
Partial Order and Contextual Net Semantics
for

Atomic and Locally Atomic CC Programs

F. Bueno a, M. Hermenegildo a, U. Montanarib, F. Rossib,
a Universidad Politécnica de Madrid (UPM), Facultad de Informática, 28660

Boadilla del Monte, Madrid, Spain. E-mail: {bueno,herme}@fi.upm.es
b Universitá di Pisa, Dipartimento di Informática, Corso Italia 40, 56125 Pisa,

Italy. E-mail: {ugo,rossi}@di.unipi.it

Abstrac t

We present two concurrent semantics (i.e. semantics where concurrency is explicitely
represented) for CC programs with atomic tells. One is based on simple partial
orders of computation steps, while the other one is based on contextual nets and it
is an extensión of a previous one for eventual CC programs. Both such semantics
allow us to derive concurrency, dependency, and nondeterminism information for the
considered languages. We prove some properties about the relation between the two
semantics, and also about the relation between them and the operational semantics.
Moreover, we discuss how to use the contextual net semantics in the context of
CLP programs. More precisely, by interpreting concurrency as possible parallelism,
our semantics can be useful for a safe parallelization of some CLP computation
steps. Dually, the dependency information may also be interpreted as necessary
sequentialization, thus possibly exploiting it for the task of scheduling CC programs.
Moreover, our semantics is also suitable for CC programs with a new kind of atomic
tell (called locally atomic tell), which checks for consistency only the constraints
it depends on. Such a tell achieves a reasonable trade-off between efficiency and
atomicity, since the checked constraints can be stored in a local memory and are
thus easily accessible even in a distributed implementation.

1 I n t r o d u c t i o n

T h e concurrent cons t ra in t p r o g r a m m i n g pa rad igm [15] has its roots b o t h in t he

const ra in t logic p rog ramming scheme [7] and in concurrent logic p r o g r a m m i n g

languages [17]. A concurrent cons t ra in t (CC) p rogram [15,18,19] consists of a

set of agents in terac t ing th rough a shared store, which is a set of cons t ra in ts

on some variables. T h e framework is pa rame t r i c w.r . t . t he kind of cons t ra in ts

http://unipi.it

handled. The concurrent agents do not communicate with each other, but
only with the shared store, by either checking if it entails a given constraint
(ask operation) or adding a new constraint to it (tell operation). Therefore
computations proceed by monotonically accumulating information (that is,
constraints) into the store.

The semantics of CC programs is usually given following the SOS-style op-
erational semantics [18,19,3], and thus it suffers from the typical pathologies
of an interleaving semantics. On the other hand, the concurrent semantics
approach introduced in [11], which is equipped with a non-monolithic model
of the shared store and of its communication with the agents, allows to ex-
press uniformly the behavior of the store and that of the agents, and, as a
consequence, to derive a semantic structure where it is possible and easy to
see the maximal level of both concurrency and nondeterminism in a given
program. Thus it can be much more useful than an interleaving semantics
when exploiting semantic information for compile-time optimizations which
require knowledge about any one of these two concepts. In fact, an interleav­
ing semantics is not able to express such knowledge correctly, mainly due to
the fact that concurrency is not directly expressible but is instead reduced to
nondeterminism.

The concurrent semantics in [11] is based on an operational semantics de-
scribed via context-dependent rewrite rules, i.e. rules which have a left hand
side, a right hand side, and a context. Each rule is applicable if both its left
hand side and its context are present in the current state of the computation.
A rule application removes the left hand side (but not the context) and adds
the right hand side. In particular, the context is crucial in faithfully represent-
ing ask constraints, which are checked for presence but not affected by the
computation. The evolution of each of the agents in a CC program, as well as
the declarations of the program and its underlying constraint system, can all
be expressed by sets of such rules. In this way each computation step (i.e. the
application of one of such rules), represents either the evolution of an agent,
or the expansión of a declaration, or the entailment of some new constraint.

The concurrent semantic structure is then built from the rules by starting
from the initial agent and unfolding it applying the rules in all possible ways.
The result is a contextual net [10], which is just an acyclic Petri net [13]
where the presence of context conditions, besides pre- and post-conditions,
is allowed. Furthermore, such net is labelled, so that for each element we
know the agent or constraint it corresponds to. This contextual net is able
to represent all the computations of a given CC program (as defined by its
operational semantics), and for each of such computations it provides a partial
order expressing the dependency pattern among the computation steps. As a
result, all such computations are represented in a unique structure, where it is
possible to see the maximal degree of both concurrency (via the concurrency

relation) and indeterminism (via the mutual exclusión relation) available both
at the program level and at the underlying constraint system.

There are two ways in which the basic tell operation of CC languages is usually
interpreted: either eventually, which means that the constraint is added to
the current store without any consistency check, or atomically, which instead
means that the constraint is added only if it is consistent with the current store.
The concurrent semantics for CC programs which we have just described (and
which is defined in detail in [12]) follows the eventual interpretation.

While the eventual interpretation of the tell operation allows for a completely
uniform treatment of agents and constraints and thus a distributed represen-
tation of the constraint system, it suffers from the fact that possibly many
computation steps of a failing computation are performed while not being
needed. In fact, if a constraint is added to the store in any case (that is, with­
out performing any consistency check), then it may be used by other (ask)
agents, and maybe only much later it is recognized that some previous tell
added a constraint inconsistent with the current store. Therefore, the seman-
tic structure presented in [12] contained all such useless (and, most crucial,
possibly infinite) parts of computations.

Here we modify such semantics to allow for the atomic interpretation of the
tell operation: constraints are added only if they are consistent with the cur­
rent store. This implies that now we must have the possibility of knowing
immediately if a set of constraints is consistent or not. Thus it may seem that
we have to go back to the usual notion of a constraint system as a black box
which can answer yes/no questions in one step (which is what is used in all the
semantics other than [11,12]). However, this is not true: the semantic structure
that we obtain still shows all the atomic entailment steps, thus allowing us to
derive the correct dependencies among agents.

The new semantics can be obtained from the oíd one by deíining an incon-
sistency relation on agents and constraints, and then cutting all those parts
of the semantic structure which depend on inconsistently "told" constraints.
The basic idea is to derive the inconsistency relation from the constraint sys­
tem, where we assume that an inconsistent set of constraints always entails
the token false. Then, the inconsistency relation is propagated through the
contextual net via the dependency relation. If, as a result of that, some items
are inconsistent with themselves, then it means that they could not appear in
any computation without creating an inconsistent state of affairs. Therefore
we prune such items and everything that depends on them. We also show how
to derive the new semantics from scratch (instead of first deriving the semantic
structure for eventual tells and then pruning it), by adopting a slightly more
complicated inference rule.

In this paper we also present a different semantics, which associates a partial
order (of computation steps) to each computation, and we relate it to the
semantics based on contextual nets. In particular, we show that, taken a pro-
gram, the partial orders associated to its computations by this semantics, and
the net associated to the program by the net semantics discussed above, every
partial order can be derived from the net, and all the computations represented
by the same partial order are represented, in the net, by the same deterministic
subnet. This additional semantics is basically a trade-off between the scarse
expressive power (in terms of concurrency) of the operational semantics, which
just shows a sequence of steps, and that of the net, which shows the whole
history of all the computations (and thus all possible concurrency and nonde-
terminism). Moreover, it is worth noting that the partial order semantics and
the net semantics are generated in completely different way: the former one by
extracting information from already generated computations, and the latter
one by generating from scratch a sort of decorated computations (where the
decoration is the history).

Since our net semantics introduces an explicit representation for failure (i.e.
the attempt to add a constraint which is inconsistent with the current store),
we can say that we achieve a faithful model for capturing backtracking. In fact,
since failing branches are also captured, we are allowed to make a step towards
exchanging nondeterminism for indeterminism. Thus our semantics, originally
thought for indeterministic CC programs, can also be used for nondeterminis-
tic programs, and, most important, for CLP programs [2]. The only difference
is the interpretation of the mutual exclusión relation, which expresses indeter­
minism when applied to CC programs, and nondeterminism when applied to
CLP programs. The ability of recognizing independence and/or nondetermin­
ism in CLP programs is crucial when one is interested in parallelizing such
programs while retaining their semantic meaning (in terms of input-output
relation and time complexity). This is true also for the dual task, that of
scheduling CC programs [8,9] (although for such task the treatment of failure
is not necessary).

Both such tasks need some knowledge on dependencies (or independence) of
goals, since in the first one we want to parallelize only goals which are not
dependent on each other, and in the second one we want to schedule later goals
which may be dependent on earlier scheduled goals. The attractive point of
the proposed semantics is that the dependency relation is an integral part of
the semantics and thus parallelization and scheduling decisions can be made
by rather direct observations on the semantic structure. Furthermore, the level
of granularity offered by the semantics allows for scheduling or parallelization
tasks of a new nature and at a new level of detail. For example, it is possible
to parallelize across the operations of the constraint solver and thus to créate
parallel tasks that include part of the solver operations all in the same semantic
framework.

