
Introduction to Set Constraint-Based Program Analysis

Alexander Aiken�

EECS Department

University of California, Berkeley

Berkeley, CA 94702-1776

aiken@cs.berkeley.edu

1 Introduction

Program analysis is concerned with automatically extracting information from programs. Program anal-
ysis is a large topic, with a long history and many applications, particularly in optimizing compilers
and software engineering tools. As might be expected of any broad area, there are a number of distinct
approaches to program analysis.

This paper provides an overview of constraint-based program analysis. While much has been writ-
ten about constraint-based program analysis in recent years, there is relatively little material to assist
outsiders who wish to learn something about the �eld. Two survey papers cover the computational
complexity of various constraint problems that arise in program analysis [Aik94, PP97]. The purpose of
the present work is to motivate the use of constraints for program analysis from the perspective of the
applications of the theory.

Program analysis using constraints is divisible into constraint generation and constraint resolution.
Constraint generation produces constraints from a program text that give a declarative speci�cation of the
desired information about the program. Constraint resolution (i.e., solving the constraints) then computes
this desired information. In the author's view, the constraint-based analysis paradigm is appealing for
three primary reasons:

� Constraints separate speci�cation from implementation. Constraint generation is the speci�cation
of the analysis; constraint resolution is the implementation. This division helps to organize and
simplify understanding of program analyses. The soundness of an analysis can be proven solely on
the basis of the constraint systems used|there is no need to resort to reasoning about a particular
algorithm for solving the constraints. On the other hand, algorithms for solving classes of constraint
problems can be presented and analyzed independent of any particular program analysis. General
results on solving constraint problems provide \o�-the-shelf" tools for program analysis designers.

� Constraints yield natural speci�cations. Constraints are (usually) local; that is, each piece of pro-
gram syntax contributes its own constraints in isolation from the rest of the program. The con-
junction of all local constraints captures global properties of the program being analyzed.

�This work was supported by NSF National Young Investigator award CCR-9457812. This version includes corrections
suggested by Manuel F�ahndrich.

1

� Constraints enable sophisticated implementations. The constraint problems that arise in program
analysis have a rich theory that can be exploited in implementations. We shall only touch on this
subject in this paper.

We �rst briey discuss the long history of the use of constraints in program analysis, which predates the
current interest in the area by many years (Section 2). The overview proper begins with the introduction
of set constraints, a widely used constraint formalism in program analysis and the one with which the
author is best acquainted (Section 3).

The balance of the paper shows that three classical problems|standard dataow equations, simple
type inference, and monomorphic closure analysis|can be viewed as instances of set constraint problems
(Section 4). Each of these three very basic analyses have been developed by di�erent communities of
people over extended periods of time, and to our knowledge no formal connection between the problems
has been noted previously in the literature. Our main aim in choosing these problems, however, is that
we assume most readers are familiar with at least one of them and thereby are a�orded an easy path to
appreciation of the constraint-based analysis perspective. We also present one simple variation of type
inference suggestive of the expressive power provided by set constraints (see Section 4.3).

To give some insight into the algorithmic issues involved in a general constraint-based analysis sys-
tem we give constraint resolution algorithms for the constraint systems arising from the three example
analyses. It is important to realize that in di�erent applications we are interested in di�erent notions of
constraint solvability. Depending on the application, we may be interested in only knowing a particular
solution (e.g., the least solution) or in calculating all solutions.

Set constraints provide one of the most general decidable theories known for constraint-based program
analysis, and the essential issues of constraint-based analysis can be illustrated easily using set constraints.
However, we do not wish to give the impression that set constraints are the only useful constraint
theory for program analysis. In addition, there are of course other approaches to program analysis not
based on constraints. Other constraint formalisms, altogether di�erent approaches, as well as the place
of constraint-based program analysis in the general theory of abstract interpretation, are discussed in
Section 6.

2 History

Using constraints in program analysis is not a new idea. The earliest example we are aware of is due
to Reynolds, who proposed an analysis of Lisp programs based on the resolution of inclusion constraints
in 1969 [Rey69]. Similar ideas (but based on grammars rather than constraints) were developed inde-
pendently later by Jones and Muchnick [JM79]. Dataow equations and type equations, two examples
that we shall investigate in greater depth in Section 4, also have a long history. Dataow equations form
the basis of most classical algorithms for ow analysis used in compilers for procedural languages (most
notably C and FORTRAN). Type equations are the basis of type inference for functional languages and
for template-style polymorphism in object-oriented languages.

While the idea of program analysis using constraints is not new, there has been a dramatic shift in
the research perspective in recent years. Formerly, each of the problem areas described above was viewed
as a separate line of research, with its own techniques, problems, and terminology. E�orts to hybridize or
extend these techniques met with considerable diÆculty, at least in part because it was unknown whether
the resulting constraint problems could be solved. Today it is understood that these problems are related,
and that much can be gained by viewing the problems as instances of a more general setting. In fact,
techniques from each of the classical algorithms may be combined quite freely to create new program

2

analyses.
To make the advantages of the constraint perspective concrete, we use another classical problem for

illustration. Most compilers perform register allocation to assign machine registers to program variables.
Consider the following fragment of imperative code, where program variables are named a,b,c, and so
forth:

a := c + d

e := a + b

f := e - 1

print(f)

A valid register assignment is a mapping from variable names to register names that preserves pro-
gram semantics. If the register names are r1, r2, r3, ..., then the program under one valid register
assignment may be:

r1 := r2 + r3

r4 := r1 + r5

r1 := r4 - 1

print(r1)

The diÆculty in register allocation is that there are usually more program variables than there are
registers to hold them. In the example above, six variables are mapped into �ve registers, with variables
a and f sharing register r1. In general, a valid register allocation may not even exist for a given program.
In this case, the number of variables in the program can be reduced by spilling some variables by inserting
code to save and restore these variables to and from main memory.

The register allocation problem was already recognized in the FORTRAN I compiler in the 1950's,
but the solution techniques were ad hoc and not entirely e�ective. By the 1970's it was realized that
the weakness of contemporary register allocation was a limiting factor in the development of optimizing
compilers. A breakthrough came in the late 1970's when Chaitin proposed a register allocation heuristic
based on graph coloring [CAC+81]. The signi�cance of the contribution can be judged by the fact that
this technique was the subject of one of the �rst software patents. Chaitin's insight was to formulate
register allocation as a constraint problem.

