, as can different productions for the same non-terminal. This implies, for instance, that
a kernel language and its extensions can be defined in different modules. Like extendedBNF, SDF offers
constructs to define optional symbols and iteration of symbols, but also for separated iteration, alternatives, and
more.

Figure 2 shows an example of anSDF grammar. This example grammar gives a modular definition of a tiny
lambda calculus-like language with typed lambda functions. Note that the orientation ofSDF productions is
reversed with respect toBNF notation. The grammar contains two context-free non-terminals, Expr and Type,
and two lexical non-terminals, Identifier andLAYOUT. The latter non-terminal is usedimplicitly between all
symbols in context-free productions. As the example details, expressions can be variables, applications, or
typed lambda abstractions, while types can be type variables or function types.

SDF’s expressiveness allows for defining syntax concisely and naturally.SDF’s modularity facilitates reuse.
SDF’s declarativeness makes it easy and retargetable. But the most important strength ofSDF is that it is
supported byGeneralized LR Parsing. Generalized parsing removes the restriction to a non-ambiguous subclass
of the context-free grammars, such as the LR(k) class. This allows a maximally natural expression of the
intended syntax; no more need for ‘bending over backwards’ to encode the intended grammar in a restricted
subclass. Furthermore, generalized parsing leads to better modularity and allows ‘as-is’ syntax reuse.

As SDF removes any restriction on the class of context-free grammars, the grammars defined with it poten-
tially contain ambiguities. For most applications, these ambiguities need to be resolved. To this end,SDFoffers
a number of disambiguation constructs. The example of Figure 2 shows four such constructs. Theleft andright
attributes indicate associativity. Thebracketattribute indicates that parentheses can be used to disambiguate
Exprs and Types. For the lexical non-terminals the longest match rule is explicitly specified by means offollow
restrictions. Not shown in the example isSDF’s notation for relative priorities.

In the example grammar, each context-free production is attributed with aconstructor name, using the
cons(..)attribute. Such a grammar with constructor names amounts to a simultaneous definition of concrete
and abstract syntax of the language at hand. Theimplodeback-end turns concrete parse trees emanated by the
parser into more concise abstract syntax trees (ASTs) for further processing. The constructor names defined in
the grammar are used to build nodes in the AST. As will become apparent below, JJForester operates on these
abstract syntax trees, and thus requires grammars with constructor names. A utility, calledsdf-consis available
to automatically synthesize these attributes when absent.

SDF is supported by two tools: the parse table generatorPGEN, and the scannerless generalized parserSGLR.
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}

    visitApply(this);

Figure 3: The UML diagram of the code generated from the grammar in Figure 2.

These tools were originally developed as components of theASF+SDF Meta-Environment and are now sepa-
rately available as stand-alone, reusable tools.

2.3 Code generation
From anSDF grammar, JJForester generates the following Java code:

Class structure For each non-terminal symbol in the grammar, anabstractclass is generated. For each
production in the grammar, aconcreteclass is generated that extends the abstract class corresponding to the
result non-terminal of the production. For example, Figure 3 shows a UML diagram of the code that JJForester
generates for the grammar in Figure 2. The relationships between the abstract classesExpr andType, and their
concrete subclasses are known as the Composite pattern.

Lexicalnon-terminals and productions are treated slightly differently: for each lexical non-terminal a class
can be supplied by the user. Otherwise, this lexical non-terminal is replaced by the pre-defined non-terminal
Identifier , for which a single concrete class is provided by JJForester. This is the case in our example.

When the input grammar, unlike our example, contains complex symbols such as optionals or iterated sym-
bols, additional classes are generated for them as well. The case study will illustrate this.

Parsers Also, for every non-terminal in the grammar, a parse method is generated for parsing a term (plain
text) and constructing a tree (object structure). The actual parsing is done externally bySGLR. The parse
method implements the Abstract Factory design pattern; each non-terminal class has a parse method that returns
an object of the type of one of the constructors for that non-terminal. Which object gets returned depends on
the string that is parsed.
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Constructor methods In the generated classes, constructor methods are generated that buildlanguage-specific
tree nodes from the generic tree that results from the call to the external parser.

Set and get methods In the generated concrete classes, set and get methods are generated to inspect and mod-
ify the fields that represent the subtrees. For example, the Apply class will havegetExpr0 andsetExpr0
methods for its first child.

Accept methods In the generated concrete classes, several accept methods are generated that take a Visi-
tor object as argument, and apply it to a tree node. Currently, twoiterating accept methods are generated:
accept td andaccept bu , for top-down and bottom-up traversal, respectively. For the Apply class, the
bottom-up accept method is shown in the Figure 3.

Visitor classes A Visitor class is generated which contains a visit method for each production and each non-
terminal in the grammar. Furthermore, it contains one unqualified visit method which is useful forgeneric
refinements (see below). These visit methods arenon-iterating: they make no calls to accept methods of
children to obtain recursion. The default behavior offered by these generated visit methods is simply to do
nothing.