While the atomic interpretation of the tell operation allows to recognize, and
thus stop, a failing computation possibly much earlier, it has the disadvan-
tage that it can be extremely costly to achieve, especially in a distributed
implementation of a CC language. The store could be scattered over many
locations, and thus checking its consistency with the new constraint to be told
could require locking all the locations and thus all the other operations until
the consistency check has been performed. For this reason, it would be reason-
able to achieve a convenient trade-off between efnciency and atomicity, thus
defining a new interpretation of the tell operation, which just checks some of
the constraints in the current store, and not all of them. Our semantics gives
a very natural hint on the definition and also the possible implementation of
one such interpretation of the tell operation. In fact, being based on depen-
dency information, it is natural to think of checking for consistency only the
part of the current store on which the tell operation is dependent on. The
interesting, and convenient, thing is that these are the constraints which are
in some sense responsible for the presence of the tell agent, and therefore, in
a distributed implementation, could be stored in a memory which is local to
that agent. This means that they will be the most easily accessible and that
thus the tell operation can be performed efnciently. For this locality reason
we cali this new operation a locally atomic tell. From a formal point of view,
the semantic structure corresponding to the locally atomic tell interpretation
is the minimal one that still is complete, since it does not contain any step
which is inconsistent with itself.

In the following, we will first introduce CC programming (Section 2) and its
operational semantics (Section 3). We provide CC programs with a partial
order semantics (Section 4) and then introduce the required definitions for
contextual nets in Section 5. In Section 6 we present the concurrent semantics
for CC with eventual tell and in Section 7 that for atomic tell, relating them
to the partial order semantics in Section 8. We discuss the locally atomic
interpretation of the tell operation in Section 9, provide hints to possible
applications of our semantics in Section 10, and conclude with Section 11.

This paper is a revised and extended versión of [1]. In particular, the exten­
sión concerns mainly the partial order semantics given in Section 4, and the
theorems concerning its relation to the net semantics.

2 Concurrent Constraint Programming

In the CC paradigm, the underlying constraint system can be described [19] as
a partial information system (derived from the information system introduced
in [16]) of the form (D, h) where D is a set of tokens (or primitive constraints)
and hC p(D) x D is the entailment relation which states which tokens are

entailed by which sets of other tokens. The relation h has to be reflexive and
transitive. Note that there is no notion of consistency in a partial information
system. This means that inconsistency has to be modelled through entailment.
More precisely, the convention is that D contains a false element, so that an
inconsistent set of tokens is that one which entails false. Then, a constraint
in a constraint system (D, h) is simply a set of tokensx .

Consider the class of programs P, the class of sequences of procedure declara-
tions F, and the class of agents A. Let c range over constraints, and x denote
a tupie of variables. The following grammar describes the CC language we
consider:
P ::= F.A
F ::=p(x) :: A \ F.F
A ::= succ \ fail \ tell(c) —>• A \ ^2i=i nask(ci) —>• A¿ \ A || A \ Bx.A \ p(x)

Each procedure is defined once, thus nondeterminism is expressed via the
+ combinator only (which is here denoted by Y,)- We also assume that, in
p(x) :: A, vars(A) C x, where vars(A) is the set of all variables occurring free
in agent A. In a program P = F.A, A is called initial agent, to be executed in
the context of the set of declarations F.

Agent "X)¿=i ...„ ask(ci) —>• A" behaves as a set of guarded agents Ai, where
the success of the guard ask(ci) coincides with the entailment of the constraint
c¿ by the current store. If instead c¿ is inconsistent with the current store, then
the guard fails. Lastly, if c¿ is not entailed but it is consistent with the current
store, then the guarded agent suspends. No particular order of selection of the
guarded agents is assumed, and only one of the choices is taken. In an atomic
interpretation of the tell operation, agent utell(c) —>• A" adds constraint c to
the current store and then, if the resulting store is consistent, behaves like
A, otherwise it fails; in an eventual interpretation of the tell, this same agent
adds c to the store (without any consistency check) and then behaves like A.

Given a program P, in the following we will refer to Ag(P) as the set containing
all agents (and subagents) occurring in P, i.e. all the elements of type A
occurring in a derivation of P according to the above grammar. Also, consider
the set V of all free variables appearing in P. Then, let us define the set of
substituted agents, Ag(P), as the set obtained by taking every agent in Ag(P)
and substituting each free variable with another variable in V, in all possible
ways.

1 Note that this approach is different from that in [19], where constraints are instead
sets of tokens closed under entailment. The reason why we choose not to cióse sets
of tokens under entailment is that we need to distinguish different tokens, and their
possibly different causes, in order to give a faithful description of the concurrency
present in a program execution.

The CC language we consider in this paper does not use the notion of cylindric
constraint system, as defined for example in [19]. Therefore, we cannot use that
machinery to project constraints over some of their variables. This does not
mean that constraints cannot be renamed. In fact, if a constraint appears
within an agent which has an existentially quantified variable, and refers to
that variables, like in 3x.tell(x = 1), then the variable in such a constraint is
in fact renamed during execution (see next section for details). However, we
believe that our whole framework, and corresponding results, can be extended
to deal also with cylindrification operators. Another extensión could be the
presence of tell agents in the guards of an indeterministic agent: this would
certainly not cause any problem to our approach. We have made a less general
choice here for simplicity reasons, and also because the classical CC framework
does not allow tells in guards.

3 The Operational Semantics

Each state of a CC computation consists of a set of elements, labelled over
(active) agents and (already generated) tokens. The reason we use a labelled
set instead of a set is that we need to have a precise representation of a multiset
where diíferent occurrences of the same object can be distinguished. In fact,
in general the same agent (and also the same token) may oceur in a state
with multiplicity higher than one (just think of the computations of A || A),
and we need to recognize these situations and distinguish among the diíferent
occurrences. Both agents and tokens will have associated the free variables
they involve.

Each computation step models either the evolution of (an oceurrence of) a
single agent, or the entailment of a new token through the h relation. Such
a change in the state of the computation is performed via the application of
a rewrite rule. There are as many rewrite rules as the number of agents and
declarations in a program (which is imite), plus the number of pairs of the
entailment relation (which can be infinite).

Definition 1 (computat ion state) Given a program P = F.A with a con­
straint system (D,\-), a state is a labelled set described as S = (0,1), where
O is a finite set of objeets (denoted by Obj(S)), and l : O —> (Ag(P) U D).
Two states are isomorphic if there is a bijection between their object sets which
preserves the labelling.O

Note that a state S = (O, l) can contains two (or more) objeets, say 01,02 G O,
such that l(oi) = /(02). This means that 0\ and 02 are diíferent occurrences of
the same agent or constraint.

In the following, states will be mostly considered up to isomorphism. This
basically means that the identity of the objects in a state will not be significant.
For example, ({oi,o2},/} and ({03,04},/'), such that l(oi) = l'{o3) and /(o2) =
/'(o4), belong to the same isomorphism class and thus will be considered as the
same state up to isomorphism. Also, we will refer to / to mean the labelling
function of any state, whenever it is clear from the context to which state it
refers to. Moreover, sometimes we will write l(S) to mean the whole range
of the labelling function defined over the elements of S. Finally, consider the
state S with free variables x, and consider also the vector y of other variables
from V (of the same lenght as x); whenever we write S[y/x] we will mean the
state obtained from S by replacing each occurrence of a variable in x with the
corresponding variable in y in all agents and constraints in l(S). Note that by
passing from S to S[y/x] we do not change the set of objects.

Definition 2 (rewrite rules) Given a program P = F.A with a constraint

system (D,\-), a rewrite rule has the form r : L(x) ~> R(xy) where L is
an agerú, c is a constraint, and R is any state. Also, x is the tupie of free
variables appearing in both LUc and in R, while y is the tupie of free variables
appearing only in R. The state R is always intended up to isomorphism. •

The intuitive meaning of a rule is that L, which is called the left hand side
of the rule, is rewritten into (or replaced by) R, i.e. the right hand side, if c
is present in the current state. That is, the items in c have to be interpreted
as a context, since they are necessary for the application of the rule but are
not affected by such application. In the CC framework, such context is used
to represent in a faithful way asked constraints.

Note that the left hand side L and the context c of a rule are elements of
(Ag(P) UD) , while the right hand side i? is a state, that is, a set labelled over
(A9{P)UD).

Definition 3 (from programs to rules) The rules corresponding to agents,
declarations, and entailment pairs are given as follows:

1. (tell(c) ->• A)^c}A 4. (J2 ask{ci) ^ Ai) ^ Ai V¿ = l , . . . , n
i=l,...,n

2. Ai || A2 ~> A1, A2 5. p(x) ^ A for all p{x) :: A in P

3. Bx.A ~» A 6. -£• t for all S \- t

where the comma in the right hand side has to be interpreted as unión of
labelled sets.

Given a CC program P = F.A and its underlying constraint system (D,\-),
we will cali RR(P) the set of rewrite rules associated to P, which consists

of the rules corresponding to all agents in Ag(P), plus the rules representing
the dedarations in F, plus those rules representing the pairs of the entaüment
relation. •

In an eventual CC language, a rule r can be applied to a state Si if both the
left hand side of r and its context can be found (via a suitable matching) in
Si. The application of r removes its left hand side and adds its right hand side
to Si.

Definition 4 (eventual computation steps) Given

• a computation state Si(a),

• a rule r : L(x) ~> R(xy), and
• an injective function g : (LUc) —>• Obj(Si) such that there is a binding [a/x]

with L[a/x] = l(g(L)) and c[a/x] = l(g(c)),

the application of r to Si is an eventual computation step which yields a new
computation state S2 = (Si \ g(L)) U R', where

• R' is a new labelled set of objects such that R' n Obj(Si) = 0 and such that
there is a bijection between Obj(R) and Obj(R');

• the labelling of objects in S2 is augmented w.r.t. that of Si by a labelling of
the objects of R', such that l : Obj(R') —>• R[a/x][b/y\;

• the variables in b are fresh, i.e. they do not appear in Si.

