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Abstract

Cryptographic protocols have so far been analyzed for the most part by means of
testing (which does not yield proofs of secrecy) and theorem proving (costly). We
propose a new approach, based on abstract interpretation and using regular tree
languages. The abstraction we use seems fine-grained enough to be able to certify
some protocols. Both the concrete and abstract semantics of the protocol description
language and implementation issues are discussed in the paper.

1 Introduction

Our goal is to provide mathematical and algorithmic tools for the analysis of
cryptographic protocols through abstract interpretation.

1.1 Verifying Cryptographic Protocols

Cryptographic protocols are specifications for sequences of messages to be ex-
changed by machines (often called principals) on a possibly insecure network,
such as the Internet, to establish private or authenticated communication.
These protocols can be used to distribute sensitive information, such as clas-
sified material, credit card numbers or trade secrets, or to create digital signa-
tures. Cryptographic protocols in everyday use on personal machines include
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the Secure Socket Layer (SSL), used for secure World-Wide-Web transactions,
and Secure Shell (SSH), used for the secure remote control of machines.

An intruder having gained partial or total control over the communication
network may launch an attack on the protocol. We distinguish two classes of
attacks: passive attacks, where an intruder passively listens to the communi-
cation network, and active attacks where the intruder can suppress messages
and send its own messages. On the practical side, it should be noted that pas-
sive attacks on local area networks are generally very simple to mount, just
requiring running adequate software on a machine connected to the network,
which will then listen to the network and log any data packet transmitted.
Active attacks are more elaborate and difficult to mount, since in their prim-
itive setting (“man in the middle attack”) they involve cutting a running
network line and plugging an intruding machine in the middle. Yet active at-
tacks can be performed with less intrusive means such as “DNS spoofing” [26],
which makes a machine obtain a wrong Internet Protocol address for a remote
host; the machine then communicates with an intruder believing it is actually
the remote server it meant to communicate with. It is therefore important
to consider both passive and active attacks when analyzing the security of a
cryptographic protocol. Our analysis thus considers the worst case, where the
intruder is able to read or suppress any messages sent on the network and
forge any message that it can realistically concoct.

Many analyses techniques for cryptographic protocols have been proposed;
the next sub-section will give a short survey of them. A common feature of
these techniques, including ours, is that they address the design of the protocol
rather than the strength of the underlying cryptographic algorithms, such as
message digests or encryption primitives. For instance, it is assumed that one
may decrypt a message encrypted with a public key only when possessing the
corresponding private key. Even with those restrictions, many protocols have
been shown to be flawed.

This paper intends to demonstrate how abstract interpretation techniques,
and more particularly abstract model checking of infinite state computation
systems, can be applied to the problem of analyzing cryptographic protocols
for confidentiality and other safety properties. To our knowledge, this is the
first time that an abstract domain has been proposed for cryptographic pro-
tocols.

Our method tests safety properties (i.e. that the protocol cannot reach cer-
tain undesirable states). An obvious safety property, and the only one that
is implemented in our analyzer, is secrecy: we prove that the intruder cannot
receive certain information. Other safety properties that can be dealt with
using our method include some variants of authentication: we can prove that
some principal can reach an “accepting” state only if some data it holds is the
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correct one.

A salient point of our approach is that is fully automatic from the protocol
description to the results. Contrary to some other methods that use abstrac-
tion, but require the user to design himself an abstraction or manually help a
program to compute invariants, our method requires no user input except the
description of the protocol and the cryptographic primitives involved.

1.2 Comparison to Related Works

Burrows, Abadi and Needham proposed to analyze cryptographic protocols
using a logic of belief, now known as the “BAN logic” [10]. Several derivatives
of this logic have followed [22,21,42,43]. All those systems provide a means
to formalize the high-level reasoning that stands behind the protocols. Such
informal reasoning often uses steps such as “Principal B receives a message
signed withKa, andKa is a secret key only owned by A; therefore, this message
must have been emitted by A at some point in the past.”. The goals of those
systems is to make such proofs more rigorous.

There are two important problems with logics of belief. The first is that it is
essentially a manual approach. While there exist tools [38,28,16,40] which au-
tomatically check whether the purported conclusion follows from the hypothe-
ses of the protocol description using the rules in the logic, the formalization
of the reasoning of the protocol inside the logic is a manual, cumbersome and
error-prone act, even though some of the available decision procedures can be
modified so as to provide some hints as to missing or incorrect hypotheses to
the user [38]. The second is that most of those logics do not have clear seman-
tics. Some semantics have nevertheless been provided for some logics of belief
[4], including some more recent work on strand spaces [44], yet designing a
sound and usable semantics for those logics remains largely a work-in-progress.

In contrast with these logics, our method is fully automatic and operates
on the actual definition of the protocols, not on some difficult-to-establish
justification of them. Furthermore, our analysis is proven to be sound with
respect to some simple formal semantics of the protocols.

The limitations of logics of belief clearly show a need for analyses based on
the actual executions of the protocol, and not on some justification of it.
Dolev and Yao proposed a formal model of cryptographic protocols where
cryptographic primitives (encryption, decryption, signature...) obey a set of
algebraic properties (such as: decrypting some encrypted piece of data using
the same key with which it was encrypted yields the original, unencrypted
piece of data). Our analysis is set in a particular formalization of the Dolev-
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Yao model; it expresses the protocols and the properties of the primitives in
a simple language and gives them a precise semantics.

Many analyses of protocols have been expressed within the Dolev-Yao model.
The first ones used Prolog or Prolog-like state exploration techniques [35].
Later contributions have focused on implementing state-space exploration
techniques model checkers, whether general-purpose [30,32] or special-purpose
[41]. While often efficient at finding bugs, those approaches often cannot guar-
antee that there exists no sequence of actions from the intruder that can ex-
hibit the faulty behavior. To work around this limitation in some cases, some
criteria for the completeness of a finite state space have been proposed [31].
Alternatively, one can supplement the automatic search with inductive proofs
[34].

Summarily, those approaches explore a subset of all possible attacks in the
model, and thus cannot yield sound security proofs without some additional
work. On the other hand, they can yield an actual trace of attack. In contrast,
our method explores a superset of all possible attacks and thus can yield
secrecy or other safety proofs.

More recently, several symbolic approaches to the analysis of cryptographic
protocols have been proposed, among which ours [37] and Jean Goubault’s
[25], both based on regular sets of terms represented by automata while some
others [20,8] consider other similar symbolic representations. These methods
aim at circumventing the limitations of model-checking by using finite rep-
resentations of infinite sets, coupled with some safe approximations (i.e. the
analysis somehow overestimates the power of the adversary).