Together, the Visitor class and the accept methods in the various concrete classes implement a variant of the
Visitor pattern [12], where the responsibility for iteration lies with the accept methods, not with the visit meth-
ods. We have chosen this variant for several reasons. First of all, it relieves the programmer who specializes
a visitor from reconstructing the iteration behavior in the visit methods he redefines. This makes specializing
visitors less involved and less error-prone. In the second place, it allows the iteration behavior (top-down or
bottom-up) to be varied. In Section 4.3 we will comment on the possibilities of offering even more control over
iteration behavior.

Apart from generating Java code, JJForester callsPGENto generate a parse table from its input grammar. This
table is used bySGLR which is called by the generated parse methods.

2.4 Programming against the generated code
The generated code can be used by a tool builder to construct tree traversals through the following steps:

1. Refine a visitor class by redefining one or more of its visit methods. As will be explained below, such
refinement can be done at various levels of genericity, and in a step-wise fashion.

2. Start a traversal with the refined visitor by feeding it to the accept method of a tree node. Different accept
methods are available to realize top-down or bottom-up traversals.

This method of programming traversals by refining (generated) visitors provides interesting possibilities for
reuse. Firstly, many traversals only need to do something ‘interesting’ at a limited number of nodes. For
these nodes, the programmer needs to supply code, while for all others the behavior of the generated visitor is
inherited. Secondly, different traversals often share behavior for a number of nodes. Such common behavior
can be captured in an initial refinement, which is then further refined in diverging directions. Unfortunately,
Java’s lack of multiple inheritance prohibits the converse: construction of a visitor by inheritance from two
others (but see Section 4.3 for further discussion). Thirdly, some traversal actions may be specific to nodes
with a certain constructor, while other actions are the same for all nodes of the same type (non-terminal), or
even for all nodes of any type. As the visitors generated by JJForester allow refinement at each of these levels
of specificity, there is no need to repeat the same code for several constructors or types. We will explain these
issues through a number of small examples.

Constructor-specific refinementFigure 4 shows a refinement of the Visitor class which implements a traversal
that counts the number of variables occurring in a syntax tree. Both expression variables and type variables are
counted.
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public class VarCountVisitor extends Visitor {
public int counter = 0;
public void visitVar(Var x) {

counter++;
}
public void visitTVar(TVar x) {

counter++;
}

}

Figure 4: Specific refinement: a visitor for counting variables.

public class ExprCountVisitor extends Visitor {
public int counter = 0;
public void visitExpr(Expr x) {

counter++;
}

}

public class NodeCountVisitor extends Visitor {
public int counter = 0;
public void visit(Object x) {

counter++;
}

}

Figure 5: Generic refinement: visitors for counting expressions and nodes.

This refinement extends Visitor with a counter field, and redefines the visit methods for Var and TVar such
that the counter is incremented when such nodes are visited. The behavior for all other nodes is inherited
from the generated Visitor: do nothing. Note that redefined methods need not restart the recursion behavior
by calling an accept method on the children of the current node. The recursion is completely handled by the
generated accept methods.

Generic refinement The refinement in the previous example is specific for particular node constructors. The
visitors generated by JJForester additionally allow more generic refinements. Figure 5 shows refinements of
the Visitor class that implement a more generic expression counter and a fully generic node counter. Thus,
the first visitor counts all expressions, irrespective of their constructor, and the second visitor counts all nodes,
irrespective of their type. No code duplication is necessary.

Step-wise refinement Visitors can be refined in several steps. For our example grammar, two subsequent
refinements of the Visitor class are shown in Figure 6. The class GetVarVisitor is a visitor for collecting all
variables used in expressions. It is defined by extending the Visitor class with a fieldvars initialized as the
empty set of variables, and by redefining the visit method for the Var class to insert each variable it encounters
into this set. The GetVarVisitor is further refined into a visitor that collectsfree variables, by additionally
redefining the visit method for the Lambda class. This redefined method removes the variables bound by the
lambda expression from the current set of variables. Finally, this second visitor can be unleashed on a tree
using theaccept bu method. This is illustrated by an example of usage in Figure 6.

Note that the visitors in Figures 4 and 5 can be refactored as refinements of a common initial refinement, say
CountVisitor, which contains only the field counter.

Of course, our running example does not mean to suggest that Java would be the ideal vehicle for implementing
the lambda calculus. Our choice of example was motivated by simplicity and self-containedness. To compare,
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visitExpr
visitApply
...

visitVar

Set

visit

Visitor

add
remove

GetVarsVisitor

vars

visitLambda

FreeVarsVisitor

...
v = new FreeVarsVisitor();

...
expr.accept_bu(v);

Example of usage:

}
  vars.add(var.getIdentifier());
visitVar(Var var) {

visitLambda(Lambda lambda) {
  vars.remove(var.getIdentifier());
}

Figure 6: UML diagram for user code.

an implementation of the lambda calculus in theASF+SDFMeta-Environment can be found in [10]. In Section 3
we will move into the territory for which JJForester is intended: component-based development of program
analyses and transformations for languages of non-trivial size.