TTT -,, -, c r[a/x\[bjy\,g c

We wiu write b\ =>• 02. •

In the above definition, it is worthwhile to point out the different role played
by the variables in vectors a and b, and by those in vectors x and y. In
fact, computation proceeds by substituting variables in the rules (i.e., x and
y) by variables in the states (i.e., a) and new variables (i.e., b). Therefore,
the variables in a and b are never substituted by other variables during any
computation. On the contrary, vectors x and y are made of variables which
will be bound to the variables in vectors a and b during a rule application.

Note also that it is the use of the renaming [b/y\ for the free variables (y)
present in the right-hand side but not in the left-hand side of a rule that
allows us to treat existential variables in the correct way. This occurs in the
application of rule 2 in Definition 3, as illustrated in the example below.

Finally, let us observe that the application of a rule depends not only on the
rule and on the current state, but also on the function g, since a rule may be
applicable to the same state via different such functions. This accounts, for
example, for the treatment of múltiple agents in a state.

Example: Consider the simple agent 3x.A(x) \\ 3x.A(x), which is the parallel
composition of two occurrences of the same agent A, where each occurrence
refers to a variable which is existentially quantified. By applying rule 2 to the
state containg only that agent, we get the state {oí, o2}, with l(oi) = /(o2) =
3x.A(x). Now we can apply rule 3 (which in this case is 3x.A(x) ~» A(x))
either with g(3x.A(xj) = 0\ or g(3x.A(x)) = o2. By using the first one, we
get {0^,02}, with /(oí) = A(b\). In fact, variable x is free in the right-hand
side of the rule, and thus it is bound to a fresh variable (61) by definition of
rule application. Then we apply rule 3 again to the other agent and we get
the state {o'l5o2}, with /(o2) = A(62), where 62 is another fresh variable. Thus
the final state is {o'l5o2}, with l(o[) = A(b\) and l(o'2) = Afa). •

In an atomic CC language, not only the left hand side and the context of a
rule have to match some elements in the current state, but also, if the rule
implements a tell agent, a check has to be done for the constraints that such
tell wants to add to be consistent with the current store.

Definition 5 (atomic computation steps) Consider an eventual compu-

tation step Si =>• ' S2. This is an atomic computation step if, whenever
r = ((tell(c) —>• 4̂) ~> c,A), then cU cons(Si) \f false (where cons(S) is the
set of constraints in state SJ.O

Definition 6 (computations) Given a CC program P = F.A, an eventual
(resp. atomic) computation segment for P is any (finite or infinite) sequence of

. 7 / . •) , , • . a ri[ái/xi][bi/yj],gi „ r2[a2/x2]\h/y2],g2

eventual (resp. atomic) computation steps b\ =>• o2 =^>
S3... such that Si = {A[a~o/x~o\} and r,i G RR(P), i = 1,2, Two eventual
(resp. atomic) computation segments which are the same except that different
fresh constants are employed in the various steps, are called a-equivalent. An
eventual (resp. atomic) computation is an eventual (resp. atomic) computation
segment CS such that for each eventual (resp. atomic) computation segment
CS', of which CS is a prefix, CS' adds to CS only steps applying rules for
the entailment relation. •

Definition 7 (successful, suspended, and failing computations) Given
a CC program and one of its computations (either eventual or atomic), we will
say that such computation is:

• successful, if it is a finite computation where the last state contains only a
set of constraints, say S, and S \f false;

• suspended, if it is a finite computation where the last state does not contain
tell agents but contains ask agents, and its set of constraints S is such that
S 1/ false;

• failing, if it is an infinite computation, or a finite computation which is
neither successful ñor suspended. •

Notice that a computation has been defined as a sequence of computation
steps which is maximal w.r.t. the evolution of the agents. This means that
there could be some subsequent step due to the entailment relation, but no
step due to the agents. The reason for this is that, after all the agents have
evolved, there could be an infinite number of entailment steps, and still we
do not want to consider such a computation failing just because of that. A
consequence of this is that to recognize a successful computation we have to ask
the constraint system for a consistency test even in an eventual environment.
Thus, the difference between atomic and eventual tell is just when such a check
is asked for (either at the moment of the tell or sometime later).

In the following we will only consider either finite computations or infinite
computations which are fair. Here fairness means, informally, that if a rule
can continuously be applied to some (sub)state from some point onwards,
then it will eventually be applied to that (sub)state2 .

Definition 8 (eventual and atomic operational semantics) Given a CC
program P = F.A, its eventual operational semantics, say EO(P), is the set
of all its eventual computations, and its atomic operational semantics, say
AO(P), is the set of all its atomic computations. •

4 A Partial Order Semantics

We will now provide CC programs with a partial order semantics, that is, a
semantics which associates a partial order to each computation. Each partial
order, however, will not be representing only one computation, but an entire
class of computations, which differ just in the order in which independent steps
are executed (where by independent, or concurrent, steps, we mean those steps
that can be executed in any order). The idea is to take a computation, and
build the associated partial order piecewise, by considering one computation
step after the other one. Each computation step will help us build a part of
the partial order (that is, some of its elements and some pairs of the partial
order relation).

Definition 9 (from computat ions to partial orders) Given afinite3 com­
putation

n _ c ri[al/afi][bi/j/l],gi „ _, r„[an/x;¡][b.n/yn},gn Q

2 In logic programming terms, this can be phrased as the fact that both goal se-
lection (among several goals in the current state) and rule selection (among several
rules applicable to a goal) are fair.
3 The definition can also be extended to infinite computations without problems.

where r¿ = L¿ ¿̂> i?¿ /or ¿ = 1 , . . . , n, let us set E = {e i , . . . , e„}. TTien,
/eí us define the relation F by using the following inference rules (where i =
l,...,n):

• x G I/¿ or x G c¿ implies gi(x)Fei;
• x G iü¿ implies e^Fx.

The partial order associated to the computation C is then PO(C) = (E,F^).
D

In words, the above definition just says that, for each step of the computation,
we add one element e¿ to the partial order, and we relate it to the other
elements representing items in the left-hand side, context and right-hand side
of the applied rule r¿. If aFb, we mean that a causes 6, or that b depends on
a. Thus the partial order construction is such that the event representing the
application of a rule, say r, depends on the items in the left-hand side and the
context of r, and has to cause the items in the right-hand side of r.

In the end (that is, after examining all the n computation steps), we get a par­
tial order with n elements (the events), which shows the dependency pattern
among the steps of the considered computation. In fact, events not depend-
ing on each other are concurrent, that is, they represent computation steps
which do not need each other to be performed (and therefore their execution
order can be exchanged). Instead, events which depend on each other repre­
sent computation steps where one of the steps need some element generated
by the other one, and thus their execution order cannot be exchanged. Note
that, because of these properties, the same partial order can be obtained from
different computations: all those that differ only in the order in which the
concurrent steps are executed.

Example: Consider the agent

A = tell(x = a) || ask(x = a) —> tell(y = b) \\ tell(x = c),

and the eventual computation that executes first the leftmost tell, then the
ask, and then the rightmost tell. Then the resulting partial order can be seen
in Figure 1 a), where for simplicity only the events corresponding to ask or
tell agents are visible, and are decorated with the corresponding constraint
generated by the agent. Had we used an atomic tell, event e^ would not have
been present if x = a and x = b are assumed to be inconsistent in the chosen
constraint system. Note that the partial order in Figure 1 a) represents also
the eventual computation which executes first the rightmost tell, then the
leftmost one, and then the ask. Consider now the agent

tell(ci) || íe//(c2).

X

y

= a

= b

x = = c

a) b)

Fig. 1. Partial orders.

The partial order corresponding to all its eventual computations can be seen
in Figure 1 b). Assuming that the constraint {01,02} is consistent, the same
partial order represents also all its atomic computations. If instead it is incon-
sistent, then there would be two partial orders representing the (two) atomic
computations, one which contains only the event decorated with Ci, and the
other one only the event decorated with C2.n

Definition 10 (eventual and atomic partial order semantics) Given a
CC program P, its eventual partial order semantics is EPO(P) = {PO(C)\
C is an eventual computation of P}, and its atomic partial order semantics is
APO(P) = {PO(C)\ C is an atomic computation of P}. •

5 Contextual Nets and Consistent Contextual Nets

In the following, we assume the reader to be familiar with the classical notions
of nets. For the formal defmitions missing here we refer to [13] and [10].

In classical nets, as defined for example in [13], each element of the set of
conditions can be a pre-condition (if it belongs to the pre-set of an event) or a
post-condition (if it belongs to the post-set of an event). In contextual nets a
condition can also be a context for an event. Informally, a context is something
which is necessary for the event to be enabled, but which is not affected by
the firing of that event. Still, the usual three relations which are defined on
classical nets, that is, dependency, mutual exclusión, and concurrency, can be
defined for contextual nets as well, and similar properties hold.

In consistent contextual nets, instead, we assume given also a mutual inconsis-
tency relation, which, together with the usual mutual exclusión relation, helps
defining those sets of events and/or conditions which cannot appear in the
same computation. As a result, four relations are needed instead of three. In
the special case of contextual nets used to model CC programs, this additional
relation is strongly related to the constraint system, since it is derived from
the notion of inconsistency of sets of constraints, and is then propagated to
other objects (agents and events) besides constraints.

Fig. 2. A contextual net.

5.1 Contextual Nets

The formal technique which we use to introduce contexts consists in adding a
new relation, besides the usual flow relation, which we cali the context relation.
Such relations state which conditions are to be considered as a context for
which event. Nets with such contexts will be called contextual nets.