A variable x is said to be live at a program point p if x is referred to at some program point later
in the execution ordering than p with no intervening assignment to x. Otherwise x is said to be dead.
Consider an assignment statement y := :::. A basic observation about register allocation is

If variable x is live when variable y is assigned, then x and y cannot be held in the same

register.

In the example above, we have implicitly assumed that a is dead at the point where f is assigned, allowing
reuse of a's register to hold the value of f.

This observation suggests the following natural constraint problem. Let Reg : Variables ! Registers

be a register assignment. The constraints on Reg are

Reg(x) 6= Reg(y), x is live where y is assigned

This formulation neatly captures the constraints under which a register assignment is valid. The next
problem is to compute register assignments. The constraints naturally specify a graph with one node for

3

each variable and an edge (x; y) for each inequality constraint Reg(x) 6= Reg(y). A graph is k-colorable if
each node of the graph can be assigned a color di�erent from the color of all of its neighbors in such a
way that no more than k colors are used. Finding a register assignment with k registers is equivalent to
�nding a k coloring of the constraint graph.

By the time of Chaitin's work, it was already known that graph coloring is an NP-complete problem,
and therefore that eÆcient exact solutions were very unlikely to be found. Chaitin proposed a simple
heuristic for coloring the graph based on another observation:

If a node x has fewer than k incident edges, then the graph is k-colorable if and only if the

graph obtained by removing x and its edges is k-colorable.

That is, if x has fewer than k neighbors, then there is always a color for x, no matter how the rest of
the graph is colored. In cases where the heuristic fails to color the entire graph (i.e., a point is reached
where all nodes have k or more neighbors) it is necessary to choose a variable to spill. While subsequent
work extends the heuristics for coloring and spilling, graph coloring remains the best framework known
for register allocation after nearly 20 years.

This rather old example illustrates all of the advantages of using constraint formulations in program
analysis. The constraint formulation as inequalities separates the speci�cation of the problem from its
implementation, and most importantly gives a global characterization of the conditions to be satis�ed.
The abstract constraint problem, now free of the details of the particular program and programming
language, can then be addressed by appropriate techniques, in this case graph coloring. Note that the
constraint resolution algorithm proceeds in a manner that has no direct relationship to program structure,
and that if one were to actually view the sequence of allocation decisions made by the greedy coloring
heuristic it would jump around from point to point in the program with no apparent pattern. If we
were to attempt formulating directly an algorithm that was de�ned, e.g., by induction on the program
syntax, it is unlikely we would arrive at something as e�ective as converting the problem to a constraint
representation.

The reader may �nd register allocation heuristics a peculiar choice for a historical example of program
analysis. After all, graph coloring register allocation is not usually even regarded as a program analysis
problem, let alone a constraint-based one. However, it is clear that the constraint formulation was central
in developing the technique. Register allocation is interesting for another reason. To our knowledge, it
is the only signi�cant application of negative constraints (i.e., inequalities) to program analysis in the
literature.

3 Set Constraints

This section gives a brief overview of set constraints and the state of knowledge on set constraint problems.
In Section 4 we illustrate connections between disparate program analysis problems using the language
of set constraints.

Set constraints describe relationships between sets of terms. A set constraint has the form X � Y ,
where X and Y are set expressions. Let C be a set of constructors and let V be a set of set-valued
variables. Each c 2 C has a �xed arity a(c); if a(c) = 0 then c is a constant. The set expressions are
de�ned by the following grammar:

E ::= � j 0 jE1 [E2 jE1 \E2 j :E1 j c(E1; : : : ; Ea(c)) j c
�i(E1)

In this grammar, � is a variable (i.e., � 2 V) and c is a constructor (i.e., c 2 C). In the standard
interpretation, set expressions denote sets of terms. A term is c(t1; : : : ; ta(c)) where c 2 C and every ti is

4

a term (the base cases of this de�nition are the constants). The set of all terms is the Herbrand universe
H. An assignment � is a mapping V ! 2H that assigns sets of terms to variables. The meaning of set
expressions is given by extending assignments from variables to set expressions as follows:

�(0) = ;

�(E1 [E2) = �(E1) [�(E2)

�(E1 \E2) = �(E1) \ �(E2)

�(:E1) = H � �(E1)

�(c(E1; : : : ; En)) = fc(t1; : : : ; tn)jti 2 �(Ei)g

�(c�i(E)) = ftij9c(t1; : : : ; tn) 2 �(E); 1 � i � ng

A system of set constraints is a �nite conjunction of constraints
V
iXi � Yi where each of the Xi and Yi

is a set expression. A solution of a system of set constraints is an assignment � such that
V
i �(Xi) � �(Yi)

is true. A system of set constraints is satis�able if it has at least one solution.
The term \set constraints" was coined by Heintze and Ja�ar [HJ90], who were the �rst to recognize

and formalize set constraints in their full generality. It is a remarkable fact about many set constraint
problems that not only is it decidable whether or not a system of constraints has a solution, but that
all (potentially in�nitely many) solutions can be given a �nite representation. In their original paper,
Heintze and Ja�ar showed that a restricted class of set constraints could be solved and the solutions
�nitely presented.1

A natural and interesting subclass of set constraints excludes projections but includes all other opera-
tions. An algorithm that exhibits all solutions of such constraints �rst appears in [AW92]. Subsequently,
many alternative proofs of this result and connections to other disciplines were discovered, including tree
automata [GTT92] and graph theory [AKVW93]. A particularly elegant result shows that set constraints
without projections are equivalent to the monadic class of predicate logic [BGW93].

Including unrestricted projections in a complete theory turns out to be a diÆcult problem. A series
of papers by a variety of authors show increasingly powerful systems of constraints to be decidable
[GTT93, BGW93, CP94a, AKW95]. Charatonik and Pacholski �nally show that the full set constraint
language is decidable in [CP94b].

Showing decidability is, of course, a necessary �rst step in obtaining practical algorithms. Beyond
decidability, we would like eÆcient algorithms and algorithms that compute �nite representations of so-
lutions. In these areas the state of knowledge is incomplete. Currently, the algorithms that compute
�nite representations of the solutions of set constraints cannot handle unrestricted projections. Fur-
thermore, the complexity of solving general set constraints is high. Satis�ability of set constraints is
NEXPTIME-complete; in fact, it remains NEXPTIME-complete even if projections are eliminated.

The complexity results strongly suggest that analyses based on solving set constraints in their full
generality are infeasible. However, there are many very useful polynomial time fragments of the full
theory, and it is these tractable sub-theories that are our focus in this paper.