Another model for cryptographic protocols is Abadi and Gordon’s spi-calculus
[6,3], an extension to cryptographic protocols of the π-calculus, a process al-
gebra. Several type systems suitable for proving security properties have been
proposed [1,2,5]. These type systems allow proving that the data-flow in the
protocol is secure, that is, that no sensitive information can flow to insecure
channels. However, they restrict the class of protocols that can be consid-
ered and require extensive type annotations and manual derivation of typing
proofs. This approach is certainly powerful since it can deal with very complex
communication networks and protocols; on the other hand, those analyses are
essentially manual while ours is automatic.

1.3 Abstract Interpretation

Abstract interpretation [14,15] is a generic theory for the analysis of compu-
tation systems. Its basic idea is to use approximations in ordered domains in
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Fig. 1. The abstract transition relation follows the concrete one.

a known direction (lower or upper), to get reliable results. This order relation
is preserved throughout monotonic operators.

Here we shall approximate transition systems. We consider a transition rela-
tion r on a “concrete” state space Σ. We also consider an “abstract” tran-
sition relation r] on an “abstract” state space Σ]. An abstraction relation
a ⊆ Σ × Σ] links the two spaces. By a−1(X]) where X] ⊆ Σ], we mean
{x ∈ σ | ∃x] ∈ X] a(x, x])}.

For instance, Σ could be ℘(Z), where ℘(X) notes the power-set of X, and
Σ] the set of (possibly empty) intervals of Z (given by their bounds). The
abstraction relation, in that example, is the following:

∀X ∈ ℘(Z) a(X, [α, β]) ⇐⇒ X ⊆ [α, β].

We require that the two relations satisfy the following simulation condition 1

(see Fig. 1.):

∀x, y ∈ Σ, x] ∈ Σ], r(x, y) ∧ a(x, x])⇒ ∃y] ∈ Σ] r](x], y]) ∧ a(y, y]).

This implies that for all σ0 and σ]
0 so that a(σ0, σ

]
0), noting A0 = {σ | σ0 →

∗
r σ}

and A]
0 = {σ

] | σ]
0 →

∗
r] σ]}, A0 ⊆ a−1(A]

0).

We are only interested here in safety properties; in the concrete model we
are considering here, liveness properties can’t be obtained, since the intruder
can deny any network service by just stopping network transmission. To prove
that a property P holds for all elements in A0, it is sufficient to show that it
holds for all elements in r−1(A]

0). That will be the basic idea of our method
of analysis.

2 Informal Semantics

The first difficulty in formal analyses of cryptographic protocol is the choice
of the formalism in which to express the protocol and a suitable semantics.

1 Readers coming from a type theory background may see it as a kind of subject
reduction property.
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Although specification languages such as CAPSL [36] or CLAP [24] and other
notations [11] have been developed, it is difficult to find a model for which
analysis is tractable and that does not introduce intolerable inaccuracies.

In this section, we shall give an informal account of our version of the Dolev-
Yao model, as well as a description of the input syntax of our implemented
analyzer.

2.1 Our version of the Dolev-Yao Model

The most common approach to analyzing cryptographic protocols is to ab-
stract away the actual cryptographic primitives(public or private key encryp-
tion, hash functions...) being used. Those primitives are only characterized by
some algebraic properties reflecting their ideal behavior. Our analysis scheme
must then base its deductions on those properties.

For instance, we consider a symmetric encryption primitive encrypt(X,K)
taking a piece of data X and a key K. Symmetric key encryption means that
the same key that has been used for encrypting the message can be used to
decrypt it. This means that if an intruder owns encrypt(X,K) and the key
K, then it can obtain X. Furthermore, our encryption is supposed to be strong
enough so that the only way to get X from encrypt(X,K) is to own the key
K.

This example suggests that we should consider the messages exchanged in
the analyzed system to be terms over a signature consisting of all the primi-
tives. For instance, a protocol making use of symmetric encryption is modeled
with messages built on the following algebra: encrypt(·, ·) (encryption) and
pair(·, ·) (pairing).

Such models of cryptographic protocols have been introduced by Dolev and
Yao [11]. The specification for a protocol then contains:

• the naming and arities of primitives
• the properties of those primitives
• the protocol steps.

Our analysis method restricts the class of properties that can be expressed
and the transition rules for the protocol steps.

It has to be noted that even with those restrictions, it is possible to specify a
protocol whose security is undecidable [11, §4.2.1].
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2.2 Primitives (CONSTRUCTORS clause)

Here is an example of a specification of primitives:

CONSTRUCTORS

{

pair(P,P);

proj1(N);

proj2(N);

encrypt(P,N);

decrypt(P,N);

private Na;

}

Primitives may be specified either as public (no keyword) or private (private
keyword). A public primitive can be freely used by the intruder ; for instance,
the encryption primitive may freely be used by the intruder, since we assume
that he knows which cryptographic primitives we use and that he has a working
implementation of them. This is consistent with Kerckhoffs’ rule that the
secrecy must reside entirely in the key (not in the secrecy of the encryption
mechanism or algorithm) [39, 1.1]. On the other hand, private primitives reflect
informations or operations that the intruder does not know : for instance, some
secret constants are specified as 0-ary primitives.

The letters P and N in the arity are used to implement some elementary sanity
check for the actions of the principals. A principal may only use pattern match-
ing to extract patterns from fields designed by P (pattern), not from fields
designed by N (no pattern). Indeed, if a principal knows a key K, it can match
an incoming piece of data against encrypt(x, K) and extract x, but it would
be absurd for it to match an incoming piece of data against encrypt(X, k) and
extract the key k. Those letters have no actual role in the analysis, they are
just meant to exclude some obvious errors in the specification in the front-end
of the analyzer.

2.3 Rewriting Rules (RULES clause)

In our case, the rules are :

proj1(pair(x,y)) => x;

proj2(pair(x,y)) => y;

decrypt(encrypt(x, k), k) => x;
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Those rules mean respectively :

• that the intruder may freely project the left side of a pair it owns ;
• that the intruder may freely project the right side of a pair it owns ;
• that the intruder may decrypt an encrypted message it owns, provided it
also owns the corresponding key.

It is possible to model several encryption systems in the same protocol : one
only has to specify several primitives encrypt1, encrypt2 etc... It is also
possible to model a public-key cryptosystem as follows :

publicDecrypt(publicEncrypt(x, k), privateKey(k)) => x

where privateKey is a private unary constructor. When x is a public key,
privateKey(x) is the corresponding private key. Of course, privateKey is a
PRIVATE constructor.