2.5 Assessment of expressiveness
To evaluate the expressiveness of JJForester within the domain of language processing, we will assess which
program transformation scenarios can be addressed with it. We distinguish three main scenarios:

Analysis A value or property is distilled from a syntax tree. Type-checking is a prime example.

Translation A program is transformed into a program in a different language. Examples include generating
code from a specification, and compilation.

Rephrasing A program is transformed into another program, where the source and target language coincide.
Examples include normalization and renovation.

For a more elaborate taxonomy of program transformation scenarios, we refer to [24]. The distinction between
analysis and translation is not clear-cut. When the value of an analysis is highly structured, especially when it
is an expression in another language, the label ‘translation’ is also appropriate.

The traversal examples discussed above are all tree analyses with simple accumulation in a state. Here,
‘simple’ accumulation means that the state is a value or collection to which values are added one at a time. This
was the case both for the counting and the collecting examples. However, some analyses require more complex
ways of combining the results of subtree traversals than simple accumulation. An example is pretty-printing,
where literals need to be insertedbetweenpretty-printed subtrees. In the case study, a visitor for pretty-printing
will demonstrate that JJForester is sufficiently expressive to address such more complex analyses. However, a
high degree of reuse of the generated visit methods can currently only be realized for the simple analyses. In
the future work section (4.3), we will discuss how such reuse could be realized by generating special visitor
subclasses or classes that model updatable many-sorted folds [19].

Translating transformations are also completely covered by JJForester’s expressiveness. As in the case of
analysis, the degree of reuse of generated visit methods can be very low. Here, however, the cause lies in
the nature of translation, because it typically takes every syntactic construct into account. This is not always
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Figure 7: The Toolbus architecture. Tools are connected to the bus through adapters. Inside the bus, several
processes run in parallel. These processes communicate with each other and the adapters according to the
protocol defined in a T-script.

the case, for instance, when the translation has the character of an analysis with highly structured results.
An example is program visualization where only dependencies of a particular kind are shown, e.g. module
structures or call graphs.

In the object-oriented setting, a distinction needs to be made between destructive and non-destructive rephras-
ings. Destructive rephrasings are covered by JJForester. However, as objects can not modify theirself refer-
ence, destructive modifications can only change subtrees and fields of the current node, but they cannot replace
the current node by another. Non-destructive rephrasings can be implemented by refining a traversal that clones
the input tree. A visitor for tree cloning can be generated, as will be discussed in Section 4.3.

A special case of rephrasing is decoration. Here, the tree itself is traversed, but not modified except for desig-
nated attribute fields. Decoration is useful when several traversals are sequenced that need to share information
about specific nodes. JJForester does not cover decoration yet.

3. CASE STUDY

Now that we have explained the workings of JJForester, we will show how it is used to build a program
analyzer for an actual language. In particular, this case study concerns a static analyzer for the ToolBus [4]
script language. In Section 3.1 we describe the situation from which a need for a static analyzer emerged. In
Section 3.2 the language to be analyzed is briefly explained. Finally, Section 3.3 describes in detail what code
needs to be supplied to implement the analyzer.

3.1 The Problem
The ToolBus is a coordination language which implements the idea of a software bus. It allows applications (or
tools) to be “plugged into” a bus, and to communicate with each other over that bus. Figure 7 gives a schematic
overview of the ToolBus. The protocol used for communication between the applications is not fixed, but is
programmed through a ToolBus script, or T-script.

A T-script defines one or more processes that run inside the ToolBus in parallel. These processes can com-
municate with each other, either via synchronous point-to-point communication, or via asynchronous broadcast
communication. The processes can direct and activate external components viaadapters, small pieces of soft-
ware that translate the ToolBus’s remote procedure calls into calls that are native to the particular software
component that needs to be activated. Adapters can be compiled into components, but off-the-shelf compo-
nents can be used, too, as long as they possess some kind of external interface.

Communication between processes inside the ToolBus does not occur over named channels, but through
pattern matching on terms. Communication between processes occurs when a term sent by one matches the
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term that is expected by another. This will be explained in more detail in the next section. This style of
communication is powerful, flexible and convenient, but tends to make it hard to pinpoint errors in T-scripts.
To support the T-script developer, the ToolBus runtime system provides an interactive visualizer, which shows
the communications taking place in a running ToolBus. Though effective, this debugging process is tedious
and slow, especially when debugging systems with a large number of processes.