3.1 Expressive Power

From the de�nition above, it is easy to see that the set expressions consist only of elementary set operations
plus constructors|simply put, it is a set theory of terms. The constraint language is rich enough,

1It is also worth noting that for some variations of set constraints, in particular with the addition of function spaces, no
complete resolution algorithm is known for the general case.

5

however, to describe all of the data types commonly used in programming, and this is the property that
makes set constraints a useful tool for program analysis. For example, programming language data type
facilities provide \sums of products" data types, which means simply unions of (usually distinct) data
type constructors. All such data types can be expressed as set constraints.

Let X = Y stand for the pair of constraints X � Y and Y � X. Consider the constraint

� = cons(�; �) [nil

If cons and nil are interpreted in the usual way, then the solution of this constraint assigns to � the set of
all lists with elements drawn from �. This example also shows that a special operation for recursion is not
required in the set expression language|recursion is obtained naturally through recursive constraints.

We have not said whether we mean our lists above to be strict (as in most languages) or non-strict
(as in lazy functional languages). Set constraints can be used for either, although di�erent models are
required for strict and non-strict constructors. In this paper we wish to avoid most of the complexities
of discussing models, so we simply observe that for a non-strict cons the following identity holds:

cons(X;Y) � cons(X 0; Y 0), X � X 0 ^ Y � Y 0

For a strict cons one must naturally account for strictness, namely that cons(0; Y) = 0 for all Y (and
similarly for a 0 in the second position). Thus the identity for a strict cons is more complex:

cons(X;Y) � cons(X 0; Y 0), (X � X 0 ^ Y � Y 0) _X = 0 _ Y = 0

It is by applying equivalences such as these that set constraint solvers solve set constraints (see Section 5).
By choosing the appropriate resolution rules either strict or non-strict constructors can be modeled
faithfully; in fact, it is possible to distinguish individual arguments of constructors as strict or non-strict,
though we know of few applications for such generality. Because of the disjunction on the right-hand
side of the ,, it is in general more expensive to resolve constraints involving strict constructors than
constraints using only non-strict constructors.

The set of non-nil lists (with elements drawn from �) can be de�ned as = � \ :nil, where � is
de�ned as above. The set is useful because it describes the proper domain of the function that selects
the �rst element of a list; such a function is unde�ned for empty lists. This example also illustrates that
set constraints can describe proper subsets of standard sums of products data types.

A red-black tree is a binary search tree with the following properties:

1. Every node is either red or black.

2. Every leaf is black.

3. Every red node has two black children.

4. Every path from the root to a leaf has the same number of black nodes.

Together these properties imply that a red-black tree of n nodes has height at most 2 log(n + 1), so
red-black trees are well-balanced trees. Set constraints can describe properties (1)-(3) of red-black trees.
In the following equations, the set � describes subtrees rooted at black nodes and � describes subtrees
rooted at red nodes. Red and black are both binary constructors:

� = black(� [�; � [�) [blackleaf

� = red(�; �)

6

Property (4) of red-black trees cannot be described by set constraints. This follows from the fact that
the solutions of set constraints are always describable by regular equations(see Section 5).

The �nal, admittedly contrived, example shows a non-trivial system of constraints where some work is
required to derive the solutions. Consider the universe of the natural numbers with one unary constructor
succ and one nullary constructor zero. Let the system of constraints be:

succ(�) � :�
^

succ(:�) � �

These constraints say that if x 2 � (resp. x 2 :�) then succ(x) 2 :� (resp. succ(x) 2 �). In other
words, these constraints have two solutions, one where � is the set of even natural numbers and one
where � is the set of odd natural numbers. The solutions are described by the following equations:

� = zero [succ(succ(�))

� = succ(zero) [succ(succ(�))

The two solutions are incomparable; in general, there is no least solution of a system of set constraints.

3.2 Extensions

There are extensions of set constraints that have proven useful in various applications. The most impor-
tant extensions are surveyed here.

3.2.1 Function Space

Function spaces X ! Y can be added to the set expressions. In an appropriate model, the meaning of
X ! Y is

X ! Y = ff jx 2 X) f(x) 2 Y g

Note that semantically ! is not a labelled cross product of the domain and the range; thus the term
semantics of set expressions given above are not adequate to model function spaces. A suitable domain
can be constructed using standard techniques of denotational semantics and, given such a domain, set
constraint resolution techniques still apply, although so far as is known additional restrictions are needed
on union and intersection to guarantee that the constraints can be solved [AW93].

The function space constructor is the �rst example we have seen of a constructor that is not monotonic.2

Function space is anti-monotonic in its �rst argument and monotonic it its second argument. That is,
the following hold:

X ! Y � X ! Y [Y 0 monotonic

X ! Y � X [X 0 ! Y anti-monotonic

People unfamiliar with the type theory of functions often �nd the property of anti-monotonicity surprising.
The explanation is in the de�nition of function space above. Note the implication in the set quali�cation
\x 2 X) f(x) 2 Y ". Increasing X strengthens the hypothesis, so fewer functions f satisfy the
implication and the resulting set is smaller. Increasing Y weakens the conclusion, so more functions f
satisfy the implication and the resulting set is larger. Function spaces are used primarily in the analysis
of functional programming languages [AW93, AWL94, AF95, FA97, MW97, FFK+96, FF97].3

2A function f is monotonic if whenever x � y then f(x) � f(y).
3It is also possible to de�ne analyses involving functions that avoid anti-monotonic constructors altogether, although

these techniques assume the entire program is available to be analyzed at once [Hei94, FF97].

7

3.2.2 Conditional Expressions

Conditional expressions Y) X are equal to X if Y is non-empty and equal to 0 otherwise:

Y) X =

(
0 if Y = 0
X if Y 6= 0

Conditional expressions are very useful for expressing constraints on ow of control in programs. For
example, consider the following case statement on a boolean expression.

case x of

true: y;

false: z;

esac

We may wish to construct an analysis that captures the fact that the result of this expression can be y only
if x evaluates to true and that the result can be z only if x evaluates to false. Let [[�]] : Expressions !
SetVariables be a function mapping a program phrase to a set variable corresponding to the analysis of
that phrase in the solutions of the constraints (this notation is taken from [PS91]). Assuming that true
and false are set constructor constants with the obvious interpretations, then the desired constraint for
the case expression is

(([[x]] \ true)) [[y]]) [(([[x]] \ false)) [[z]]) � [[case x of true: y; false: z; esac]]

It is worthwhile noting that from the point of view of decidability, conditional expressions add nothing
to set constraints as they are a special case of projections. To see this, observe that

Y) X � c�1(c(X;Y))

Here we rely on the fact that the interpretation of constructors requires that if Y = 0, then c(X;Y) = 0
for any X. If one wishes to compute solutions (and not just know that solutions exist), then it turns out
that for a language without explicit projections but with conditional expressions it is possible to �nitely
represent all solutions of the constraints [AWL94].