2.4 The Intruder; Completion Rules

All communication goes through the intruder. When a principal outputs a
message, it sends it to the intruder. When a principal inputs a message, it
gets it from the intruder. This model thus assumes that the intruder has entire
control of the communication network and can modify or concoct messages at
will. Of course, it is impossible to prove that a protocol completes its task in
such a model, since the intruder can just stop transmitting any message. On
the other hand, we can establish properties such as the secrecy of some piece of
information, or whether principals always fail before reaching a certain point
of the protocol if fed improper information by the intruder.

The intruder is limited in its computations. It has a set of initially known
pieces of data, and enriches that set as it receives messages. It completes that
set of messages using :

• the publicly available primitives (§2.2),
• the rewriting rules (§2.3).

2.5 The initial and secure knowledge specifications (INTRUDER KNOWLEDGE

and SECRETS clauses)

The initial knowledge of the intruder is specified in the INTRUDER KNOWLEDGE

clause (actually, the initial knowledge of the intruder is the completion of the
knowledge specified by the intruder by the rules — see §2.4).
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2.6 Principals (PRINCIPAL clauses)

Each principal runs its part of the protocol. The usual notation is to identify
principals by a letter such as A or B, or S for servers. If there are several
instances of the protocol running concurrently or successively, there are sev-
eral instances (A1, A2, . . . , B1, B2, . . . ) of each of the principals described in
the protocol description; alternatively, the same principal may only have one
instance (a single server may serve several sessions). For instance, protocols
featuring a server are generally modeled with a common server principal for
all sessions, while the other principals have one instance per session. Such
distinction between instances of the same principal is important if they are
supposed to generate unique identifiers or random numbers in each instance
(see 2.7).

2.6.1 Registers (REGISTER clause)

Each principal has a finite number of registers, each containing no value or a
term. For the sake of clarity, registers are given names reflecting the data a
correct execution of the protocol should store in that register. For instance,
kab is the name of a register meant to contain the communication key between
principals A and B. Semi-formal specifications of protocols often call with the
same identifier (say Kab) two different things:

• an unique constant generated at run-time for each session of the protocol,
• registers in one or more principals meant to contain that constant.

Of course, while in a correct run of the protocol those registers indeed contain
that constant after some point of the protocol, an intruder might well concoct
messages so that some principal “thinks” some value is a correct communica-
tion key, store it into the appropriate register and then use it as a legitimate
key. It is therefore important to distinguish between those two meanings.

2.6.2 Specification of actions (PROGRAM)

A principal may at a given moment, depend on the current instruction it has
to execute:

• Input a message into a register (?register). The message is actually input
from the intruder (who, in our model, controls the network) ; the message
obtained from the intruder can be any piece of data that the intruder can
compute (§2.4).
For instance, if the intruder initially knew X and received Y from a prin-

cipal, it can compute pair(X,Y) and send it to the principal that executes
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?r. That principal will then store pair(X,Y) into register r.
• Output a message, made from constants and register contents (!message).
In our notation, the message is a term containing constructors, constants
and register names. The principal computes the actual message by replacing
the register names by the current values of the registers. The message is then
output to the intruder, which uses it to increase its knowledge.
For instance, if register data contains X and register kab contains Kab,

then ! encrypt(data, kab) will output encrypt(X, Kab) to the intruder.
• Match the contents of a register against a pattern (register =~ pattern).
The pattern can specify constants, current contents of registers (register) or
destination registers ($register). If the pattern fails, the principal considers
that the protocol has failed and stops.
This action is complex to describe formally, but really simple informally.

Let us suppose that register r contains encrypt(X, Kab) and that register
kab contains Kab. After the principal execute r =~ encrypt($data, kab),
register data will contain X. If r had contained encrypt(X, Kas), the match
would have failed and the principal would have stopped executing.

The execution of the protocol steps is sequential. If a match step fails, the
principal ceases to execute the protocol (fail-stop behavior [23]).

The behavior of all principals is interleaved : at a given time, any principal
ready to execute an action can execute it. This leads to many possible inter-
leaving of actions.

2.7 Nonces and key generation

Many protocols call for the use of nonces ; a nonce is a number that is generated
once for each session of the protocol. A nonce can be a session key or any
number that is unique to a session. A nonce is supposed to be fresh; that is,
it has not been used in a previous session of the protocol (or at least it is very
unlikely that is has been used before).

We model nonces by unique constants that cannot be unified with any other
constant. If a nonce is unique to a session, we use one constant per session.
So, for instance, if a server S generates a key Kab then we will use a constant
Kab to represent the key.

2.8 Limitations of this model

There are pitfalls to this approach:
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(1) Some properties of the primitives may have been ignored. For instance,
some primitives are malleable [17]; for instance, an intruder can transform
some encrypted text encrypt(X,K) into some other text encrypt(Y,K)
without knowing the keyK. It would be necessary to reflect such behavior
in the rules describing the primitives.

(2) Such a model do not take probabilistic leaks of information into account
[9]. We do not take into account attacks using statistical inference.

(3) Our model has “subliminal channels”. It is possible to hide information
in complex ways, such as encrypting something n times with the same
key and using the result as a means to transmit n. We do not handle such
methods of transmission, which anyway are not used in most protocols.

(4) Representing concatenation with pairing is not very accurate. In real-life
protocols, concatenation is associative. Furthermore, a real-life intruder
might split data in ways that are not allowed by this model, such as
taking only one byte of a 32-bit value.
As we shall see later, it is difficult to accurately model associativity

properties in term algebras. Our implementation therefore does not take
associativity into account. Even with this limitation, our method found
a “bug” in a well-known protocol (§7.2). Whether or not the bug exists
in the formal model depends on how n-tuples have been split.

2.9 An example: the Otway-Rees protocol

In this section, we shall see on a simple example (the Otway-Rees protocol
[10, §4]) how to model a protocol in our model. We shall again use the input
syntax of our simple analyzer.

In the cryptography literature, the Otway-Rees protocol is described as fol-
lows:

Message 1 A→ B M ;A;B; {Na;M ;A;B}Kas

Message 2 B → S M ;A;B; {Na;M ;A;B}Kas ; {Nb;M ;A;B}Kbs

Message 3 S → B M ; {Na;Kab}Kas ; {Nb;Kab}Kbs

Message 4 B → A M ; {Na;Kab}Kas

{X}K is a notation for “X encrypted with the key K”. The following para-
graphs will explain the other notations.