To complement the runtime visualizer, astaticanalysis of T-scripts is needed to support the T-script devel-
oper. Static analysis can show that some processes can never communicate with each other, that messages that
are sent can never be received (or vice versa), or that two processes that should not communicate with each
other may do so anyway. Using JJForester, such a static analyzer is constructed in Section 3.3.

3.2 T-scripts explained
T-scripts are based onACP (Algebra of Communicating Processes) [1]. They define communication protocols
in terms ofactions, and operations on these actions. We will be mainly concerned with the communication
actions, which we will describe below. Apart from these, there are assignment actions, conditional actions and
basic arithmetic actions. The action operators include sequential composition (a.b), non-deterministic choice
(a+b), parallel composition (a || b), and repetition (a∗b). The full specification of the ToolBus script language
can be found in [3].

The T-script language offers actions for communication between processes and tools, and for synchronous
and asynchronous communication between processes. For the purposes of this paper we will limit ourselves
to the most commonly usedsynchronousactions. These aresnd-msg(T) and rec-msg(T) for sending
and receiving messages, respectively. These actions are parameterized with arbitrary dataT, represented as
ATerms [6]. A successful synchronous communication occurs when a term that is sent matches a term that
is received. For instance, the closed termsnd-msg(f(a)) can match the closed termrec-msg(f(a))
or the open termrec-msg(f(T?)) . At successful communication, variables in the data of the receiving
process are instantiated according to the match.

To illustrate, a small example T-script is shown in Figure 8. This example contains only processes. In a more
realistic situation these processes would communicate with external tools, for instance to get the input of the
initial value, and to actually activate the gas pump. The script’s last statement is a mandatorytoolbus(..)
statement, which declares that upon startup the processes GasStation, Pump, Customer and Operator are all
started in parallel. The first action of all processes, apart from Customer, is arec-msg action. This means
that those processes will block until an appropriate communication is received. The Customer process starts by
doing two assignment statements.process-id (a built-in variable that contains the identifier of the current
process) is assigned toC, and 10 toD. The first communication action performed by Customer is asnd-msg
of the termprepay(D,C) . This term is received by the GasStation process, which in turn sends the term
request(D,C) message. This is received by Operator, and so on.

The script writer can use the mechanism of communication through term matching to specify that any one
of a number of processes should receive a message, depending on the state they are in, and the sending process
does not need to know this. It just sends out a term into the ToolBus, and anyone of the accepting processes can
“pick it up”. Unfortunately, when incorrect or too general terms are specified, communication will not occur
as expected, and the exact cause will be difficult to trace. The static analyzer developed in the next section is
intended to solve this problem.

3.3 Analysis using JJForester
We will first sketch the outlines of the static analysis algorithm that we implemented. It consists of two phases:
collection and matching. In the collection phase,all send and receive actions in the T-script are collected into
a (internal, non-persistent) database. In the matching phase, the send and receive actions in the database are
matched to obtain a table of potential matching events, which can either be stored in a file, or in an external,
persistent relational database. To visualize this table, we use the back-end tools of a documentation generator
we developed earlier (DocGen [11]).

We used JJForester to implement the parsing of T-scripts and the representation and traversal of T-script
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process Pump is
let D: int
in
( rec-msg(activate(D?)).

rec-msg(on).
snd-msg(report(D))

) *
delta
endlet

process Operator is
let C: int, D: int,

Payment: int, Amount: int
in
( rec-msg(request(D?,C?)).

Payment := D.
snd-msg(schedule(Payment,C)).
rec-msg(result(D?)).
Amount := sub(Payment,D).
snd-msg(remit(Amount))

) *
delta
endlet

process Customer is
let
C: int, D: int
in
C := process-id.
D := 10.
snd-msg(prepay(D,C)).
rec-msg(okay(C)).
snd-msg(turn-on).
printf(

"Customer %d using pump\n",
C).

rec-msg(stop).
rec-msg(change(D?)).
printf(

"Customer %d got $%d change\n",
C, D)

endlet

process GasStation is
let
D: int, C: int
in
( rec-msg(prepay(D?,C?)).

snd-msg(request(D,C))
||rec-msg(schedule(D?,C?)).

snd-msg(activate(D)).
snd-msg(okay(C))

||rec-msg(turn-on).
snd-msg(on)

||rec-msg(report(D?)).
snd-msg(stop).
snd-msg(result(D))

||rec-msg(remit(D?)).
snd-msg(change(D))

)*
delta
endlet

toolbus(GasStation,Pump,
Customer,Customer,Operator)

Figure 8: The T-script for the gas station with control process.

parse trees. To this end, we ran JJForester on the grammar of the ToolBus1 which contains 35 non-terminals
and 80 productions (both lexical and context-free). From this grammar, JJForester generated 23 non-terminal
classes, 64 constructor classes, and 1 visitor class, amounting to a total of 4221 lines of Java code.

We will now explain in detail how we programmed the two phases of the analysis. Figure 9 shows a UML
diagram of the implementation.