Definition 11 (contextual net) A contextual net is a quadrwple (B, E; F\, F2)
where

• elements of B are called conditions and those of E events;
• Fi C (B x E)\J (E x B) is called the flow relation;
• F2 C (B x E) is called the context relation;

and it holds that BnE = 0 and (Ft U Ff 1) n F2 = 0. D

Definition 12 (pre-set, post-set, and context) Given a contextual net N =
(B, E; Fi, F2) and an element x G B U E,

• the pre-set of x is the set 'x = {y \ yFix)};
• the post-set of x is the set x* = {y \ xFiy)};
• the context of x is defined if x G E and it is the set x = {y \ yF2x)}. •

Context-dependent nets will be graphically represented in the same way as
nets. Thus, conditions are circles, events are boxes, and the flow relation is
represented by directed ares from circles to boxes or viceversa. We choose to
represent the context relation by undirected ares because the direction of such
relation is unambiguous, i.e. from elements of B to elements of E. An example
of a contextual net can be seen in Figure 2. In this figure we see four events,
of which two of them share a context.

Here we are not interested in how a contextual net works, i.e. how and when
events may be fired. We just need to know that an event can happen whenever
its pre-set and context are present, and as a result the pre-set is consumed
and the post-set is generated. For more formal definitions, we refer to [10].

In our concurrent semantics the crucial notion is that of a contextual process,
which is a contextual occurrence net together with a suitable mapping of

the elements of the net to the syntactic objects of the program execution.
Through the mapping, each condition of the contextual net represents an
agent or a constraint, and each event represents a rule application. Informally,
a contextual occurrence net is just an acyclic contextual net, where acyclicity
refers to the dependency relation induced by F\ and F<¿.

Definition 13 (dependency) Consider a contextual net N = (B, E; Ft, F2).
Then we define a corresponding structure (B U E, <N), where the dependency
relation <N is the minimal relation which is reflexive, transitive, and which
satis fies the following conditions:

• xFiy implies x <N y;
• e\F\b and bFie<¿ implies e\ <N e2;
• 6F2ei and bF\e2 implies e\ <N e2. n

Therefore in the following we will say that x depends on y whenever y <N x.
Note that the dependency relation provides nets with a partial order [14]. In
particular, and when restricted to events, the partial order relates two events
ei and e2, in the sense that e2 depends on ei, whenever there is a postcondition
for ei which is a context or a precondition for e2.

However, a contextual net gives information not only about dependency of
events and conditions, but also about concurrency and mutual exclusión (or
conflict).

Definition 14 (mutual exclusión and concurrency) Let a contextual net
N = (B, E; Fi, F2) and the associated dependency relation <N. Assume that
<N is antisymmetric, and let < > C ((£ U E) x (B U E)) be defined as < > =
{(x, y) | x <N y or y <N X}. Then

• the mutual exclusión relation #JV ^ ((BuE) x (BLlE)) is defined as follows:
first we define x#'y iff x,y G E and 3z G B such that zF\% and zF\y; then,
#AT is the minimal relation which includes # ' and which is symmetric and
hereditary (i.e. if x#jyy and x <N Z, then Z#NV);

• the concurrency relation coN is just ((B U E) x (B U E)) \ (< > U#jy)- n

In other words, the mutual exclusión is originated by the existence of condi­
tions which cause more than one event, and then it is propagated downwards
through the dependency relation. Instead, two items are concurrent if they are
not dependent on each other ñor mutually exclusive.

Definition 15 (contextual occurrence net) A contextual occurrence net
is a contextual net N = (B, E; F l 5 F2) s.t.:

• <N is antisymmetric;
• b G B implies \ 'b\< 1;

• #AT is irreflexive. •

A useful special case of a contextual occurrence net occurs when the mutual
exclusión relation is empty. This means tliat, taken any two items in the net,
they are either concurrent or dependent. Since no conflict is expressed in such
nets, they represent a completely deterministic behaviour. For this reason they
are called deterministic occurrence nets.

Definition 16 (determinist ic contextual occurrence net) A determin­
istic contextual occurrence net is a quadruple N = (B, E; Fi, F2) such that N
is a contextual occurrence net with #JV = 0. •

Given a (nondeterministic) contextual occurrence net, it is easy to derive the
set of all its subnets which are deterministic. For this we use restrictions
defined as just set intersection, F\s = F n S.

Definition 17 (from contextual to determinist ic contextual occ. nets)
Let a contextual occurrence net N = (B, E; F\, F<¿) and the associated relations
<W; #W; and CON, a deterministic contextual occurrence net of N is a deter­
ministic contextual occurrence net N' = (B', E'; F[,F!^) where B' C B and
E' CE and

• i e (B ' U E') and y G (B U E) s.t. y <N x implies that y G (B' U E');

• -^i = FI^B'XE')U(E'XB') and F'2 = F2\(B>XE>)- n

We are now ready to define contextual processes, which, as anticipated above,
will be used to give a concurrent semantics to CC programs. We recall that,
informally, a contextual process is just a contextual occurrence net plus a
suitable mapping from the items of the net (i.e. conditions and events) to the
agents of the CC program and the rules representing it.

Definition 18 (contextual process) Given a CC program P with initial
agerú A, and the associated sets of rewrite rules RR(P), agents Ag(P), and
tokens D, consider the sets RB = {b9} and RE = {r9}, with b G (Ag(P)UD),
r G RR(P) and 9 any substitution. Then a contextual process is a pair (N, ir),
where

• N = (B, E; F\, F2) is a (nondeterministic) contextual occurrence net;
• n : (B U E) —> (RB U RE) is a mapping where

• V6 G B, TT(6) G RB and Ve G E, n(e) G RE;
• Vx G B such that)By G (B U E), y <N x, ir(x) = A;
• let ir(e) = r9, with r = L ^ R, then {n(yx)\x G *e} = L6,

{n(x)\x G e} = c9, {n(x)\x G e*} = R9. •

5.2 Consistent Contextual Nets

A consistent contextual net is just a contextual net with an additional re-
lation, called the mutual inconsistency relation, which defines, together with
the mutual exclusión relation, which items of the net cannot be present in the
same computation. In the same way as mutual exclusión, dependency, and
concurreny are defined in contextual nets starting from the basic relations
.Fi and F2 , the mutual inconsistency relation is defined starting from them
and a new basic relation F3. The addition of such relation has however some
heavy consequences, among which the fact that the concurrency relation is
not binary any more.

Definition 19 (consistent contextual net) A consistent contextual net is
a quintuple (B, E; F\, F2 , F3) where N = (B, E; F\, F2) is a contextual net, and
F3 C p(E) s.t. F3(S) implies Vei,e2 G S, e\ CON e2 andVS' C S, -iF3(S"). •

Pre-set, post-set, and context are defined as for contextual nets. The same
holds also for the dependency (< from now on) and the mutual exclusión (#)
relation. However, now we have to define the new mutual inconsistency relation
(written as @), starting from F3, and we have to redefine the concurrency
relation (co).

Definition 20 (mutual inconsistency and concurrency) Let (5 , E; Fi, F2, F3)
be a consistent contextual net, and its dependency and mutual exclusión rela­
tions < and # .

• The mutual inconsistency relation @ C p(B U E) is defined as follows:
• F3(S) implies @(S), and
• @(S U {t}) and t < t' implies @(S U {t1}).

• The concurrency relation co G p(B U E) is defined as follows: co(S) if there
is no subset S' C S s.t. @(S') and no s\, s2 G S s.t. s i # s 2 or s\ < s2. •

In words, the mutual inconsistency relation includes the F3 relation and it is
hereditary. Instead, the concurrency relation is as usually defined by taking
what is forbidden by the other relations. However, while usually such rela­
tion is binary, now it becomes n-ary, due to the fact that the new mutually
inconsistency relation may be n-ary in general.

Since the mutual inconsistency relation is hereditary, there could be items
which turn out to be inconsistent with themselves (which will be called self-
inconsistent in the following). This informally means that they cannot appear
in any computation, since they are inconsistent with their parents. We cali a
net admissible if it does not contain any of such items, and from now on we

will only consider admissible consistent contextual nets.

Definition 21 (admissible consistent net) A consistent contextual net N =
(B,E; Fi, F2,F3) is admissible whenever there is no e G E such that @({e}).
D

Example: An admissible consistent contextual net can be seen in Figure
3. Notice that we choose to represent the mutual exclusión relation by (hy-
per)arcs which have arrows on all their endings. In this figure, suppose that
the inconsistency link was between the event on the left and the one gener-
ating its context. Because of inheritance, the leftmost event would then be
inconsistent with itself. Therefore, the net would not be admissible. •

Fig. 3. A consistent contextual net.

As in the previous section, we now define deterministic and occurrence nets
for the class of consistent contextual nets. The only difference is that now we
define a net to be deterministic whenever both the mutual exclusión and the
mutual inconsistency relations are empty.

Definition 22 ((deterministic) consistent contextual occ. net) A con­
sistent contextual occurrence net is a consistent contextual net (B, E; Fi,F2, F3)
such that (B, E; F\, F2) is a contextual occurrence net. A consistent contextual
occurrence net (B, E; Fi,F2, F3) is deterministic when F3 = # = 0. •

Notice that a deterministic consistent contextual occurrence net is just a (de­
terministic) contextual occurrence net, since F3 = 0. Therefore the way to
obtain the deterministic consistent contextual occurrence nets of a given con­
sistent contextual net is the same as in Definition 17.