The Otway-Rees protocol features three principals: one server S and two
clients A and B. A and B each have a shared key, Kas and Kbs respectively,
for communication with the server S. Those two clients wish to communicate
together using a shared key Kab, on which they have to agree. They use S as
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a middleman so as to agree on a shared secret key Kab. Of course, it is hoped
that when they do so, no intruder can get hold of that key Kbs (secrecy) and
that both machines, if completing the protocol successfully, get the correct
key Kbs (correct key distribution). We suppose of course that both keys Kas

and Kbs are kept secret from the intruder.

This protocol, as many others, makes use of nonces, also known as coun-
founders. These are random pieces of data that are generated for each run
of the protocol by some of the principals. They are meant to foil some at-
tacks such as replaying parts of an older transaction (replay attacks); here,
principal A generates nonces M and Na and principal B generates nonce Nb.

As said in §2.7, we model both nonces and keys using private constants (i.e.
0-ary constructors that are not supposed to be initially known by the intruder
and are not guessable by him). There is, however, a distinction to be made
between two meanings for the same notation in the above description of the
protocol:

• in some cases, a name (say, “Na”) is a constant initially known by the
principal that emits the message; it is therefore to be treated as a symbolic
constant Na;

• in other cases, the same name Na denotes a value that the principal has
previously acquired from the network and stored into a register (called na);
in a normal (without intrusion) run of the protocol, this value should be
equal to Na.

We model only one run of the protocol; that is, we simulate only three machines
A, B and S. n simultaneous multiple runs of the protocol with the same server
could be simulated by considering machines A1, . . . , An and B1, . . . , Bn.

CONSTRUCTORS

{

pair(P,P);

proj1(N);

proj2(N);

encrypt(P,N);

decrypt(P,N);

private Kas;

private Kbs;

private Kab;

private M;

private Na;

private Nb;

private X;

private A;

private B;

S;

}

RULES

{

proj1(pair(x,y)) => x;
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proj2(pair(x,y)) => y;

decrypt(encrypt(x, k), k) => x;

}

INTRUDER_KNOWLEDGE

{}

SECRETS

{ X

}

PRINCIPAL A

{

REGISTERS { r, kab }

PROGRAM {

! pair(A, pair(B, pair(M, encrypt(pair(pair(Na, M), pair(A, B)), Kas))));

? r;

r =~ pair(B, pair(A, encrypt(pair(Na, $kab), Kas)));

! encrypt(X, kab);

}

}

PRINCIPAL B

{

REGISTERS { r, m, a, z, kab }

PROGRAM {

? r;

r =~ pair($a, pair(B, pair($m, $z)));

!pair(B, pair(S, pair(a, pair(z, encrypt(pair(pair(Nb, m), pair(a, B)), Kbs)))));

? r;

r =~ pair(S, pair(B, pair($z, encrypt(pair(Nb, $kab), Kbs))));

! pair(B, pair(a, z));

}

}

PRINCIPAL S

{

REGISTERS { m, r, a, b, na, nb }

PROGRAM {

? r;

r =~ pair($b, pair(S, pair($m, pair($a, pair($b, pair(

encrypt(pair(pair($na, $m), pair($a, $b)), Kas),

encrypt(pair(pair($nb, $m), pair($a, $b)), Kbs)))))));

! pair(S, pair(b, pair(m, pair(

encrypt(pair(na, Kab), Kas),

encrypt(pair(nb, Kab), Kbs)))));

}

}

3 Formal Semantics

In this section, we give a formal semantics to the cryptographic protocols,
corresponding to the informal semantics presented in the preceding section.
We shall later prove the correction of our analysis with respect to this formal
semantics.
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3.1 Terms and Completion Rules

Let us consider a signature [27, p. 249] [13, preliminaries] F and the free
algebra of terms T (F) on that signature. A signature is simply a couple
(Σ, a) where Σ is a set of function names and a is a function from Σ to the set
of nonnegative integers N called the arity. The function names in the example
of §2.9 are pair, encrypt, each of arity 2, and various constants (Na) of arity 0.
The free algebra T (F) of terms upon the signature is just the set of syntactic
terms built using those function names (for instance, encrypt(Na, Kas)).

Messages exchanged on the network are elements of that algebra. We will also
consider the algebra T (F ,X ) of terms with variables in X . When t ∈ T (F ,X ),
(Xi)i∈I is a family of variables, (ti)i∈I is a family of terms, we write t[ti/Xi]
the term obtained by parallel substitution of Xi by ti in t. We note FV (t) the
set of free variables of t.

Let us also consider a notion of “possible computation”; this notion is defined
by a function K : ℘(T (F))→ ℘(T (F)) that computes the closure of a subset
of T (F) by the following operations:

• a subset O of the function symbols found in F ; that is, if the symbol f
belongs to the subset On of elements of O of arity n, then for all n-tuple
(xi)1≤i≤n of elements of K(X), then f(x1, . . . , xn) belongs to K(X);

• a set R of rules of a certain kind described in the next paragraph.

So an element x of T (F) is deemed to be “possibly computable” from X ⊆
T (F) if x ∈ K(X). We write ℘(T (F))K the fixpoints of K.

We require that the rules in R be of the following form: t=>x, where t is a
term with variables and x is a variable appearing exactly once in t (collapsing
rules).

3.2 Concrete Semantics

Let us consider a finite set P of principals. Each principal p ∈ P has a finite set
Rp of registers, each containing an element of T (F) ∪ {Ω} — the Ω element
meaning “uninitialized” — and a program xp to execute. We shall actually
ignore uninitialized elements, since protocols using uninitialized elements do
not make real sense; our analysis therefore refuses protocols that make use of
uninitialized registers using a simple syntactic check. The program is a finite
sequence (possibly empty) of commands, which can be of the three possible
types:
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Output to network !t, read as “output t”, where t ∈ T (F , Rp);
Pattern matching r0 =~ t, read as “match register r0 against t”, where

r0 ∈ {1, . . . , rp} and t ∈ T (F , Rp ∪ $Rp); $Rp = {$r | r ∈ Rp} is a copy of
Rp obtained by prefixing each register name by a $ sign.
The difference of meaning between r and $r is as follows:

• r at position π in the term notes the current value of register r; the sub-
term at position π of the value in register r0 is matched against the current
value in register r;

• $r notes that the sub-term at position π of the value in register r0 should
be stored into register r.

Input from network ?r, read as “input register r”, where r ∈ Rp.

We shall write h :: t the sequence whose head is h and tail t, and ε the empty
sequence. The local state of a principal is therefore the content of its registers
and the program it has yet to execute. The global state is the tuple (indexed
by P) of the local states, together with the state of the intruder, which is an
element of ℘(T (F))K. The set of global states is noted Σ.