We shall sometimes �nd it convenient to allow conditional constraints in addition to conditional
expressions. A conditional constraint has the form

X) (Y � Z)

and has the meaning that if X 6= 0 then Y � Z must hold and otherwise there is no constraint.
Conditional expressions and conditional constraints are equivalent in the sense that

X) (Y � Z) � (X) Y) � Z

4 Applications

This section presents applications of set constraints to three classical program analysis problems: dataow
analysis, type inference, and closure analysis. We expect that at least one of the chosen applications is
familiar to any reader with a background in one of the major program analysis communities. We use set
constraints as the common language in which the analysis problems are presented.

8

4.1 Dataow Analysis

Classical dataow computations for imperative languages include live variable analysis, reaching de�ni-
tions, and constant propagation, among others [ASU86]. These algorithms are formalized as the solution
of systems of constraints over expressions built from sets of constants, set variables, and the set operations:

E ::= a1 j : : : j an j� jE1 \E2 jE1 [E2 j :E1

In this grammar a1; : : : ; an are the constants (nullary constructors) and � stands for a family of set
variables. The meaning of an expression is a set of constants. A system of constraints is a conjunction
of equalities

V
i �i = Ei. We assume that each variable appears on the left-hand side of at most one

equation.
For example, in a live variable analysis in a language such as FORTRAN there is one constant for

each program variable. The problem is to compute, for each program statement S, the variables x that
may be used after the execution of S without any intervening assignments to x. For brevity we consider
only the case where S is an assignment statement; the formulation for other program constructs is also
straightforward. For each assignment statement we need to know two constant sets:

� Sdef is the set of variables de�ned (written) by S.

� Suse is the set of variables used (read) by S.

For example, in the statement x = x + y we have Sdef = x and Suse = x [y. For each statement S

there are two set variables [[S]]in and [[S]]out, corresponding to the set of variables live immediately before
and after S respectively. Let succ(S) be the statements immediately after S in program execution. The
system of constraints is then

[[S]]in = Suse [([[S]]out \ :Sdef)

[[S]]out =
[

X2succ(S)

[[X]]in

These constraints express how live variables are (or are not) propagated from one program statement to
another. For example, for the statement x = x+ y the �rst constraint is

[[S]]in = fx; yg [([[S]]out \ :fxg)

which is equivalent to
[[S]]in = fx; yg [[[S]]out

There are a few subtleties in our formulation of live variable analysis worth discussing. First, note the
optimization of the constraint representation in the immediately preceding lines (i.e., where an intersection
is eliminated from the right-hand side of the equation). In the process of solving the equations it may
be necessary to evaluate individual equations many times under di�erent assignments to the variables.
Thus, applying identities to simplify constraints can signi�cantly improve the performance of constraint
resolution implementations. This example merely hints at what transformations are possible, and there
is a substantial literature on simplifying set constraints [Pot96, TS96, FA96, FF97, MW97].

9

Second, we have actually stretched the truth and presented a signi�cant generalization of the classical
dataow theory. Note that the set expression grammar above allows negation of arbitrary expressions
:E. The standard proof that dataow equations have solutions requires that all operators be monotonic,
which : clearly is not. To achieve monotonicity, set complement is restricted to statically known sets
(i.e., set expressions without variables) in which case the right-hand sides of equations are monotone in
all variables. This restriction is not strictly required|the constraints presented (with :) can be solved as
they are a special case of more general set constraints for which resolution algorithms are known [AW92].

There are reasons, however, to prefer restricted set complement in dataow analysis. First, adding
general complement raises the computational complexity signi�cantly (see discussion at the end of this
section). Second, in dataow analysis we usually are interested in a best solution, either the least or the
greatest. A unique best solution need not exist if set complement is unrestricted. For the purposes of
dataow analysis, we shall assume simply that negation is used in a such a way that set expressions are
monotone in all variables.

For live variable analysis it is the least solution that is desired. In this case, the following inclusion
constraints are equivalent:

[[S]]in � Suse [([[S]]out \ :Sdef)

[[S]]out �
[

X2succ(S)

[[X]]in

As a useful exercise in manipulating constraints we now show that these inclusions have the same
least solution as the equalities. (Solution � is least if for any other solution �0, we have �(x) � �0(x) for
all x.) Because equality implies inclusion, it follows that every solution of the equalities is also a solution
of the inclusions. Therefore, it suÆces to show that the inclusions have a least solution that is also a
solution of the equations.

As a �rst step, note that the constraints always have a solution �i = fa1; : : : ; ang (the set of all
constants). Every inclusion constraint is satis�ed because the left-hand side is the largest possible set.

Let �1 and �2 be any solutions of the inclusions and let �3(�) = �1(�)\�2(�). Now for every inclusion
constraint � � E we have

�1(�) � �1(E) � �3(E)
�2(�) � �2(E) � �3(E)

where the last step of both lines follows by monotonicity. It follows that

�1(�) \ �2(�) = �3(�) � �3(E)

so �3 is also a solution of the inclusions. Since there always exists a solution, solutions are closed under
intersection, and there are only �nitely many solutions (because the domain is �nite and there are a �nite
number of variables), there must be a least solution.

Let � be the least solution of the inclusions and assume for the sake of a contradiction that it is not a
solution of the equalities. Then there is a constraint � � E such that �(�) � �(E). Let �0 = �[� �(E)].
Now we have

�(�) � �0(�) = �(E) � �0(E)

by monotonicity. For any other constraint �0 � E0 we know � 6= �0 (recall every variable appears in at
most one left-hand side), and we have

�(�0) = �0(�0) � �0(E0)

10

where the last � again follows by monotonicity. Thus, �0 is a solution smaller than �, a contradiction.
We conclude that � is a solution of the equalities.

Dataow equations are a special case of set constraints where the only constructors are constants, the
left-hand side of an equation is always a variable, and set complement is restricted. The decidability of
these equality constraints follows immediately from the decidability of set constraints. More interestingly,
though, the decidability of extensions also follows immediately. As noted above, unrestricted complement
can be added and all solutions are still computable, although the computational complexity increases from
polynomial time to NP-complete [AKVW93].