If instead we just require the absence of mutually exclusive elements, just
as in classical and contextual nets, then we still get subnets which have a
meaning. In fact, we will see that they will be used to model the locally atomical
interpretation for the tell operation, in which a computation step just checks
the consistency of the constraint told within a local store.

Definition 23 ((deterministic) locally consistent contextual occ. net)
A deterministic locally consistent contextual occurrence net (B, E; F\, F2, F3)
is a consistent contextual occurrence net with # = 0. •

Finally, we will relate consistent occurrence nets to CC programs by means of
consistent contextual processes, whose definition is straightforward.

Definition 24 (consistent contextual process) A consistent contextual pro­
cess is a pair (N, n) such that N = (B, E; Ft, F2, F3) is a consistent contextual
occurrence net, and ((B,E;Fi,F2),ir) is a contextual process. •

6 Concurrent Semantics for Eventual CC

The key idea in the semantics is to take the set of rewrite rules RR(P) associ-
ated to a given CC program P and to incrementally construct a corresponding
contextual process. Such process is able to represent all possible computations
of the CC program P in a unique structure. A longer description of this se­
mantics is contained in [12].

Definition 25 (from rewrite rules to a contextual process) Given a CC
program P, the pair CP(P) = ((B, E; F l 5 F2),n) is constructed by means of
the following two inference rules:

• if A(a) initial agerú of P then (A(a),$, 1) G B;
• ifBrE RR(P) such that L(r) U c(r) = {Bi(xi),..., Bn(xn)}, and

• 3{si,..., sn} C B such that \/i,j = l,..., n, s¿ coN Sj, and
• \/i = 1,... ,n, Si = (e¿, Bi(ai), kA, and for sorne a, Bi(xi)[a/x] = B^aA

then
. e = (r[a/x], {su . . . , sn}, 1) G E,
• SiFie for all s¿ = (e¿, B^ÜÍ), /C¿) such that B^xA G L(r)
• s¿F2e for all s¿ = (e¿, B^ÜÍ), /C¿) such that BÍ(XA G c(r)
• let h be the multiplicity of B(x, i/i,..., ym) G R{r), then V/ = 1 , . . . , h,

bi = (B[a/x][(e/y1)/yi]...[(e,ym)/ym],e,l) E B, andeFibi.

Moreover, for any item x = (x\, x¿, x$) G (B U E), ii(x) = x\. •

The elements of the net in the contextual process are built in such a way that
elements generated by using different sequences of rules are indeed different.
In fact, each element is a term consisting of a triple, of which the first element
is the type of the term, and represents the rule or agent or constraint the
term corresponds to, the second element is its history, and this is what makes
different terms which are generated in different ways, and the third element
is its multiplicity, and takes care of different copies of the same element in
the same computation state. Each time the inference rule is applied, a rule
in RR(P) is chosen whose left hand side and context are matched by some
elements already present in the partially built process. Such elements have
to be concurrent, otherwise it would mean that they cannot be together in a

state. Then, a new element representing the rule application is added (as an
event), as well as new elements representing the right hand side of the rule (as
conditions).

Theorem 26 (CP(P) is a contextual process) Given a CC program P,
its corresponding structure CP(P) built according to Definition 25 is a con­
textual process.

P R O O F . Given a CC program P, consider the structure CP(P) = ((B, E; Fu F2),n)
as defined in Definition 25. To show that it is a contextual process, we need
to prove that A" = (B, E; F l 5 F2) is a contextual occurrence net, and that n
is a mapping with the required properties. We will prove it by induction on
the number of applications of the inference rule. The base case is easy, since it
just contains one condition, thus all properties in Definition 15 are satisfied.
Consider now an intermedíate step where the inference rule has been applied
already n times, and assume the properties hold for the structure already
generated.

• Consider the dependency relation <N. The n + l - t h application of the infer­
ence rule adds new conditions and one new event, and pairs in Fi and F2

which relate only such new items. Since in the structure already generated
<N is antisymmetric, and there is no pair relating the new items to an oíd
item, <JV remains antisymmetric.

• By the induction hypothesis, each condition already in the structure is gen­
erated by only one event. This is also preserved by the new application of
the inference rule, since it only adds conditions b for all B G R(r), and pairs
eF\b for all such b's. Therefore, for all new b's, 'b = {e}, and thus |* b \ = 1.

• Consider the mutual exclusión relation #N. It is irreflexive in the structure
already generated. This means that it does not hold that S#A?S for any s
precondition or context of the newly added event e. Since we have proved
that |* b | = 1 for every b postcondition of e, then it cannot be b#'b. The
only other way that 6#AT6 or e#jye (Definition 14) is that there are x and
y in the structure s.t. X#NU, and x <N e and y <N e. But this will mean
that there is a precondition or context of e, say s, for which x <N S and
V <w s. And in this case, s#Ns, which cannot be by inductive hypothesis.
Thus #JV remains irreflexive.

As a result, N is a contextual occurrence net. Consider now the mapping
7¡\ By Definition 25, it always maps an element x = {xi,x2,x3) of the net
N to X\. ¿From the way such items are built, X\ is always an instance of a
rewrite rule if x is an event, and an instance of an agent or a constraints if x
is a condition. In fact, this is true after the first application of the inference
rule (when there is only one condition, mapped onto the initial agent), and
subsequent applications trivially preserve this property. Also, all the conditions

that the inference rule generates (apart from the initial one) always have a
singleton pre-set. Thus, there is only one condition with an empty pre-set (and
therefore, minimalm the partial order of <N), and it is mapped onto the initial
agent. Finally, the "enviroment-preserving" condition that requires that the
mapping of the preconditions (resp., context conditions, postconditions) of an
event are the left hand side (resp., context, right hand side) of the rule the
event is mapped to, is trivially satisfied since the inference rule in Definition
25 works exactly in this way. That is, it chooses a set of concurrent conditions
that match the left hand side L and the context c of a rule r, maps them to
L and c, then generates an event e and maps it to r, and finally generates a
set of postconditions for e and maps them to the right hand side of r.

Thus CP(P) is a contextual process. •

Theorem 27 (soundness and completeness of CP(P) w.r.t . EO(P)) Given
a CC program P and its corresponding contextual process CP(P) = (N,ir),
we have the following.

• For a given computation in EO(P) there are (1) an a-equivalent computa­

tion Si 1 =̂ =£ ' 1 S2 ==£ ' 2 S3 . . . , and (2) one linearization (restricted to

events), say eie2 . . . , of the partial order associated to a maximal determin-

istic contextual oceurrence net of N, s.t. Vi = 1, 2 , . . . , 7r(e¿) = r¡\ai¡x¡\
• For any linearization e\ti... of the partial order associated to a determin-

istic contextual oceurrence net of N, there is a computation in EO(P), say

Si 1 =^=>-' 1 S*2 = = £ ' 2 S3 . . . , such that 7r(e¿) = r¿[a¿/x¿] for all i = 1 , . . .

P R O O F . We will prove it by induction on the length of the computation
segment. If a computation segment has only one step, then of course it is
possible to find the corresponding event in the process, since the existence
of such computation segment means that the left hand side and the context
of the rule applied in the step are present in the initial state, which is the
requirement to add the event to the net in the inference rule in Definition 25.
The converse also holds: the presence of a minimal event in the net means
that the left-hand side and the context of the corresponding rule are present
in the initial state, thus there must exist a computation segment of one step
which applies such rule. Assume now that the statement of the theorem holds
for a computation segment of length n, and consider a computation segment
of length n + 1. By the inductive hypothesis, one can find a linearization of
the net with n events, which correspond to the n rule applications of the
first n computation steps of the considered segment. Now, the presence of
the n + 1-th step means that the left-hand side and the context of the rule
applied in such step is present in the state obtained after the first n steps.
Such a state appears in the net also, as a set of concurrent conditions. Thus
the inference rule of Definition 25 can add an event corresponding to such

rule application, and such event will be either independent from all the first
n events, or dependent on on at least one of them, thus it can be included
in the partial order, and in the linearization with n + 1 events. On the other
hand, given a linearization with n + 1 events, by inductive hypothesis there is
a computation of length n which corresponds to the first n steps. Again, the
presence of the n + 1-th event in the linearization implies that the left hand
side and the context of the rule corresponding to such event are present in
the net obtained after the first n events. Thus they are also contained in the
state obtained after the computation segment of length n. Therefore the rule
can be applied in such state, yielding a computation segment of length n + 1
matching the given linearization of n + 1 events. •

As just shown by the above theorem, the concurrent semantics defined in this
section considers the eventual interpretation of the tell operation: constraints
are added to the store without checking their consistency with the current
set of constraints already in it. Therefore there may be parts of the net which
represent computation sequences which would not happen if taking the atomic
interpretation of the tell operation. In the following section we show how to
recognize and then delete such parts, obtaining a (possibly much) smaller pro-
cess. We will also give a new inference rule which allows to not even genérate
those parts.

7 Concurrent Semantics for Atomic CC

In order to treat in a correct way atomic tells, we need to know when a set of
constraints is inconsistent. This can be done by just looking at the constraint
system, since we assumed that a set of inconsistent constraints entails the
token false.

Definition 28 (inconsistent constraints) Given a constraint system (D, h
) ; we say that u G p{D) is inconsistent, and we write inc(u), whenever u h
false. Moreover, we write inco(u) whenever inc(u) holds and also -fiv G p(D)
such that v d u and v h false. •

¿From the inconsistency of a set of tokens we can then derive the mutual
inconsistency of a set of conditions and/or events in the contextual process.
Mutual inconsistency means impossibility of appearing in the same computa­
tion without creating an inconsistent store.