We define the semantics of the system by a nondeterministic transition relation
→ (nondeterminism arises because of the interleavings of the actions of the
principals and because of the choices of the adversary). Let S and S ′ be two
global states. We note S.p the local state of the principal p in S and S.I
the intruder knowledge in S. In a local state L, we note L.r the contents of
register r and L.P the program. The definition of the transition relation is the
following: S → S ′ if there exists p0 ∈ P so that:

• for all p ∈ P so that p 6= p0, S
′.p = S.p;

• S.p0.P = h :: τ and either
(Input from network) h = ?r0 and

· for all r ∈ Rp0
, S ′.p0.r = S.p0.r,

· S ′.p0.r0 ∈ S.I
· S ′.p0.P = τ

(Output to network) h = !t and
· for all r ∈ Rp0

, S ′.p0.r = S.p0.r (this does not change the state of
any register),
· S ′.I = K(S.I ∪ {t[S.p0.r/r | r ∈ Rp0

]}) (the intruder now knows t
and uses it to increase its knowledge);
· S ′.p0.P = τ (the principal p0 has yet to execute the rest of its pro-
gram).

(Pattern matching) h = r0=~t and either
· there exists a substitution σ1 : $Rp → T (F) so that r0 = t[σ1;σ2]
where σ2 is the substitution r 7→ S.p0.r and t[σ1;σ2] is the result of
the application to the term t of both substitutions σ1 and σ2; then

for all r ∈ Rp0
so that $r is not a free variable in t, S ′.p0.r =

S.p0.r (registers not meant to receive results from the pattern
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are left untouched);
for all r ∈ Rp0

so that $r is a free variable in t, S ′.p0.r =
σ1(r) (registers meant to receive results from the pattern get
the desired results);
S ′I = SI (as there is no network communication involved, the
intruder gets no new knowledge);
S ′.p0.P = τ (the principal p0 has yet to execute the rest of its
program);

· such a substitution does not exist; then
for all r ∈ Rp0

, S ′.p0.r = S.p0.r;
S ′I = SI (as there is no network communication involved, the
intruder gets no new knowledge);
S ′.p0.P = ε (the principal considers that the protocol has failed
for some reason and stops executing it — fail-stop behavior).

Please note that the pattern matching is not done modulo the rules
defined in §3.1. This should not be a problem in most cases. Furthermore,
it is possible to slightly complexify the semantics by requiring that the
rewriting rules should be applied after each computation step. For the
sake of brevity, we will not treat that extension in this paper.

4 Tree Automata and Operations on Them

Regular languages, implemented as finite automata, are often used to abstract
sets of words on an alphabet. Here, we abstract sets of terms on a signature by
regular tree languages, and we consider the generalization of finite automata
to n-ary constructors: tree automata [13].

Please note that the algorithms presented here are given mainly as proofs that
the functions described are computable. There are several ways to implement
the same functions, and efficient implementations are likely to be more complex
than the simple schemes given here.

4.1 Special Tree Automata

We use non-deterministic top-down tree automata [13, §1.6] to represent sub-
sets of T (F); an automaton is a finite representation the subsets of terms it
recognizes. A top-down tree automaton over F is a tuple A = 〈Q, q0,∆〉 where
Q is a finite set of states, q0 ∈ Q is the initial state and ∆ is a set of rewrite
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q0

encrypt

q1

X

q2

pair

q3

K1

q4

K2

K1 K2

(a) The tree. The cir-
cled nodes represent the
states, the others the
symbols

q0(encrypt(x, y)) →A encrypt(q1(x), q2(y))

q0(K1) →A K1

q0(K2) →A K2

q1(X) →A X

q2(pair(x, y)) →A pair(q3(x), q4(y))

q3(K1) →A K1

q4(K2) →A K2

(b) The set ∆ of rewrite rules.

Fig. 2. An automaton ({q0, . . . , q4}, q0,∆) on the signature OC with added constants
{X, K1, K2} recognizing {encrypt(X, encrypt(K1, K2)), K1, K2}.

rules 2 over the signature F ∪Q where the states are seen as unary symbols.
The rules in ∆ must be of the following type:

q(f(x1, . . . , xn))→A f(q1(x1), . . . , qn(xn))

where n ≥ 0 f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn being variables. When n = 0,
the rule is therefore of the form q(a)→ a. Defining

Lq(a) = {t ∈ T (F) | q(t)→∗
A t},

we denote by L(a) = Lq0
(A) the language recognized by A.

We actually will be using a narrower subclass of tree automata, which we be
referred to as special automata, over F ; we shall note the set of these au-
tomata AF . A special automaton can be represented as a tree (see an exemple
Fig. 2). Such a tree has two kind of nodes:

states that have:
• an (unordered and possibly empty) list of children, which are all symbol
nodes;

• a boolean flag;

2 The reader should not confuse these rewrite rules, meant as a notation for the
tree automaton, with the rewrite rules in R.
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symbols that have an ordered list of children; there are as many as children
as the arity of the symbol.

The symbolics in terms of rewrite rules of such a tree are the following:

• q s

q1

...

qn

where q, q1, . . . , qn are states and s is a n-ary symbol stands for

the rewrite rule q(s(x1, . . . , xn))→A s(q1(x1), . . . , qn(xn));

• the flag on a state q, when true (represented by q O ), means the set of

rules {q(s(x1, . . . , xn))→A s(q(x1), . . . , q(xn)) | s ∈ On, n ∈ N}.

Implementing the special automata as such trees allows for easy sharing of
parts of the data structures.

A formal definition of the class of set automata is that the set ∆ of rewrite
rules defining a special automaton can be partitioned between two subsets:

• rules of the form q(f(x1, . . . , xn)) → f(q(x1), . . . , q(xn)) where q ∈ Q and
f ∈ On; we require that if there exists n ≥ 0 and f ∈ On so that
q(f(x1, . . . , xn)) → f(q(x1), . . . , q(xn)) ∈ ∆ then ∀n ≥ 0,∀f ∈ On, q(f(x1,
. . . , xn))→ f(q(x1), . . . , q(xn)) ∈ ∆;

• rules of the form q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) where q, q1, . . . ,
qn ∈ Q; we require the directed graph (Q,E) whose vertices are the states
and the arrows are of the form q →E qi, 1 ≤ i ≤ n for all the rules of the
above form to be a tree.

4.2 Union

The union of two languages representable using special automata A and B is
represented by the special automaton A t B obtained by joining A and B at
the root.