The collection phase We implemented the collection phase as a top-down traversal of the syntax tree with
a visitor called SendReceiveVisitor. This refinement of the Visitor class has two kinds of state: a database for
storing send and receive actions, and a field that indicates the name of the process currently being analyzed.
Whenever a term with outermost function symbol snd-msg or rec-msg is encountered, the visitor will add
a corresponding action to the database, tagged with the current process name. The current process name is
set whenever a process definition is encountered during traversal. Since sends and receives occur onlybelow
process definition in the parse tree, the top-down traversal strategy guarantees that the current process name
field is always correctly set when it is needed to tag an action.

To discover which visit methods need to be redefined in the SendReceiveVisitor, the ToolBus grammar needs
to be inspected. To extract process definition names, we need to know which syntactic constructs are used to
declare these names. The two relevant productions are shown in Figure 10. So, in order to extract process
names, we need to redefinevisitProcDef andvisitProcDefArgs in our specialized SendReceiveVis-
itor. These redefinitions are shown in Figure 11. Whenever the built-in iterator comes across a node in the tree
of typeprocDef , it will call our specializedvisitProcDef with thatprocDef as argument. From the
SDF definition in Figure 10 we learn that aprocDef has two children: a ProcessName and a ProcessExpr.
Since ProcessName is alexicalnon-terminal, and we chose to have JJForester identify all lexical non-terminals
with a single typeIdentifier , the Java classprocDef has a field of typeIdentifier and one of type
ProcessExpr . Through thegetIdentifier0() method we get the actual process name which gets
converted to a String so it can be assigned tocurrProcess .

Now that we have taken care of extracting process names, we need to address the collection of communi-
cation actions. The ToolBus grammar allows for arbitrary terms (‘Atoms’ in the grammar) as actions. Their
syntax is shown in Figure 12.

Thus, send and receive actions are not distinct syntactical constructs, but they are functional terms (funTerm s)
where theId child has valuesnd-msg or rec-msg . Consequently, we need to redefine thevisitFunTerm

1This SDFgrammar can be downloaded from the GrammarBase, at http://www.program-transformation.org/gb.
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toString

visitIdTerm
visitIterStarSepTerm_
visitOptVar
visitStringTerm
visitVnameVar

send receive

currProcess

processNametheStack

...

visitProcDef
visitProcDefArgs

Stack

push
pop

Set

add
remove

String

...

...

visit

Visitor

visitFunTerm
visitProcDef

...

SendReceiveAction

match

visitFunTerm

TermToStringVisitor SendReceiveDB

addSendAction
printMatchTable

addReceiveAction

storeMatchTable

SendReceiveVisitor

visitFunTerm srdb

Figure 9: UML diagram of the ToolBus analyzer.

context-free syntax
"process" ProcessName "is" ProcessExpr

-> ProcessDef {cons("procDef")}
"process" ProcessName "(" {VarDecl ","}* ")" "is" ProcessExpr

-> ProcessDef {cons("procDefArgs")}

Figure 10: The syntax of process definitions.

public void visitProcDef(procDef definition) {
currProcess = definition.getIdentifier0().toString();

}
public void visitProcDefArgs(procDefArgs definition) {

currProcess = definition.getIdentifier0().toString();
}

Figure 11: Specialized visit methods to extract process definition names.

context-free syntax
Vname -> Var {cons("vnameVar")}
Var -> GenVar {cons("var")}
Var "?" -> GenVar {cons("optVar")}
GenVar -> Term {cons("genvarTerm")}
Id -> Term {cons("idTerm")}
Id "(" TermList ")" -> Term {cons("funTerm")}
{Term ","}* -> TermList {cons("termStar")}
Term -> Atom {cons("termAtom")}

Figure 12: Syntax of relevant ToolBus terms.
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public void visitFunTerm(funTerm term) {
SendReceiveAction action = new SendReceiveAction(currProcess,

term.getTermlist1());
if (term.getIdentifier0().equals("\"snd-msg\"")) {

srdb.addSendAction(action);
} else if (term.getIdentifier0().equals("\"rec-msg\"")) {

srdb.addReceiveAction(action);
}

}

Figure 13: The visit method for send and receive messages.

public static void main(String[] args) throws ParseException {
String inFile = args[0];
Tscript theScript = Tscript.parse(inFile);
SendReceiveVisitor srvisitor = new SendReceiveVisitor();
theScript.accept_td(srvisitor); // collection phase
srvisitor.srdb.constructMatchTable(); // matching phase

}

Figure 14: The main() method of the ToolBus analyzer.

method such that it inspects the value of its first child to decide if and how to collect a communication action.
Figure 13 shows the redefined method.