Definition 29 (mutual inconsistency) Given a CC program P, a constraint
system (D, \~), and the contextual process CP(P) = ((B, E; Ft, F2), ir), we de-

fine a mutual inconsistency relation @ C p(B U E) (and @') as follows:

• (from constraints to conditions) if{bi,..., bn} G B and Vi = 1 , . . . , n, 7r(6¿) G
D and inco({ir(bi),..., ir(bn)}) and ther are no i,j G { 1 , . . . , n} such that
b&bj, then@'({bu...,bn});

• (from conditions to events) if @'({b\,..., bn}) and Vi = 1 , . . . , n, 3e¿ G E
s.t. eiFibi, then @'({ei , . . . , en});

• @ is the minimal relation which includes @' and which is hereditary (i.e. if
@(S U {s}) and s < s', then @(S U {s'})). •

In particular, the elements of the process which are self-inconsistent cannot
appear in any computation. Therefore, one step which allows us to change the
semantic structure which represents the eventual operational semantics of a
CC program and get closer to that which represents the atomic operational
semantics of the same program consists of deleting everything that depends
on them. In fact, such steps are exactly those tell operations which could be
done only because it was not performed any consisteney check.

Definition 30 (net pruning) Given a CC program P, a constraint system
(D, \~), the contextual process CP(P) = ((B, E; Fi, F2), ir), and the relation @
of Definition 29, the new process is CP'(P) = ((B1, E'; F[, F£), n'), where

• B' = B \ {b | 3e G E s.t. @({e}) and e < b},
• E' = E \ {e | 3é G E s.t. @({e'}) and é < e},

• -^i = FI\B'XE'\JE'XB' and F'2 = F2\B'XE', ond

• ir' is the restriction of n to B' U E'. •

Theorem 31 (CP'(P) is a consistent contextual process) Consider the
process CP'(P) = {{B', E'; F[,F!,),ir') of Definition 30 and the relation @ of
Definition 29. Then the corresponding net ((B1, E'; F[, F!¿, @'\p(Ei)),ir') is a
consistent contextual process.

P R O O F . It is easy to see that (B', E'; F[, F!¿) is a contextual oceurrence net.
In fact, (5 , E;FUF2) is so (by Theorem 26), and (B', E';F{,F£) is obtained
from it by just removing items and links. Thus all properties required by
Definition 15 still hold.

We now have to prove that relation F3 = @'\P(E') satisfies the following: F3(S)
implies Vei, e2 G S, e\ CON e2 and VS' C S, -iF3(S").

The first part of the statement (Vei,e2 G S, e\ coN e2) can be proved by
looking at Definition 29. Since @'(S) holds, then it must be @'('S). Take
b\,b2 G 'S, preconditions of e\ and e2, respectively. From Definition 29, it
cannot be that &i#&2, and thus, by inheritance, neither that e\j^e2. Consider
now b\ < b2, and assume that e\ < e2. Since b\ < b2, there must be an event

e such that 61 < e < b2. Thus, since b\ < e\, e#e\. Also, since b2 < e2, we
have e < e2. Furthermore, we assumed e\ < e2. Thus, by inheritance, we get
e 2 #e 2 . But this cannot be (Definition 30). By contradiction, e\ < e2 cannot
hold, and therefore e\CONe2 holds.

The second part of the statement (VS" C S, -iF3(S")) can be proved by contra­
diction considering that relation ÍUCQ is minimal and reasoning on the precon-
ditions of S and S'. From Definition 29, the only way that F3(S') could hold
is that both inco('S) and mco(*S"), which is impossible from the minimality
of ÍUCQ.

Thus we have proved that (B',E';F[,F2,@'\P(E')) is a consistent contextual
occurrence net. Now we have to prove that ir' satisíies the required properties.
But this follows from Theorem 26, from the fact that ir' is obtained by n by
just restricting it to a subset of the elements of the net, and considering that
the pruning does not créate any other minimal element (since if an element is
pruned, then also all the elements depending on it are pruned as well). Thus
{(B', E'; F[, F'2) @'\P(E')), TT'} is a consistent contextual process. •

Theorem 32 (soundness and completeness of CP'(P) w.r.t . AO(P)) Given
a CC program P and its consistent contextual process CP'(P) = (N,ir), we
have the following.

• FOT any computation in AO(P), there are (1) an a-equivalent computation

Si 1==>1 S*2 2=L^2 5*3 . . . , and (2) one linearization (restricted to events),
eie2 . . . , of the partial order associated to a maximal deterministic consistent
contextual occurrence net of N, s.t. V¿ = 1, 2 , . . . , 7r(e¿) = r¿[a¿/á?¿]

• For any linearization e\e2 • • • of the partial order associated to a determin­
istic consistent contextual occurrence net of N, there is a computation in

AO(P), say S\ 1=^>1 S2
 2 ^ > 2 5*3..., such that 7r(e¿) = r^üjjxi] for all

P R O O F . In the atomic operational semantics, a tell step is possible only if
the constraint to be added to the current state is consistent with it. Thus,
in order to prove the theorem, we have to prove that such forbidden steps
are exactly those events that are pruned while going from CP(P) to CP'(P).
Now, the pruned elements are those that are inconsistent with themselves,
plus all those depending on them. By definition, an event e is inconsistent
with itself if one of its postconditions, together with the postcondition of
some other event e' it depends on, créate an inconsisteney. In fact, in this case
the mutual inconsisteney relation, which holds between e and e', is inherited
via the dependeney relation onto the event e itself. But this is exactly the
case in which the event e represents a tell operation which adds a constraint
inconsistent with some other constraint in the current state. Thus e represents

a computation step that is not allowed in the atomic operational semantics.
Therefore, the steps which are forbidden in the atomic operational semantics
are indeed not present in the process CP'(P). Thus, with a reasoning similar
to that of the proof of Theorem 27, we can conclude the statement of the
theorem. •

It is also possible to characterize failing, successful, and suspended compu-
tations directly in the concurrent semantics, instead of having to map them
back to the corresponding computations in the operational semantics.

Definition 33 (successful, failing, and suspended nets) Given a CC pro-
gram P and a constraint system (D, \~), let CP'(P) = ((B, E; F\, F2, F3), ir) be
the corresponding consistent contextual process. Consider any maximal deter-
ministic consistent contextual net of (B, E; Ft, F2, F3), say DN = (B1, E'; F{, F!¿,
and DN° = {b | b E B' and fiV e B ' , b < b'}. Then DN is:

• successful if the set of events representing agent rules is finite, and V6 E
DN°, ?r(6) E (D\{false});

• suspended if the set of events representing agent rules is finite, and V6 E
DN° such that ir(b) E Ag(P), ir(b) is an ask agent;

• failing otherwise. •

Theorem 34 (characterization of success, failure, and suspensión) Let
P be a CC program and CP'(P) = ((B, E; Fi, F<¿, F3), ir) its corresponding
consistent contextual process. Consider any maximal deterministic consistent
contextual net of (B, E; Ft, F2, F3), say DN = (B',E'; F / , ^ , 0) . If DN is
successful (resp., suspended, failing) then all the computations in AO(P) cor­
responding to DN according to Theorem 32 are successful (resp., suspended,
failing).

PROOF. Assume DN is successful. Then, by Definition 33, the set of events
of DN representing agent evolutions is finite, and no maximal element denotes
the constraint false (meaning that there is no inconsistency). Consider now
any linearization of DN and the corresponding computation of the atomic op­
erational semantics via Theorem 32. Such computation is finite, since its com­
putation steps representing agent evolutions are in correspondence with the
events of the linearization, which by assumption are in a finite number. Also,
no computation step can produce the constraint false, otherwise by Theorem
32 there would be an event in the linearization one postcondition of which
would represent the constraint false, which we assumed it is not the case.
Thus all computations corresponding to linearizations of DN are successful.
A similar reasoning can be used also for subnets which are suspended and
failing. •

CÍ(SU{(íi,í2,í3>})

Now we will obtain the same consistent contextual process by means of a new
inference rule, instead of first producing the contextual process as in Definition
25 and then pruning it. The advantage consists in a possibly much smaller
resulting process. However, the drawback is a much more costly condition to
check during the generation, each time the inference rule is applied.

Definition 35 (from rewrite rules to a consistent contextual process)
Let P be a CC program. Then its consistent contextual process CCP(P) =
((B, E; iq, F2, F3),n) is constructed by means of the following two inference
rules:

• if A(a) initial agent of P then (A(a),$, 1) G B;
• ifBrE RR(P) such that L(r) U c(r) = {Bi(xi),..., Bn(xn)}, and

• 3{si,..., sn} C B such that co({si,..., sn}), and
• \/i = 1,... ,n, Si = (e¿, Bi(ai), /c¿), and for sorne a, Bi(xi)[a/x\ = 5¿(aj)
• -imc(cí({e})); for e = (r[a/x\,{si,... ,sn},l), where ct : p(B U E) —>•

p(D) is defined as follows: y{ti,t2,t3) G (B U E),

ct(S U ¿2) U (R(r)[a/x] n D) if t\ = r[a/x] and r is a

rule for a tell agent

ct(S U í2) otherwise

cí(0) = 0
then

• e G E,

• SiFie for all s¿ = (e¿, 5¿(a¿), /c¿) 5uc/i íñoí B^xA G L(r)
• s¿F2e for all s¿ = (e,, 5¿(a¿), /c¿) 5uc/i íñoí B^xA G c(r)
• /eí /i 6e í/ie multiplicity of B(x, iji,..., ym) G -R(r), í/ien V/ = 1 , . . . , h,

bi = {B[a/x\[{e,yi)/yi]...[{e,ym)/ym],{e},l) G B, and eiqfy.
• ^ (5 U {e}) for all S = {e i , . . . , en} C E such that co(S U {s\,..., s„});

and inc(ct({e} U 5)) ; and /9S" C E for which (Ve' G S" 3e G S,e' < e)
and co(S' U {s i , . . . , s„}) and inc(ct({e} U S")).