4.3 Substitution and Matching

We extend canonically our definition of substitution of terms into terms into
a definition of substitution of languages (sets of terms) into terms with vari-
ables. We furthermore overload this substitution notation to also consider a
substitution function on automata so that for any term t and automata Ai,
L(t[Ai/Xi]) = t[L(Ai)/xi]. Such a substitution function, using only special
automata, can be easily defined by induction on t.
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Now we consider the reverse problem: given a language L and a term with
variables t, give the set of solutions of L = t[xi/Xi]. Such a solution is a family
(Li) of languages so that L = t[Li/Xi]. We thus consider a function match so
that if A is an automaton and t a term with variables, match(A, t) is a finite
subset of FV (t)→ AF and for any solution S in this set, L = L(t[Si/Xi]). A
computational definition follows.

We definematchl(A, t), whereA = 〈Q, q0,∆〉 is an automaton and t ∈ T (F ,X ),
recursively over the structure of t. Its value is a finite subset of FV (t)→ AF .

• if t = s(t1, . . . , tn) where s is an n-ary symbol, then

matchl(A, t) = {λx ∈ X{∪{pi | ∀1 ≤ i ≤ n pi ∈ matchl(〈Q, qi,∆〉, ti)}

| r : q(s(x1, . . . , xn))→A s(q1(x1), . . . , qn(xn)) ∈ ∆};

• if t ∈ X then matchl(〈Q, q0,∆〉, t) = {[x 7→ q0]}.

The interesting property of this function is that for all linear 3 term t ∈
T (T ,X ), for all automaton A = 〈Q, q0,∆〉, calling x1, . . . , xn the variables
in t, for all terms t1, . . . , tn ∈ T (T ), then t[ti/xi, . . . , tn/xn] ∈ L(A) if and only
if there exists p in matchl(A, t) so that for all i, ti ∈ Lp(xi)(A)). Informally,
that means that this function returns the set of matches of the term against
the automaton, giving for each match and for each variable the states in which
this variable is to be recognized in that match.

We then construct a function match that has the same property, except that
it does not constrain the terms to be linear.

match(A, t) = {f ∈ matchl(A, t) | ∀x ∈ X
⋂

q∈f(x)

Lq(A) 6= ∅}.

The definition of matchl translates into an algorithm on automata defined by
trees as above. Then match is defined, using an effective test of whether the
languages of several automata intersect [13, §1.7].

The above property of matchl induces the following property on match:
Lemma 1. Given a term t with variables and a special automaton A, if there
exists a substitution σ : FV (t) → T (F) of the free variables of the term t so
that t[σ] ∈ L(A), then there exists M ∈ match(A, t) so that for each variable
x, σ(x) ∈ L(M(x)).

3 A term is said to be linear if all variables have at most one occurrence in it.
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q0

O
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q1

X

q2

pair
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K1

q4
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ε

K1 K2
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q0 q0

pair

q0 q0

(a) Before the completion. The
dashed subtree is an expansion of
paths going through the loops on q0,
for the sake of clarity. The dotted line
is the ε-transition we are adding.

q0

encrypt

q1

X

q2

pair

q3

K1

q4

K2

K1 K2 X

(b) After the comple-
tion. Not to use real
ε-transitions, we add
the children of q1 to
the children of q0.

Fig. 3. Completion of the automaton from Fig. 2 by the rewrite rule
decrypt(encrypt(x, k), k) → x.

4.4 The K] Function on Automata

We want an abstraction of the function K; that is, a function K] so that
K(L(A)) ⊆ L(K](A)) for all special automaton A. Actually, we shall give such
a function so that there is K(L(A)) = L(K](A)).

We will use a notion of position in a term [27, p. 250] as a sequence of positive
integers describing the path from the root of the term to that position; ε will
be the root position. pos(t) is the set of positions in term t. By t|p we shall
denote the subterm of t rooted at position t. We define the similar notions for
trees.

Now we define completion(A,R) (see Fig. 3 for an example) where A is a spe-
cial automaton and R is a simplification system by induction on the structure
of A: calling q0 the initial state of A and calling C1, . . . , Cn the children states
of q0, that is, the states two nodes away from q0:

constructA′, obtained by replacing inA the subtree starting from C1, . . . , Cn
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by their image by a 7→ completion(a,R)
repeat

for a→ x ∈ R do
for f ∈ match(A′, a) do

if the following subtree is not already present, modulo state renaming
then
copy A′|f(x), replacing the state f(x) by q0 {adds a child to q0}

end if
end for

end for
until no new subtree is added to A′

return A′

Termination of this algorithm is ensured by the following property, proved by
induction on the structure of A: the set of subtrees of completion(A,R) is,
modulo state renaming, the set of subtrees of A. The repeat-until loop only
inserts subtrees that were already present in A modulo state renaming, and
thus terminates, since there are only a finite number of them and it never
inserts twice the same.

We then define

K](A) = completion(AO,R)

where AO is A where the flag on the initial state has been set to true.
Lemma 2. For any special automaton A, K(L(A)) ⊆ L(K](A))

Proof. L(K](A)) contains necessarily L(A), since all the transitions present
in A are present in K](A). Furthermore L(K](A)) is stable by K, since the
completion algorithm terminated. Since K(L(A)) is the least fixpoint of K,
the inclusion follows.

5 Abstract Model

The above concrete model has an annoying feature that makes it difficult to
analyze: the infinite nondeterminism of the intruder (the knowledge of the
intruder is an infinite set). We suppress that difficulty by “folding” together
all branches of the nondeterminism of the intruder. This approximation is safe,
in the sense that it always overestimates what the intruder knows. What then
remains is a system of bounded nondeterminism, corresponding to the various
possible interleavings of the principals. As the number of principals is finite,
that gives a finite state space (although the number of interleavings grows fast
with the number of principals).
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Informally, our abstract works as follows: instead of using an infinite set of
terms to model the knowledge of the intruder, we use a finite representation
of an infinite set of terms; instead of individual terms stored in principals’
registers, we use finite representations of set of terms that could possibly be
held in those registers. A single abstract state then stands for all the concrete
states where the contents of the principals’ registers belong to the respective
abstract sets and where the intruder’s knowledge is a subset of the respective
abstract state.

5.1 The Abstract Domain and the Abstraction Relation

An abstract global state S] ∈ Σ] is made of a tree automaton S].I representing
the knowledge of the intruder, and the local states (S].p)p∈P . Each local state
S].p is made of a program sequence S].p.P , with the same definition as in the
concrete semantics, and a family (S].p.r)r∈rp of automata.

A single abstract state may represent (infinitely) many corresponding concrete
states. The links between abstract states and concrete states is defined by an
abstraction relation (see §1.3).