Two other set constraint extensions to dataow analysis are particularly useful. The �rst is the
addition of conditional expressions X) Y . As noted earlier, conditional expressions can be used to
model control ow, which complements the emphasis on data ow in (aptly named) dataow analysis. A
good example of the combination of these features is found in [Hei94, AFS98]. The second extension is the
ability to perform dataow analysis of data structures by including non-atomic constructors. Set-based
analysis is a canonical example of a system that exploits this feature of set constraints [Hei92, Hei94].

Finally, the algorithm given by the constraint resolution rules is unlikely to be as eÆcient as the
standard algorithms for live variable analysis. The culprit is the rule for adding transitive constraints

E1 � � ^ � � E2 � E1 � � ^ � � E2 ^E1 � E2

which adds new constraints between variables � � � �) � � , something that practical implemen-
tations for this problem do not do. To achieve an algorithm with eÆciency akin to those used in practice,
we can modify the rule for transitive constraints to propagate only constants in lower bounds to upper
bounds:

a � � ^ � � E � a � � ^ � � E ^ a � E

It is easy to show that this rule makes the least solution explicit; each variable is assigned the set of
constants appearing in its lower bound.

4.2 Simple Type Inference

Type inference is a central component of statically typed functional languages. The essence of the
inference algorithm is to generate a system of type constraints from the program text. If the constraints
are solvable then the program is typable and the types of program phrases are exhibited by the solutions
of the constraints.

For our purposes the pure lambda calculus suÆces as the programming language:

e ::= x j�x:e1 j e1 e2

For simplicity, we assume that variables in an expression are renamed as necessary so that all lambda
bound variables are distinct. For a simple (that is, not polymorphic) type system, the expressions of the
constraint language are

E ::= � jE1 ! E2

where ! is an in�x binary type constructor. Constraint systems are conjunctions of equations
V
iEi1 =

Ei2. As discussed in Section 3.2.1, the term model presented in Section 3 is inadequate for function
spaces, but adequate models do exist.

There are many equivalent ways to specify simple type inference. One which is close to actual
implementations of type inference algorithms uses systems of type equations. As before, we use [[e]] to
stand for a type variable associated with e.

11

[[�x:e]] = [[x]]! [[e]]

[[e1]] = [[e2]]! [[e1 e2]]

This formulation is equivalent to the standard one which uses inference rules and is well-known
[Wan87]. Under these rules it is easy to verify the types of the following examples:

�x:x : �x ! �x

�z:�y:z : �z ! (�y ! �z)

(�z:�y:z)�x:x : �y ! (�x ! �x)

�f:�x:f(f(x)) : (�x ! �x)! �x ! �x

Depending on whether �nite or in�nite solutions are desired, the constraints are solved using respec-
tively uni�cation or circular uni�cation. If circular uni�cation is used, then every lambda expression has
a type. (To see this, note that both equations can be solved by assigning every expression the recursive
type � = � ! �.) Not every expression has a type using ordinary uni�cation. Of course, an alternative
proof of decidability is to observe that these are set constraints. Note, however, that just as in the case
of uni�cation an occurs check is required if only �nite solutions are desired.

4.3 A Variation

Once again we can obtain generalizations of the familiar theory. For example, by generalizing terms to
sets we can de�ne the following grammar for types:

E = � jE1 ! E2 jE1 \E2 jE1 [E2 j 0

We recast the constraints to use inclusion instead of equality and allow solutions to be expressed in terms
of the more expressive types:

[[�x:e]] � [[x]]! [[e]]

[[e1]] � [[e2]]! [[e1 e2]]

The �rst constraint says simply that the type of �x:e must include all the functions of type [[x]] ! [[e]].
To understand the second constraint, note that for the constraints to have any solutions [[e1]] must be a
set of functions. Assume [[e1]] = X ! Y for some X and Y . We then have

[[e1]] = X ! Y � [[e2]]! [[e1 e2]]

which implies, using the anti-monotonicity of the domain and monotonicity of the range, that

[[e2]] � X ^ Y � [[e1 e2]]

In other words, the domain X of e1 must accept the type of the argument [[e2]], and the type of the result
[[e1 e2]] must be at least the range Y of e1.

Under these inclusion constraints many functions have substantially more precise types than under
the original equality constraints. For example, the function that applies a function twice to its argument
has the type:

�f:�x:f(f(x)) : ((�! �) \ (� !))! (�!)

12

Note that now the function f may be overloaded. The constraints imply that the function is well-typed
provided that f has signatures � ! � and � ! that can be composed to produce a function of type
�! .

The extended type system presented here is somewhat related to intersection type disciplines. The
language of intersection types retains variables, function spaces, and intersections between types, but no
0 or type union. However, most intersection type disciplines have much more general rules for assigning
types to expressions than the constraint generation rules we give above. As a result, even typecheck-
ing for the natural intersection type discipline is undecidable [CC90]. Restricted, decidable versions of
intersection type systems have received considerable attention (see, e.g., [CG92]).

4.4 Closure Analysis

A standard program analysis for functional languages is closure analysis. Because closure analysis is not
as well-known as dataow analysis and type inference, we �rst describe a simple closure analysis before
discussing constraints.

Intuitively, the closure analysis problem for the lambda calculus is to estimate the set of lambda
abstractions to which a program variable can be bound during reduction. For example, in the expression
(�x:x)�y:y, the variable x will be bound to an expression beginning �y, while y will not be bound to any
expression. Closure analysis is used to derive an approximation of the control ow graph in a higher order
functional language. In a �rst order language (such as FORTRAN) the control ow graph is statically
known|the order in which expressions are evaluated is obvious from program syntax, and this order is
the structure from which dataow analysis algorithms are built. In a higher order language, the order
in which expressions are evaluated must be inferred and, in general, approximated. Closure analysis is
a well-known algorithm for approximating the control-ow graph of a program and has been studied
extensively [Shi88, Ses91, PS91, Pal95, NN97].