Moreover, for any item x = (x\, x2, x$) G (BU £"), 7r(x) = x\. •

The main difference of the above definition w.r.t. Definition 25 is the condition
which has to be checked for applying the second inference rule. It is not enough
to check that there are conditions which are concurrent and which match the
left hand side and the context of a rule. It is also necessary to check that the
constraints which would be added to the process because of the application of
the chosen rule are consistent with those which are in the history of the rule
itself. In fact, such constraints would be in any store where that rule is applied,
no matter which linearization one chooses. Such constraints are retrieved by
function ct, which traverses a term and gets all the constraints in its history.

Another difference concerns the creation of relation F3. Inconsistency of the
new event e with a set S of events, already in the process, is derived if e and
the constraints generated in the history of S are inconsistent. This is done
only if e is concurrent with them (checked by looking at the preconditions of
e, si,... ,sn, since e is not formally in the process yet). This would créate an
F3 relation which is already hereditary. However, we prefer to have F3 as the
base relation, and then to cióse it by inheritance as by Definition 20 to get
the mutual inconsistency relation. This is the reason why we also check that
there is no other set S' of events which has the same relation as S with e but
on which S depends.

Theorem 36 (equivalence of CP'(P) and CCP(P)) Given a CC program
P, its corresponding pruned contextual process CP'(P) and consistent contex-
tual process CCP(P), then CP'(P) = CCP(P).

P R O O F . If an event appears in the process CCP(P), then it also appears
in CP(P) since the inference rule in Definition 35 has a stronger applicability
condition than that of Definition 25. Also, such event cannot be inconsistent
with itself, since the only way this could happen is if some of its postconditions
are inconsistent with postconditions of events on which it depends, but this is
not allowed by the inference rule, which in this case would not be applicable.
Thus this event also appears in CP'(P), since CP'(P) is obtained from CP(P)
by pruning only the elements which are inconsistent with themselves. In reality,
the pruning involves also those elements that depend on the self-inconsistent
events, but it is easy to see that such elements cannot appear in CCP(P),
since there would not be the necessary preconditions or context conditions for
their generation. Thus all events in CCP(P) are also in CP'(P). Consider
now any element in CP'(P). Such element is consistent with itself, thus it
does not add any constraint which is inconsistent with some other constraint
generated by events on which it depends. Therefore the applicability condition
of the inference rule in Definition 35 is satisfied, which means that the event
is also present in CCP(P). •

Part of the complexity of this approach to the construction of the consistent
contextual process for a given CC program comes from our aim of employing
a standard way of selecting the subnets corresponding to (equivalence classes
of) computations. In fact, assuming that mutual inconsistency is just another
aspect of mutual exclusión (that is, just another reason for certain items not
to be in the same computation), then the desired subnets are, as usual, those
which are maximal, left-closed, and without mutual exclusión. Simpler ap-
proaches could be taken; however, they would require ad hoc subnet selection
procedures.

8 Contextual Net Semantics and Partial Order Semantics

We will now show that there is a strong relationship between the semantics
based on contextual nets (or on consistent contextual nets) described in the
previous section and the partial order semantics defined in Section 4. In fact,
it is possible to show that one can derive all the partial orders from the (con­
sistent) contextual net. An even stronger result, which is the one we will prove
here, is that each partial order corresponds to one deterministic subnet of the
given (consistent) contextual net.

Theorem 37 (deterministic subnets and partial orders) Given a CC pro-
gram P, we have the following:

(1) Consider its contextual process CP(P) = {N,ir) and its eventual partial
order semantics EPO(P). Consider also any finite maximal deterministic
contextual occurrence net of N, say ON = (B, E, F\, F2) ; and let < its
dependency relation. Then there is a partial order in EPO(P), say PO,
such that (E, <\E) and PO are isomorphic.

(2) Consider the consistent contextual process CCP(P) = (N',ir') and the
atomic partial order semantics APO(P). Consider also any finite maxi­
mal deterministic consistent contextual occurrence net of N, say ON' =
(B', E', F{, F2, F£), and let <' its dependency relation. Then there is a
partial order in EPO(P), say PO', such that (E',<\ ;) and PO' are
isomorphic.

PROOF.

(1) Take any finite computation of P, say

c n[ái/xjMl/yí] ri[ái/xi\[b¡/yi] rj[áj/xj][bj/yj] rv\<¿nIXn\fnIy~A Q

D\ => . . . ==?• . . . ==?- . . . ==?• Jn+1-

Such computation corresponds, by Theorem 27, to a deterministic subnet
of N, say ON = (B, E, Ft, F2). Consider now the dependency relation <
of ON, and the partial order PO = {E, <\E). Take now the partial order
associated to the considered computation via Definition 9, say PO' =
{E', <')• We will prove that PO and PO' are isomorphic4 .

It is easy to see that E and E' have the same cardinality, since they
represent the same computation. Thus we only need to prove that, for any
two events e\ and e2 in E such that e\ < e2, there are two corresponding
events (via a isomorphism) e[and e2 in E' such that e[<' e'2.

¿From Theorem 27, it is the case that n(ei) = r\[ai/xi] and n(e2) =
'f'i [02/^2]- Let us now consider the computation steps which involve such

4 For simplicity, let us consider just the Hasse diagram of such partial orders.

rule applications, say s\ and s2, and the corresponding events in PO' via
Definition 9, say e[and e2.

Since we assumed that e\ < e2, from Definition 13 it must be that
36 G B such that e\Fib and (6F2e2 V W7 1^). Also, from Theorem 27, we
have that ir(b) = s, with s#¿ G -ñ(r,) and s#j G (L(rj) U c(r,-)). Thus, by
Definition 9, we must also have e[<' e'2. Thus the isomorphism which
maps ei to e[and e2 to e2 make the statement of the first part of the
theorem hold.

(2) A similar reasoning as above, but applying Theorem 32 instead of Theo­
rem 27, allows one to prove also this case. •

9 Locally Atomic Tell

Let us consider now a locally atomic tell operation, where a constraint is added
to the store if it is consistent with the set of constraints it depends on. Then,
it is easy to see that such operation, and the corresponding resulting compu-
tations, are very easily expressed by the same process. It is just a matter of
selecting different subnets of the process: the (deterministic) locally consistent
contextual occurrence nets instead of the deterministic contextual occurrence
nets. Recall that the only difference between these two classes of nets is that
in the former only the mutual exclusión relation is empty, while in the lat-
ter also the mutual inconsistency relation is so. In fact, if in a computation
we allow steps which are mutually inconsistent between them, while still not
allowing any self-inconsistent step, it means that the only way a computa­
tion can finitely fail is that a self-inconsistent step is tried. But we know that
such steps represent tell operations which attempt to add a constraint which
is inconsistent with the constraints in their history. Therefore, these subnets
only have those computation steps which are allowed by the locally atomic
interpretation of the tell operation.

p(X) : : t e l l (X = a) , t e l l (X = b) . p(X) :: t e l l (X=a) - > t e l l (X = b) .

Fig. 4. Simple CC programs: query is p(X).

Consider the very simple CC programs of Figure 4, where the comma repre-
sents the parallel composition operator ||, and the absence of "—>• A" after a
tell operation means that A = succ.

The contextual process corresponding to the program on the left in Figure
4 can be seen in Figure 5a, while its consistent contextual process is that of
Figure 5b. Also, the set of subnets corresponding to classes of computations
which differ only for the scheduling order is, in the case of eventual tell, a
singleton set containing the whole contextual process, and in the case of atomic
tell a set of two processes whose nets can be seen in Figure 6. In fact, in the

)T te l l (X=b))T tel l (X=b) te l l (X=a) tel l (X=b) tel l (X=b)

a) b)

Fig. 5. Contextual and
consistent contextual pro-
cess.

Fig. 6. Consistent contextual
nets.

eventual tell interpretation, we just have two computations (depending on the
order of execution of the two tell operations), both of them failing. Instead, in
the atomic tell interpretation, we have two computations, each one performing
just one of the tell operations, and both of them failing (which can be seen
from the fact that some tell agent is not "expanded"). Consider now the locally
atomic tell operation. In this case there is only one subnet, which incidentally
coincides with the contextual process. In fact, with this interpretation, both
tells are performed, since there is no constraint they depend on (and thus the
incomplete consistency check for such tells succeeds).

tell(X=a)-S.tell(X=b)

tel l (X=b)

te l l (X=a)->te l l (X=b)

tel l (X=b)

a) b)

Fig. 7. A contextual process and a consistent contextual process.

Consider now the CC program on the right in Figure 4. With the eventual
tell interpretation, we obtain the process in Figure 7a, while with the atomic
tell interpretation we obtain the consistent contextual process in Figure 7b.
Indeed, the second tell operation is self-inconsistent and thus it is not present
in the atomic semantics. The locally atomic semantics and the atomic seman-

tics coincide, since no tell attempts to add a constraint which is inconsistent
with the current store but not with the current local store. With the even­
tual tell, there is only one failing computation, which performs both tells and
generates an inconsistent store. Instead, with the (locally) atomic tell there is
one computation as well, which however performs just one tell operation and
then stops.