Our abstraction relation a ⊆ Σ × Sigma]: is defined as follows: for any S in
Σ and S] in Σ]

a(S, S])⇔ (S.I ⊆ L(S].I))∧∀p ∈ P (S.p.P = ε)∨











S.p.P = S].p.P

∀r ∈ Rp S.p.r ∈ L(S].p.r).

What this means intuitively is that we attach a regular set of terms, repre-
sented by a special automaton, to each part of the concrete state that stores
a term. An abstract state is an abstraction of a concrete state if and only if
all the terms of the concrete state belong to the respective sets of terms.

5.2 Abstract Semantics

We define the semantics of the system by a nondeterministic transition relation
→]. Let S] and S ′] be two global states. The definition of the transition relation
is the following: S] →] S ′] if there exists p0 ∈ P so that:

• for all p ∈ P so that p 6= p0, S
′].p = S].p;

• S].p0.P = h :: τ and either
· h = ?r0 and

for all r ∈ Rp0
so that r 6= r0, S

′].p0.r = S].p0.r,

S ′].p0.r0 = S].I
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S ′].p0.P = τ
S ′].I = S].I

· h = !t and
for all r ∈ Rp0

so that r 6= r0, S
′].p0.r = S].p0.r,

S ′].I = K](S].I t t[S].p0.r/r | r ∈ Rp0
])

S ′].p0.P = τ
· h = r=~t, S ′].I = S].I and either

match(S].p0.r, t[S
].p0.r/r | r ∈ Rp0

]) 6= ∅ then

for all $r ∈ $Rp0
\ FV (t), S ′].p0.r = S].p0.r

for all $r ∈ FV (t), S ′].p0.r = t{M($r) | M ∈ match(S].p0.r,
t[S].p0.r/r | r ∈ Rp0

])} 4

S ′].p0.P = τ
match(S].p0.r, t[S

].p0.r/r | r ∈ Rp0
]) = ∅; then

for all r ∈ Rp0
, S ′].p0.r = S].p0.r

S ′].p0.P = ε

5.3 Proof of Correctness

The correctness of our method relies on the fact that →] is an abstraction of
→ with respect to a, according to the definition in part 1.3. This means that
our method computes symbolically a superset of the set of reachable states.

Let us now prove this correctness condition. Let us consider a concrete tran-
sition S → S ′ (as defined in §3.2) and an abstract state S] so that S] is an
abstraction of S (as defined in §5.1). Let p0 be the principal that executes the
transition and S.p0.P = h :: τ the program it has to execute.

Since S] is an abstraction of S, for all p ∈ P , for all r ∈ Rp, S.p.r ∈ L(S].p.r).

For p 6= p0, S
′.p.r = S.p.r and S ′].p.r = S].p.r, thus S ′.p.r ∈ L(S ′].p.r). Let

us now establish the remaining relations. There are several cases, depending
on the instruction being executed:

(Input from network) h = ?r0; then
• for all r ∈ Rp0

, S ′.p0.r = S.p0.r; by the abstraction relation, S.p0.r ∈

L(S].p0.r) and thus S
′.p0.r ∈ L(S ′].p0.r);

4 Replacing this condition by

∃M ∈ match(S].p0.r, t[S
].p0.r/r | r ∈ Rp0

]) ∀$r ∈ FV (t) S ′
]
.p0.r = M.r

yields a less coarse abstract model, which still has the good property that nonde-
terminism is finite and traces length are bounded. The model we use is clearly an
abstraction of this more precise model.
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• S ′.p0.r0 ∈ S.I; but S ′].p0 = S].I and S.I = L(S].I), thus S.p0.r0 ∈
L(S ′].p0.r0);

• S ′.p0.P = τ = S].p0.P ;
(Output to network) h = !t and
• for all r ∈ Rp0

, S ′.p0.r = S.p0.r; by the abstraction relation, S.p0.r ∈

L(S].p0.r) and thus S
′.p0.r ∈ L(S ′].p0.r);

• S ′.I = K(S.I ∪ {t[S.p0.r/r | r ∈ Rp0
]}); since t[S.p0.r/r | r ∈ Rp0

] ∈
L(t[S].p0.r/r | r ∈ Rp0

]) (Lemma 1) and S.I ∈ L(S].I) then S.I ∪
{t[S.p0.r/r | r ∈ Rp0

]} ∈ L(S].I t t[S].p0.r/r | r ∈ Rp0
]), and thus,

using Lemma 2, S ′.I ∈ L(S ′].I).
• S ′.p0.P = τ = S].p0.P ;

(Pattern matching) h = r0=~t and then either:
• there exists a substitution σ1 : $Rp → T (F) so that r0 = t[σ1;σ2] where

σ2 is the substitution r 7→ S.p0.r;
· for all r ∈ Rp0

so that $r is not a free variable in t, S ′.p0.r =

S.p0.r; since in this case S ′].p0.r = S].p0.r, it follows that S ′.p0.r ∈
L(S ′].p0.r);
· for all r ∈ Rp0

so that $r is a free variable in t, S ′.p0.r = σ1(r); but
then there exists M ∈ match(S].p0.r, t[S

].p0.r/r | r ∈ Rp0
]) so that

σ1(r) ∈ L(M($r)) (Lemma 1) and thus a fortiori σ1(r) ∈ L(t{M($r)
| M ∈ match(S].p0.r, t[S

].p0.r/r | r ∈ Rp0
])}), which means that

S ′.p0.r ∈ L(S ′].p0.r);
• such a substitution does not exist; then S ′.p0.P = ε;
in any case,
• S ′.p0.r0 ∈ S.I; but S ′].p0 = S].I and S.I = L(S].I), thus S.p0.r0 ∈

L(S ′].p0.r0);
• S ′.p0.P = τ = S].p0.P ;

5.4 Where the Abstract and Concrete Models do not Coincide

As we are dealing with an approximate model, it is important to know how
much information the model actually loses. There exists a simple example in
which our abstraction strictly overestimates the power of the intruder: a single
principal A runs that very simple program
?r
!decrypt(r,K)
and the intruder initially knows {encrypt(X,K); encrypt(Y,K)}, X, Y and
K being constants initially unknown to the intruder. We want to know whether
at the end of the “protocol”, the intruder can get hold of the concatenation
of X and Y .

Let us consider the concrete model. The intruder may send encrypt(X,K) or
encrypt(Y,K), in which case it obtains respectively decrypt(encrypt(X,K), K) =
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X or decrypt(encrypt(Y,K), K) = Y after the second step, but it may not
do so at the same time. The intruder has to choose whether it wants to get X
or Y . It is not possible for it to get both X and Y , and it may therefore not
compute the concatenation pair(X,Y ).