Our development of closure analysis follows Palsberg's. Let [[e]] be a variable associated with expression
e; this variable ranges over sets of lambda bindings appearing in the complete expression. For example,
for the expression �x:�y:x the set of lambdas is f�x; �yg. For a �xed lambda expression e, the closure
analysis is the least solution of a system of constraints derived from the sub-expressions of e:

Sub-Expression Constraints

�x:e0 �x � [[�x:e0]]

e1 e2 for every �x:e3 in e

�x � [[e1]]) ([[e2]] � [[x]] ^ [[e3]] � [[e1 e2]])

For the expression (�x:x)�y:y, the constraints are

f�xg � [[�x:x]]
f�yg � [[�y:y]]

�x � [[�x:x]]) ([[�y:y]] � [[x]] ^ [[x]] � [[(�x:x)�y:y]])
�y � [[�x:x]]) ([[�y:y]] � [[y]] ^ [[y]] � [[(�x:x)�y:y]])

Solutions of the constraints are ordered pointwise; i.e., � � �0 if and only if �(x) � �0(x) for all x. It is
easy to verify that the least solution of the constraints is

[[x]] = f�yg

[[y]] = ;

13

[[�x:x]] = f�xg

[[�y:y]] = f�yg

[[(�x:x)�y:y]] = f�yg

Our de�nition of closure analysis introduces two small extensions to the constraint notation we have
de�ned. De�ne c � X) P to mean X \ c) P , which is equivalent but stays within our syntax. Also,
de�ne X) (Y ^ Z) to mean (X) Y) ^ (X) Z).

The fact that set constraints of this form can be solved for the least solution in time O(n3) follows im-
mediately from more general results on solving systems of set constraints [Hei94, AWL94] (see Section 5).
Historically, however, closure analysis has been investigated over a period of many years in isolation
from other techniques and, essentially, the fragment of set constraints needed for the problem has been
discovered from �rst principles [Shi88, PS91]. Set-based analysis can be viewed as a more general form
of closure analysis where, among other things, there is some ability to track the ow of control through
conditional tests [Hei94].

5 Solving Constraints

So far we have worked at the level of specifying the constraints for particular program analysis applica-
tions. In this section we discuss computing solutions of constraints. The general strategy in constraint
resolution algorithms is always the same: An initial system of constraints is repeatedly transformed using
simple rules until the system is in a \solved form." We illustrate this approach using the three analysis
problems presented in Section 4.

We begin by de�ning our notion of a solved form system of constraints. We show that any inductive

system of constraints has solutions, and that in fact all solutions are explicit in the form of the constraints
(Section 5.1). In the following subsections we give algorithms for transforming the constraint systems
developed in Section 4 into inductive form.

5.1 Inductive Systems

We shall limit our discussion to the following expression language, which excludes projections.

E ::= � j 0 jE1 [E2 jE1 \E2 j :E1 j c(E1; : : : ; Ea(c))

Much of the development in this section follows [AW93].
We make use of two previous results in the proof that inductive systems have solutions. The �rst is a

technique for transforming inclusion constraints to an equivalent system of equations [AW92]. The second
is the fact that systems of contractive equations have unique solutions [MPS84]. The constraint-solving
algorithm presented in Section 5 reduces an initial system of constraints to a set of systems of inductive
constraints or reports that the initial system is inconsistent.

To discuss constraint solving it is necessary to be fairly speci�c about the semantic domain. We have
discussed two domains, a domain of terms and a domain that includes function spaces. For simplicity,
we shall prove our results only for the term domain. We need the following de�nition. Let Dj be an
increasing sequence of sets that contain larger terms (terms of greater height) as j increases:

� D0 = ;

� Dj = fc(t1; : : : ; ta(c))jtj 2 Dj�1g [Dj�1

14

To help motivate the technical de�nitions that follow, consider the following natural inductive strategy
for showing that an arbitrary system of inclusion constraints over variables �1; : : : ; �n has a solution.
Initially, let �i = 0 for 1 � i � n. At step j of the induction, assign some terms of Dj to �1, then to �2,
and so on, up to �n. At each step (j; i) of this double induction over the terms of Dj and variables �i,
we must ensure that the constraints are satis�ed for all elements in Dj. If this can be done for all pairs
(j; i) then the system has a solution.

In such an inductive proof, we must distinguish between variables inside of constructors c(�), which
contribute terms from Dj�1, and variables outside of constructors �\c(: : :), which contribute terms from
Dj .

De�nition 5.1 The top-level variables ofX (denoted TLV(X)) are the variables inX that appear outside
of a constructor. Formally,

TLV(�i) = f�ig
TLV(0) = ;

TLV(c(: : :)) = ;
TLV(E1 [E2) = TLV(E1) [TLV(E2)
TLV(E1 \E2) = TLV(E1) [TLV(E2)

TLV(:E1) = TLV(E1)

Top-level variables are also called the non-expansive variables [MPS84].

De�nition 5.2 A system S of constraints is inductive if the following three conditions hold:

1. S =
V
1�i�n Li � �i � Ui (i.e., there is one lower bound Li and upper bound Ui per variable �i)

2. TLV(Li) [TLV(Ui) � f�1; : : : ; �i�1g for 1 � i � n

3. For all i0 = 1; : : : ; n and integers j, the following holds in all assignments:

(8i = 1; : : : ; i0 � 1 (Li \Dj � �i \Dj � Ui \Dj) and

8i = i0; : : : ; n (Li \Dj�1 � �i \Dj�1 � Ui \Dj�1))

) Li0 \Dj � Ui0 \Dj

Parts 1 and 2 are simple syntactic properties. Part 3 is a more complex semantic condition. The
double induction outlined above for constructing solutions is expressed in part 3, which says that if the
constraints are satis�able up to some level i0 and variable �j�1, then the constraints are satis�ed for the
next lower and upper bound pair in the induction Li0 \Dj � Ui0 \Dj .

De�nition 5.2 makes it possible to build solutions inductively at level Dj by assigning values in order
to �1; : : : ; �n since part 2 ensures that variables are constrained only by lower-numbered variables at the
top level and part 3 ensures that �i0 can be given a value between Li0 and Ui0 . Systems that do not
satisfy part 3 may not have any solutions (consider, for example, system 1 � �1 � 0).

Inductive systems are the output of our constraint resolution procedures. That is, we will give
procedures (starting in Section 5.3) for transforming an initial constraint system into an equivalent
system in inductive form. For these resolution algorithms we can prove that if the output of the algorithm
contains no trivially inconsistent constraints (e.g., 1 � 0 or int � 0) then the system is in inductive form
and therefore has solutions.

We show that inductive systems have solutions in two steps: �rst, we show that an inductive system
is equivalent to a system of equations; we then show that the equations always have solutions.

15

De�nition 5.3 A system of equations �1 = E1 ^ : : :^�n = En (where each �i appears on one left-hand
side) is cascading if TLV(Ei) \ f�i; : : : ; �ng = ;.

Theorem 5.4 Let S =
V
i Li � �i � Ui be an inductive system of constraints. Then S is equivalent to

the cascading equations �i = Li [(�i \ Ui) where the �i are fresh variables.