Notice that it does not make sense to define a locally atomical operational
semantics, since the operational semantics, as defined in Section 3 and also
in other papers, is not able to express the dependency information needed to
define the locally atomical tell operation. However, we feel that a suitable dis-
tributed implementation, which uses our concurrent semantics as a basis and
which distributes newly added constraints to different locations accordingly
to their interdependencies, could easily be developed.

10 Appl icat ions

In extending the semantics of Section 6 to that of Section 7 we have basically
introduced the ability to handle failure, in the sense of detecting inconsisten-
cies generated by tell operations. Having introduced an explicit representation
for failure in the semantics it is also possible to model CLP computations: since
failing branches are also captured, we are allowed to make a step further to-
wards exchanging nondeterminism for indeterminism. The atomic contextual
processes we have defined for CC programs can also be used to represent the
computations of a CLP program, just by interpreting the mutual exclusión
relation as nondeterminism (i.e. backtracking) instead of indeterminism (i.e.
commited-choice). A feature of such processes representing CLP programs is
that, since CLP does not have ask operations, the context relation (F2) is
empty. Therefore the net for a CLP program is actually a tree.

Being able to explicitely express concurrency and dependency, our semantics
can be exploited in several tasks which need such kind of information. One such
task is the (compile-time) scheduling of CC programs, or schedule analysis [8].
Another such task, in view that our semantics can also handle CLP programs,
is the (compile-time) parallelization of these programs.

The goal of schedule analysis is to find maximal linearizations of the program
processes (agents in our case) where the efficient compilation techniques of
sequential implementations can be applied. The best case would be to obtain
a complete total order, but in general we may instead obtain a set of total
orders, which specify threads of sequential execution which, because of the
interdependencies in the program, cannot be sequentialized among them [8].
Moreover, in each single thread, one would like to schedule the producer(s)

before the corresponding consumer(s), so that the consumers do not need to
be suspended and then woken up later. In the specific case of CC programs,
the producers are the tell operations and the consumers are the ask operations,
so this desirable property of each thread here means that some ask operations
could be deleted, if we can be sure that when they will be scheduled the asked
constraint has already been told. In [8] a framework for this analysis is defined,
which is safe w.r.t. the termination properties of the program, and which is
based on an input data-dependency relation among atoms in the clauses of the
program. It is easy to show that in our approach the dependency relation of
the contextual process of a program can provide such an input [4]. In fact, it
is intuitive to see that the order between two goals in the body of a clause can
be easily decided by looking at the contextual net describing the behaviour of
the original CC program: if the subnets rooted at these two goals are linked
by dependency links which all go in the same direction (from one subnet to
the other one), then this direction is the order to be taken for the scheduling;
if instead the dependency links go in both directions, then the two goals must
belong to two different threads; otherwise (that is, if there are no dependency
links between the two subnets), we can order them in any way. Once the
order has been chosen, each ask operation which is scheduled later than all
the items of the net on which it depends on can safely be deleted. Of course
finding the best scheduling is an NP-complete problem. Therefore the optimal
solution would require a global analysis of the relationship among the subnets
corresponding to all the goals in the body of the considered clause.

Another interesting application is the parallelization of CLP programs. In this
task, the problem consists in parallelizing the executions of some of the goals
if we are sure that doing that will not change the input-output semantics of
the program, ñor increase the execution time. What is usually said is that we
can parallelize two (or more) goals if we can recognize that they are in some
sense "independent," meaning that their executions do not interfere with each
other. Instead, for all the goals which do not meet this independence criteria,
we resort to the usual left-to-right order. However, the traditional concepts of
independence in logic programming [6] do not carry over trivially to CLP. In
fact, the generalization of the conditions for search space preservation is no
longer sufficient for ensuring the efficiency of several optimizations when arbi-
trary CLP languages are taken into account, and the definition of constraint
independence in the CLP framework is not trivial [5]. Following constraint in­
dependence notions, we argüe that an efficient parallelization scheme for CLP
programs can be developed from the mutual inconsistency relation between
events in the consistent contextual processes of the programs. Current work
is being devoted towards making this explicit in the (consistent) contextual
nets by the new notion of local independence [2]. In particular, by using our
concurrent semantics, we are able to apply the notion of goal independence at
a granularity level which, to our knowledge, allows more goals to be safely run
in parallel than any other approach. Note that local independence is in general

different from concurrency: the idea is that only items which are concurrent
(as defined previously in this paper) and which are not dependent because of
inconsistency, are locally independent. Only these items may be worth running
in parallel.

11 Conclusions

We have presented a concurrent semantics for CC programs which models the
atomic interpretation of the tell operation. This semantics extends a previous
one for CC programs with eventual tell [12], but the extensión is not straight-
forward. In fact, a new semantic structure (consistent contextual processes) is
needed for this extensión, and new technical machinery to allow for realisti-
cally modelling inconsistency. We have shown how the new semantics can be
obtained from the previous one by either pruning some parts of the original
semantic structure, or right from scratch with a new inference rule.

We have also introduced a more abstract semantics which associates to each
computation a partial order of events, and we have related the semantics based
on contextual nets and this partial order semantics.

Finally, we have proposed a new interpretation for the tell operation which
allows for local consistency checks on the store. The locally atomic interpreta­
tion of the tell operation is easily captured by our (extended) semantics based
on contextual nets. Such interpretation corresponds to checking consistency
only against the part of the current store on which the tell operation is de­
pendent on, and thus will represent a reasonable trade-off between efficiency
and atomicity in a distributed implementation.

All the semantics presented are "truly" concurrent, in the sense that they ex-
plicitely show the concurrency (in the form of a partial order of dependency
links) present not only at the program level but also at that of the underly-
ing constraint system. Moreover, the semantics based on nets is also able to
represent all the computations of a given CC program in a unique structure,
where it is possible to see the maximal degree of both concurrency and inde-
terminism. Not only this, but also inconsistency (or failure) is captured in the
semantics at different levéis of atomicity.

Being able to handle failure, our semantic structures can be used to reason
about the behaviour of both CC and CLP programs. In particular, we have
discussed how compile-time scheduling of CC programs and parallelization of
CLP programs can be performed from analyses over the concurrent nets. For
the applications to be practical, we propose to perform a finite approxima-
tion of the executions of the program at compile-time using the technique of

abstract interpretation. Current work is devoted to defining an abstract con-
textual process, which finitely represents the possibly infinite set of possibly
infinite concrete structures which can be obtained for a given abstract "query
mode."

Notice that, while the CC schedule analysis can be performed both on eventual
and on atomic CC programs (and the corresponding semantic structures), the
analysis needed for the CLP parallelization task is only possible on the seman-
tics for atomic CC programs, since this is the only one where nondeterminism
can be exchanged for indeterminism, due to the presence of the inconsistency
relation. Therefore the main result of this paper, that is, a concurrent seman-
tics for atomic CC programs, is the necessary starting point for exploiting our
semantic approach towards the CLP parallelization goal.

References

[1] F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. From eventual to
atomic and locally atomic ce programs: A concurrent semantics. In Proc. Int.
Conference on Algébrate and Logic Programming (ALP94). Springer-Verlag,
LNCS 850, 1994.

[2] F. Bueno, M. García de la Banda, M. Hermenegildo, F. Rossi, and U. Montanari.
Towards true concurreney semantics based transformation between clp and
ce. In Proc. second Int. Workshop on Principies and Practice of Constraint
Programming (PPCP94). Springer-Verlag, LNCS 874, 1994.

[3] F.S. De Boer and C. Palamidessi. A fully abstract model for concurrent
constraint programming. In Proc. CAAP. Springer-Verlag, 1991.

[4] F. Bueno. Automatic Optimisation and Parallelisation of Logic Programs
through Program Transformation. PhD Thesis, Facultad de Informática,
Universidad Politécnica de Madrid, 1994.

[5] M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence in
constraint logic programs. In Proc. ILPS. MIT Press, 1993.

[6] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time
Conditions. Journal of Logic Programming, 22(1), North Holland, 1995.

[7] J. Jaffar and J.L. Lassez. Constraint logic programming. In Proc. POPL. ACM,
1987.

[8] A. King and P. Soper. Schedule analysis of concurrent logic languages. In
Proceedings IJCSLP. MIT Press, 1992.

[9] M. Koorsloot and E. Tick. Sequentializing parallel programs. In Proceedings
Phoenix Seminar and Workshop on Declaraüve Programming. Springer-Verlag,
1991.

[10] U. Montanari and F. Rossi. Contextual nets. Acta Informática, vol.32, 1995.

[11] U. Montanari and F. Rossi. True concurrency in concurrent constraint
programming. In Proc. ILPS. MIT Press, 1991.

[12] U. Montanari and F. Rossi. Contextual occurrence nets and concurrent
constraint programming. In Proc. Dagstuhl Seminar on Graph Transformations
in Computer Science. Springer-Verlag, LNCS 776, 1993.

[13] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science. Springer Verlag, 1985.

[14] F. Rossi. Constraints and Concurrency. PhD Thesis, Dipartimento di
Informática, Universitá di Pisa, TD 14-93, 1993.

[15] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[16] D. S. Scott. Domains for denotational semantics. In Proc. ICALP. Springer-
Verlag, 1982.

[17] E. Shapiro. The family of concurrent logic programming languages. ACM
Computing Survey, 21(3), 1989.

[18] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc.
POPL. ACM, 1990.

[19] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of
concurrent constraint programming. In Proc. POPL. ACM, 1991.