The visit method starts by constructing a newSendReceiveAction . This is an object that contains the
term that is being communicated and the process that sends or receives it. The process name is available in
the SendReceiveVisitor in the fieldcurrProcess , because it is put there by thevisitProcDef
methods we just described. The term that is being communicated can be selected from thefunTerm we
are currently visiting. From the SDF grammar in Figure 12 it follows that the term is the second child of a
funTerm , and that it is of typeTermList . Therefore, the methodgetTermlist1 will return it.

The newly constructed action is added to the database as a send action, a receive action, or not at all, depend-
ing on the first child of thefunTerm . This child is of lexical typeId , and thus converted to anIdentifier
type in the generated Java classes. TheIdentifier class contains anequals(String) method, so we
use string comparison to determine whether the currentfunTerm has “snd-msg” or “rec-msg” as its function
symbol.

Now that we have built the specialized visitor to perform the collection, we still need to activate it. Before
we can activate it, we need to have parsed a T-script, and built a class structure out of the parse tree for the
visitor to operate on. This is all done in themain() method of the analyzer, as shown in Figure 14. The main
method shows how we use the generated parse method forTscript to build a tree of objects. Tscript.parse()
takes a filename as an argument and tries to parse that file as a Tscript. If it fails it throws a ParseException
and displays the location of the parse error. If it succeeds it returns aTscript . We then construct a new
SendReceiveVisitor as described in the previous section. TheTscript is subsequently told to accept
this visitor, and, as described in Section 2.4 iterates over all the nodes in the tree and calls the specific visit
methods for each node. When the iterator has visited all nodes, theSendReceiveVisitor contains a filled
SendReceiveDb . The results in this database object can then be processed further, in the matching phase.
In our case we call the methodconstructMatchTable() which is explained below.

The matching phase In the matching phase, the send and receive actions collected in theSendReceiveDb
are matched to construct a table of potential communication events, which is then printed to file or stored in
a relational database. We will not discuss the matching itself in great detail, because it is not implemented
with a visitor. A visitor implementation would be possible, but clumsy, since two trees need to be traversed
simultaneously. Instead it is implemented with nested iteration over the sets of send and receive actions in the
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public void visitIterStarSepTerm_(iterStarSepTerm_ terms) {
Vector v = terms.getTerm0();
String str = new String();
for (int i = 0; i < v.size(); i++){

if (i != 0) {
str += ",";

}
str += (String) theStack.pop();

}
theStack.push(str);

}

Figure 15: Converting a list of terms to a string.

database, and simple case discrimination on terms. The result of matching is a table where each row contains
the process names and data of a matching send and receive action.

We focus on an aspect of the matching phase where a visitordoesplay a role. When writing the match table to
file, the terms (data) it contains need to be pretty-printed, i.e. to be converted toString . We implemented this
pretty-printer with a bottom-up traversal with theTermToStringVisitor . We chose not to use generated
toString methods of the constructor classes, because using a visitor leaves open the possibility of refining
the pretty-print functionality.

Note that pretty-printing a node may involve inserting literals before, inbetween, and after its pretty-printed
children. In particular, when we have a list of terms, we would like to print a “,” between children. To
implement this behavior, a visitor with a singleString field in combination with a top-down or bottom-
up accept method does not suffice. If JJForester would generateiterating visitors andnon-iteratingaccept
methods, this complication would not arise. Then, literals could be added to theString field in between
recursive calls.

We overcome this complication by using a visitor with astackof strings as field, in combination with the
bottom-up accept method. The visit method for each leaf node pushes the string representation of that leaf
on the stack. The visit method for each internal node pops one string off the stack for each of its children,
constructs a new string from these, possibly adding literals in between, and pushes the resulting string back
on the stack. When the traversal is done, the user can pop the last element off the stack. This element is the
string representation of the visited term. Figure 15 shows the visit method in theTermToStringVisitor
for lists of terms separated by commas2. In this method, the Vector containing the term list is retrieved, to
get the number of terms in this list. This number of elements is then popped from the stack, and commas are
placed between them. Finally the new string is placed back on the stack. In the conclusion we will return to
this issue, and discuss alternative and complementary generation schemes that make implementing this kind of
functionality more convenient.

After constructing the matching table, theconstructMatchTable method writes the table to file or
stores it in an SQL database, using JDBC (Java Database Connectivity). We used a visualization back-end of
the documentation generator DocGen to query the database and generate acommunicationgraph. The result of
the full analysis of the T-script in Figure 8 is shown in Figure 16.

Evaluation of the case study We conducted the ToolBus case study to learn about feasibility, productivity,
performance, and connectivity issues surrounding JJForester. Below we briefly discuss our preliminary conclu-
sions. Apart from the case study reported here, we conducted a case study where an existing Perl component
in the documentation generator DocGen was re-implemented in Java, using JJForester. This case study also
corroborates our findings.