Let us now execute the abstract analysis by hand, step-by-step. After the first
step, we know that register rmay contain any of {encrypt(X,K); encrypt(Y,K)}.
After the first step, the abstract intruder knowledge gets augmented by {decrypt(encrypt(X,K), K); decrypt(encrypt(Y,K), K)}.
Apply rewriting rules to this set yields that the abstract intruder knowledge
contains both X and Y . The abstract intruder can then compute the concate-
nation pair(X,Y ).

Is this overestimation of the power of the intruder relevant when dealing when
real-life protocols? Our investigations on examples of protocols found in clas-
sic papers on the topic [10] did not show it was a problem; the above kind
of example is largely considered academic by the cryptographic protocol com-
munity. Furthermore, an error that exists only in the approximation for n
principals could well be a concrete error for a greater number of principals.
For instance, with the above example, if we run two copies of A, the intruder
really can get (X,Y ): it can obtain X from A1, then obtain Y from A2, then
compute (X,Y ). For these reasons, we think that the approximation is fine
enough.

6 Implementation Issues

Basing ourselves on the above theory, we implemented a protocol analyzer.
This program takes as input the signature and the rewrite system defining the
term algebra and a specification of the protocol.

6.1 The Protocol Analyzer

Our program reads an input file containing:

• the signature of the algebra, divided between “public” and “private” con-
structors; private constructors (like keys) cannot be applied by the intruder;

• the rewrite system;
• the initial knowledge of the intruder;
• what the intruder wants to get hold of (set L);
• the programs run by the principals.

It then explores the interleavings of the principal actions, computing with
the abstract operations, and displays the interleavings that seem to exhibit
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a security hole (where the abstract knowledge of the intruder contains an
element of L).

6.2 Interleavings

It is not necessary to consider all possible interleavings. We only consider
interleavings that are concatenations of sequences of the following form: inputs
and matches by a principal, and outputs by the same principal. It is easy to
see that any interleaving is equivalent (when it comes to the final knowledge
of the intruder) to such an interleaving. This reduction is similar to the partial
order reduction techniques used in model-checking [12, chapter 10] to speed
up analyzes of models of concurrent asynchronous systems.

6.3 Implementation of the Automata

We tried two implementations of the automata :

• One was closely based on the operations described above on special au-
tomata. Elementary operations, especially because of the use of hashed sets
to test for identical branches, are very fast. The problem is that special
automata have no minimization property and the size of automata grows
fast as the length of the traces grows.

• The other one was operating on minimal deterministic finite tree automata
[13]. Here, it seems that the completion by the rewriting system (imple-
mented as the insertion of ε-transitions and the final determinization of the
automaton) is very slow.

We also investigated whether some available toolkits such as MONA [29] and
BANE [18], but didn’t succeed in using any of those for our particular needs.
The MONA application programming interface is geared towards WS2S logic
applications and handling already computed automata is difficult; on the other
hand, BANE is more geared towards computations on sets of terms, but it
seemed that some useful features were either missing or difficult to implement
without knowing the internals of the library. We are also considering other
possible implementations based on constraint solving [7].

The experimental results we obtained suggest the replacement of the rewriting
system by completion through a system of rules, which is computationally
less expensive. This needs some slight changes in the semantics, leading to a
semantics similar to Goubault’s [25].

26



7 Experimental Results

We used the first two implementations cited in §6.3 on some examples, some
of which academic samples, some of them real protocols from the standard
papers on the topic.

7.1 Trials on Small Examples

We first experimented our analyzer (computing on special automata) on some
small examples, among which:

• a single run of the Otway-Rees protocol [10];
• the “Test n” examples: n principals running each the program: ?r

decrypt(r,Kn)
the initial knowledge of the intruder being encrypt(· · · (encrypt(X,K1),

. . . , a
lowbreakKn); the unknown piece of data the intruder tries to recover being
X.

Alas, while other protocols [10,22], when using similarly small number of prin-
cipals, have been easy to analyze using the program, bigger examples (like two
parallel runs of the Otway-Rees protocol) have made the computation times
become too large.

7.2 An Interesting Point on the Otway-Rees Protocol

An early trial of our program on the Otway-Rees protocol (§2.9) yielded some
unexpected results. This protocol features a principal A running:

! pair(A, pair(B, pair(M, encrypt(pair(pair(Na, M), pair(A, B)), Kas))));

? r;

r =~ pair(B, pair(A, encrypt(pair(Na, $kab), Kas)));

! encrypt(X, kab);

The secret piece of data is X. After these four steps, the intruder can indeed
get X in the following way: at step 2, the intruder sends pair(B, pair(A,
encrypt(pair(Na, pair(A,B)), Kas))), built from pieces of the message out-
put by A at step 1. A will then use pair(A,B) as kab. On the other hand, reor-
ganizing the output from step 1, replacing pair(Na, pair(M, pair(A,B))) by
pair(pair(Na,M), pair(A,B)), prevents this attack, and the analyzer then
concludes that the protocol is safe.
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Whether or not the bug described above is relevant in real implementations
depends on how certain primitives, notably pairing, are implemented. Models
taking associativity and commutativity into account could perhaps be more
suitable for analyses of such properties.

8 Conclusions and Prospects

We proposed a model based on tree automata to abstract cryptographic pro-
tocols. We implemented our algorithms and were able to successfully and cor-
rectly analyze some small instances (2 principals and 1 server) of well-known
protocols and test examples. Our abstraction is fine-grained enough to yield
successful result on real-life protocols.

The main drawback of our method is the high number of interleavings to
consider, which limits the number of simultaneous sessions to be analyzed in
practice. It is nevertheless possible to use further abstraction to analyze larger
numbers of sessions provided we have a suitable widening operator [15]. Our
idea of upper-approximate sets of terms was further refined by Genet and
Klay [20] through the use of stable sets which enable the approximation of an
unbounded number of sessions.

We hope that further progress on the algorithmics for abstract sets of trees
[19,33] will make the abstract analysis of cryptographic protocols, and thus
automated proofs, more tractable.

References

[1] Mart́ın Abadi. Secrecy by typing in security protocols. In 14th Symposium
on Theoretical Aspects of Computer Science (STACS’97), Lecture Notes in
Computer Science. Springer, 1997.

[2] Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, September 1999.

[3] Mart́ın Abadi and Andrew D. Gordon. Reasoning about cryptographic
protocols in the spi calculus. In Antoni Mazurkiewicz and Józef Winkowski,
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