Proof: Assume that Li � �i � Ui and let �i = �i. Then

�i = Li [(�i \ Ui) since Li � �i � Ui
= Li [(�i \ Ui) since �i = �i

Thus, every solution of the constraints induces a solution of the equations. For the other direction, assume
that �i = Li [(�i \ Ui) for some �i. Clearly, Li � �i. To show �i � Ui, we �rst show for all i and j

that �i \Dj � Ui \Dj . For the sake of obtaining a contradiction, assume �i \Dj 6� Ui \Dj for some
i and j. Pick the smallest such pair (j; i) ordered lexicographically. Note Lk \Dl � �k \Dl � Uk \Dl

holds if (k; l) < (j; i) by assumption and because Lk � ak. Since the system is inductive, it follows that
Li \Dj � Ui \Dj . Therefore

�i \Dj

= (Li [(�i \ Ui)) \Dj

= (Li \Dj) [(�i \ Ui \Dj)

� Ui \Dj

which contradicts the assumption. Thus for all i,

�i \Dj � Ui \Dj for all j
) �i \Dj � Ui for all j
) �i � Ui since

S
j Dj = H

2

Theorem 5.5 shows that every choice for the �i induces a unique solution to the cascading equations.

Theorem 5.5 Let �1 = E1 ^ : : : ^ �n = En be a system of cascading equations and let � be any
assignment for the variables other than the f�1; : : : ; �ng. There is a unique extension �0 of � that is a
solution of the equations.

Proof: Variable �i can be eliminated from the top-level variables of every equation by substituting Ei

for �i in Ei+1 through En. Let � be any remaining top-level free variable. Then � does not appear on the
left-hand side of any equation; we call such variables free. For any �xed assignment � for the top-level
free variables, the equations become contractive (have no top-level variables). Contractive equations have
unique solutions [MPS84]. 2

5.2 A Digression on Set Complement

Set complement is quite handy for expressing analyses, but in solutions of constraints we often wish
to eliminate complements so that we can see which terms may belong to an expression E rather than

16

which terms may not belong to E. The following identities are used to drive complements inwards in the
cascading equations:

:0 = 1 where 1 =
[
c2C

c(1; : : : ; 1)

:(E1 [E2) = :E1 \ :E2

:(E1 \E2) = :E1 [:E2

::E = E

:c(E1; : : : ; Ea(c)) = c(:E1; 1; : : : ; 1) [: : : [c(1; : : : ; 1;:Ea(c)) [
[

d2C�fcg

d(1; : : : ; 1)

The equation in the �rst line de�nes 1 to be the Herbrand universe. For each equation �i = Ei create
a new equation :�i = :Ei and simplify the right-hand side.4 Now replace :�i everywhere by a fresh
variable i. The preceding rules and this technique for eliminating :�i remove all negations except on a
free variable �. A negation :� cannot be removed, as the � are free variables in the constraints.

There is another important issue with set complement. We have assumed that the set of constructors
is �nite, and therefore :c(: : :) can be written as above using an explicit union of all non-c terms. However,
in many applications it is unreasonable to assume that we know all of the constructors. Typically the
set of constructors is determined by the program text. Because a constructor de�ned in one part of a
program potentially appears in the solutions of the constraints of any part of that program, assuming that
all constructors are known at the outset makes it impossible to analyze program components separately.

It is not diÆcult to remove the assumption that all constructors are known. Assume now that C is
an in�nite set of constructors. We add the following new set expression with the semantics:

�(NOT (fc1; : : : ; cng)) = fd(t1; : : : ; ta(d))jti 2 H ^ d 2 C � fc1; : : : ; cngg

Intuitively NOT is the set of all terms with a head constructor not in the argument list. It is straight-
forward to include NOT in the algebra of set expressions. For example:

:NOT (fc1; : : : ; cng) = c1(1; : : : ; 1) [: : : [cn(1; : : : ; 1)

:c(E1; : : : ; En) = c(:E1; 1; : : : ; 1) [: : : [c(1; : : : ; 1;:En) [NOT (fcg)

NOT (fc1; : : : ; cng) \NOT (fd1; : : : ; dmg) = NOT (fc1; : : : ; cng [fd1; : : : ; dmg)

1 = NOT (;)

Even in the case where all constructors are known, NOT (fcg) is a more eÆcient representation than an
explicit union of all constructors except c.

5.3 Closure Analysis

We now turn to algorithms for solving constraints. Constraint resolution is done by applying a set of
rewrite rules repeatedly until closure. For pedagogical reasons we present the rules a few at a time, as
needed for each application. However, it is emphasized that in developing new applications it is usually
unnecessary to invent new rules. New analyses generally are expressed using the established machinery
(the complete set of rules), which means the analysis designer can simply write the necessary constraints
and be assured the constraints can be solved.

4This step only works because the cascading equations are already contractive in the �i. For example, starting with
� = � and adding complements gives us an equation with exactly the same solutions :� = :�.

17

S ^ 0 � E � S (1)

S ^E1 [E2 � E3 � S ^E1 � E3 ^E2 � E3 (2)

S ^ � � � � S (3)

S ^E1 � � ^ � � E2 � S ^E1 � � ^ � � E2 ^E1 � E2 (4)

S ^ �x 2 �) E1 � E2 ^ �x � � � S ^E1 � E2 ^ �x � � (5)

Figure 1: Rules for simplifying constraints.

We begin with closure analysis as it has the simplest resolution procedure. Expressions have the form

E ::= �x j� j 0 jE1 [E2 j�x � �) E1

and a system S of constraints has the form

S =
^
i

Ei � �i

We say two systems are equivalent S1 � S2 if they have the same set of solutions. Figure 1 gives a number
of equivalences for closure analysis constraints. It is easy to verify that these are in fact equivalences.

A constraint �i � U (respectively L � �i) is inductive if TLV(U) (respectively TLV(L) is a subset of
f�0; : : : ; �i�1g. The algorithm for solving the closure analysis constraints is as follows.

Read the equivalences as rewrite rules going from left to right. The rules are applied to the

constraint system repeatedly, in any order, until no new inductive constraints can be added.

Let S0 be the result of closing the system S under the rewrite rules. The following statements are
easily veri�ed:

� S0 � S, since S0 is obtained from S by a sequence of �-preserving steps.

� There are no constraints �x � �y, since no constant upper bounds appear in the initial constraints
and none are added by the rules.

� All constraints in S0 are of the form � � �, �x � �, or �x 2 �) E1 � E2. To see this, note the
previous point and that all other forms of left-hand sides are eliminated by the rules.