2The name of the method reflects the fact that this is a visit method for the symbol{Term "," }* , i.e. the list of zero or more elements
of type Term, separated by commas. Because the comma is an illegal character in a Java identifier, it is converted to an underscore in the
method name.
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Sender Receiver
Pump report(D) GasStation report(D?)
GasStation change(D) Customer change(D?)
Customer prepay(D,C) GasStation prepay(D?,C?)
GasStation okay(C) Customer okay(C)
Operator remit(Amount) GasStation remit(D?)
GasStation result(D) Operator result(D?)
GasStation activate(D) Pump activate(D?)
GasStation stop Customer stop
Customer turn-on GasStation turn-on
Operator schedule(Payment,C) GasStation schedule(D?,C?)
GasStation request(D,C) Operator request(D?,C?)
GasStation on Pump on

Pump

GasStation

report(D?) activate(D?) on

Operator

result(D?) request(D?,C?)

Customer

change(D?) okay(C) stopschedule(D?,C?) remit(D?) prepay(D?,C?) turn-on

Figure 16: The analysis results for the input file from Figure 8.

Feasibility At first glance, the object-oriented programming paradigm may seem to be ill-suited for language
processing applications. Terms, pattern-matching, many-sorted signatures are typically useful for language
processing, but are not native to an object-oriented language like Java. More generally, the reference semantics
of objects seems to clash with the value semantics of terms in a language. Thus, in spite of Java’s many
advantages with respect to e.g. portability, maintainability, reuse, its usefulness in language processing is not
evident.

The case study, as well as the techniques for coping with traversal scenarios outlined in Section 2, demon-
strate that object-oriented programmingcanbe applied usefully to language processing problems. In fact, the
support offered by JJForester makes object-oriented language processing not only feasible, but even easy.

Productivity Recall that the Java code generated by JJForester from the ToolBus grammar amounts to 4221
lines of code. By contrast, the user code we developed to program the T-script analyzer consists of 323 lines.
Thus, 93% of the application was generated, while 7% is hand-written.

These figures indicate that the potential for increased development productivity is considerable when using
JJForester. Of course, actual productivity gains are highly dependable on which program transformation sce-
narios need to be addressed (see Section 2.5). The productivity gain is largly attributable to the support for
generic traversals.

Components and connectivityApart from reuse of generated code, the case study demonstrates reuse of
standard Java libraries and of external (non-Java) tools. Examples of such tools arePGEN, SGLRandimplode, an
SQL database, and the visualization back-end of DocGen. Externally, the syntax trees that JJForester operates
upon are represented in the common exchange format ATerms. This exchange format was developed in the
context of theASF+SDF Meta-Environment, but has been used in numerous other contexts as well. In [15] we
advocated the use of grammars as tree type definitions that fix the interface between language tools. JJForester
implements these ideas, and can interact smoothly with tools that do the same. The transformation tool bundle
XT [14] contains a variety of such tools.
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Performance To get a first indication of the time and space performance of applications developed with
JJForester, we have applied our T-script analyzer to a script of 2479 lines. This script contains about 40 process
definitions, and 700 send and receive actions. We used a machine with Mobile Pentium processor, 64Mb of
memory, running at 266Mhz. The memory consumption of this experiment did not exceed 6Mb. The runtime
was 69 seconds, of which 9 seconds parsing, 55 seconds implosion, and 5 seconds to analyze the syntax
tree. A safe conclusion seems to be that the Java code performs acceptably, while the implosion tool needs
optimization. Needless to say, larger applications and larger code bases are needed for a good assessment.

4. CONCLUDING REMARKS

4.1 Contributions
In this paper we set out to combineSDF support of theASF+SDF Meta-Environment with the general-purpose
object-oriented programming language Java. To this end we designed and implemented JJForester, a parser and
visitor generator for Java that takesSDF grammars as input. To support generic traversals, JJForester generates
non-iterating visitors and iterating accept methods. We discussed techniques for programming against the
generated code, and we demonstrated these in detail in a case study. We have assessed the expressivity of our
approach in terms of the program-transformation scenarios that can be addressed with it. Based on the case
study, we evaluated the approach with respect to productivity, and performance issues.

4.2 Related Work
A number of parser generators, “tree builders”, and visitor generators exist for Java. JavaCC is an LL parser
generator by Metamata/Sun Microsystems. Its input format is not modular, it allows Java code in semantic
actions, and separates parsing from lexical scanning. JJTree is a preprocessor for JavaCC that inserts parse
tree building actions at various places in the JavaCC source. The Java Tree Builder (JTB) is another front-
end for JavaCC for tree building and visitor generation. JTB generates two iterating (bottom-up) visitors, one
with and one without an extra argument in the visit methods to pass objects down the tree. A version of JTB
for GJ (Generic Java) exists which takes advantages of type parameters to prevent type casts. Demeter/Java
is an implementation of adaptive programming [20] for Java. It extends the Java language with a little (or
domain-specific) language to specify traversal strategies, visitor methods, and class diagrams. Again, the
underlying parser generator is JavaCC. JJForester’s main improvement with respect to these approaches is
the support ofgeneralizedLR parsing. Concerning traversals, JJForester is different from JJTree and JTB,
because it generates iterating accept methods rather than iterating visitors. JJForester is less ambitious and
more lightweight than Demeter/Java, which is a programming system rather than a code-generator.

ASDL (Abstract Syntax Definition Language [26]) comes with a visitor generator for Java (and other lan-
guages). It generates non-iterating visitors and non-iterating accept methods. Thus, traversals are not supported.
ASDL does not incorporate parsing or parser generation; it only addresses issues ofabstractsyntax.

In other programming paradigms, work has been done on incorporating support forSDF and traversals.
Previously, we combined theSDFsupport of theASF+SDFMeta-Environment with the functional programming
language Haskell [18]. In this approach, traversal of syntax trees is supported with updatable, many-sorted
folds and fold combinators [19]. Recently, support for generic traversals has been added to theASF interpreter.
These traversals allow concise specification of many-sorted analyses and rephrasing transformations. Stepwise
refinement or generic refinement of such traversals is not supported. Stratego [25] is a language for term
rewriting with strategies. It offers a suite of primitives that allow programming of (as yet untyped) generic
traversals. Stratego natively supports ATerms. It is used extensively in combination with theSDF components
of theASF+SDF Meta-Environment.

4.3 Future Work
Concrete syntax and subtree sharingCurrently, JJForester only supports processing ofabstractsyntax trees.
Though the parserSGLR emits full concreteparse trees, these are imploded before being consumed by JJ-
Forester. For many program transformation problems it is desirable, if not essential, to process concrete syn-
tax trees. A prime example is software renovation, which requires preservation of layout and comments in
the source code. TheASF+SDF Meta-Environment supports processing of concrete syntax trees. In order to



16

broaden JJForester’s applicability, and to ensure its smooth interoperation with components developed inASF,
we consider adding concrete syntax support.

When concrete syntax is supported, the trees to be processed are significantly larger. To cope with such
trees, theASF+SDF Meta-Environment uses the ATerm library which implements maximal subtree sharing. As
a Java implementation of the ATerm library is available, subtree sharing support could be added to JJForester.
We would like to investigate the repercusions of such a change to tree representation for the expressiveness and
performance of JJForester.

Decoration and aspect-orientationAdding a Decoration field to all generated classes would make it possible
to store intermediate results inside the object structure inbetween visits. This way, a first visitor could calculate
some data and store it in thee object structure, and then a second visitor could “harvest” these data and perform
some additional calculation on them.

More generally, we would like to experiment with aspect-oriented techniques [16] to customize or adapt
generated code. Adding decoration fields to generated classes would be an instance of such customization.

Object-oriented folds and strategiesAs pointed out in Sections 2.5 and 3.3, not all transformation scenar-
ios are elegantly expressible with our generated visitors. A possible remedy would be to generate additional
instances of the visitor class for specific purposes. In particular, visitors for unparsing, pretty-printing, and
equality checking could be generated. Also, the generated visitors could offer additional refinable methods,
such asvisitBefore andvisitAfter . Another option is to generate iterating visitors as well as non-
iterating ones. Several of these possibilities have been explored in the context of the related systems discussed
above. Instead of the visitor class, an object-oriented variation on updatable many-sorted folds could be gener-
ated. The main difference with the visitor pattern would be that the arguments of visit functions are not (only)
the current node, but its children, and only a bottom-up accept method would be available. More experience is
needed to establish which of these options would best suit our application domains.

The Visitor pattern, both in the variant offered by JJForester, where iteration is in the accept methods, and in
the more common variant where iteration is in the visit methods, is severely limited in the amount ofcontrol
that the user has over traversal behaviour. Generation of classes and methods to support folding would enrich
the traversal repertoire, but only in a limited way. To obtainfull control over traversal behaviour, we intend
to transpose concepts fromstrategic rewriting, as embodied by Stratego and the rewriting calculus [9], to the
object-oriented setting. In a nutshell the approach comes down to the following. Instead of doing iteration either
in visit or accept methods, iteration would be done in neither. Instead, a small set of traversal combinators can
be generated for each grammar, in the form of well-chosen refinements of the Visitor class. These traversal
combinators would be direct translations of the strategy combinators in the aforementioned rewriting languages.
For instance, the sequence combinatora; b can be modelled as a visitor with two fields of type Visitor, and visit
methods that apply these two argument visitors one after another. Using such combinators, the programmer can
programgeneric traversal strategies instead of merely selecting one from a fixed set. As an additional benefit,
such combinators would remove the need for multiple inheritance for combining visitors. We intend to broaden
JJForester’s generation scheme to generate traversal combinators, and to explore programming techniques with
these.

Availability JJForester is free software, distributed as open source under the GPL license. It can be down-
loaded from http://www.cwi.nl/∼jvisser/jjforester/.
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