� The procedure terminates, because constraints on the right-hand sides of the rules involve only pairs
of subexpressions of the original system. There are only �nitely many such pairs, so eventually no
new inductive constraints can be added. To help detect when all inductive constraints have been
added it is suÆcient to apply the transitive rule (4) once only for each pair of inductive upper
and lower bounds on a variable. With that restriction the algorithm terminates exactly when no
rules apply. (Note that rules (3) and (4) cannot get into a loop because � � � is not an inductive
constraint.)

The last point can be used to perform complexity analysis of the algorithm. If the size of the original
system of constraints printed as a string is n, then the size of the �nal system may be O(n2) with O(n2)

18

constraints. Rules 1-3 involve only a single constraint and take constant time, so the total cost of these
rules is O(n2). For Rule 4, a variable � may have O(n) upper and lower bounds. Forming all pairs of
upper and lower bounds for � takes O(n2) time. Since there may be O(n) variables the total cost is
O(n3). The cost of Rule 5 can similarly be shown to be O(n3), so the total cost is O(n3).

It remains to show that the rules actually solve the constraints. From the discussion above we know
that there can be no trivially inconsistent constraints of the form �x � �y where x 6= y. Thus, when the
algorithm terminates successfully all constraints are inductive.

Index the variables �1; �2; : : :. We say that a constraint y � �j is a lower bound on �j if y = �x or
y = �i and i < j. A constraint �j � y is an upper bound on �j if y = �x or y = �i and i < j. Now de�ne

Li =
[
fyjy � �i 2 S

0 is a lower bound on �ig

Ui =
\
fyj�i � y 2 S0 is an upper bound on �ig

The Li and the Ui simply combine all upper and lower bounds on variables into a single upper and
lower bound per variable. Note that the Li and Ui exclude any conditional constraints remaining in S0.

Lemma 5.6 The system
V
i Li � �i � Ui is inductive.

Proof: Conditions (1) and (2) of De�nition 5.2 are easily veri�ed; for (2), simply note that each
constraint is inductive. For condition (3), because our domain is a set of constants �x the hierarchy of
Di's collapses to D0 = ; and D1 = f�xjx is a program variableg. The condition for inductiveness can
then be simpli�ed:

81 � i0 � n:81 � i < i0:Li � �i � Ui) Li0 � Ui0

The proof is by induction on i0. For the base case, there are no variables with index lower than �1, so
no variables can appear in L1 or U1. In addition U1 contains no conditional constraints or constants (see
discussion above). It follows that U1 =

T
;, which is the entire domain, so L1 � U1 in any assignment.

For the inductive case, let � be an assignment to the variables and assume that �(Li) � �(�i) � �(Ui)
for all i < i0. Let l be a disjunct of Li0 and let u be any conjunct of Ui0 . Then l � u 2 S0 by Rule 4
or the constraint is a trivial one � � � removed by Rule 3. Assume l � u is a non-trivial constraint. If
either l or u is a variable its index is less than i0. Therefore, �(l) � �(u) by the induction hypothesis.
Since l and u were chosen arbitrarily from Li0 and Ui0 , it follows that Li0 � Ui0 .

2

Let S000 be S0 with remaining conditional constraints removed. Lemma 5.6 shows that S00 has solutions
given by the equations

�i = Li [(�i \ Ui)

where the �i are fresh variables. Since all operations are monotonic,5 the smallest of these solutions is

�i = Li

where all �i = 0. This solution is � where

�(�i) = f�xj�x appears in Lig

5All operations are monotonic because we designed the constraint language to avoid negations. However, note that this
is the only place monotonicity is used, and that it is used to show the existence of a least solution.

19

To show that our constraint resolution algorithm is sound it remains to show that S has a solution.
We claim that � is a solution of S0 and therefore a solution of S. It suÆces to show that

�(�x � �i)) �(E1 � E2)

is satis�ed for the constraints �x � �i) E1 � E2 in S0 but not in S00. Assume for the sake of obtaining
a contradiction that �x � �(�i). The �x appears in Li. But then the hypothesis of Rule 5 is satis�ed,
contradicting the assumption that S is closed under the rewrite rules. We conclude that �x 6� �(�i), so
the constraint is satis�ed.

5.4 Dataow Analysis

The dataow analysis discussed in Section 4.1 allows general set complement. Here we restrict our
attention to solving the speci�c form of constraints arising in the live variable analysis, which do not
make essential use of set complement and are therefore much easier to solve.

The universe H is a �nite set of constants a1; a2; : : : ; an. For any set of constants A, the set expression
:(
S
A) can be written without a negation as

S
(H �A). Recall the liveness constraints from Section 4.1.

[[S]]in � Suse [([[S]]out \ :Sdef)

[[S]]out �
[

X2succ(S)

[[X]]in

The only expression not already treated in the resolution rules of Figure 1 is �\:A, where A is a union
of constants. To handle this case, we make use of the identity X � Y [Z � X \ :Z � Y . Three cases
involving variables and constants on the left-hand side are treated separately:

S ^ �i \A � �j � S ^ �i � �j [:A i 6= j

S ^ �i \A � �i � S

S ^ a � �i [A � S ^ a \ :A � �i

The �rst rule works either left-to-right or right-to-left. Only one direction, however, can result in a
constraint in inductive form (i.e., with the higher-numbered variable isolated). Thus, if i > j the rule is
applied left-to-right and if i < j the rule is applied right-to-left. If i = j the constraint is eliminated (the
second rule). Finally, if the left-hand side is a constant a, then a \ :A is formed to isolate the variable
on the right-hand side (the third rule). The expression a \ :A is simpli�ed to either a if a 6� A or 0 if
a � A.

Adding these rules to those of Figure 1 to handle the new expression � \ A is all that is required to
obtain an e�ective algorithm. The proof of Lemma 5.6 can be applied to this extension by noting that
the new rules put constraints in a form satisfying condition (2) of De�nition 5.2, and that the proof that
conditions (1) and (3) are satis�ed is unchanged.

5.5 Simple Type Inference

The constraints for simple type inference introduce one additional form of expression E1 ! E2. The
corresponding resolution rule is well-known:

E1 ! E2 � E3 ! E4 � E3 � E1 ^E2 � E4 (6)

20

The antimonotonicity of the domain and the monotonicity of the range are reected in the constraints
on the right-hand side (see the discussion in Section 3.2). This rule can be combined with the preceding
ones to give a method for solving the typing constraints. Resolution of the constraints is again in O(n3)
time.

The justi�cation for this rule is outlined in Section 3.2.1. A full formalization requires considerable
additional machinery from denotational semantics and is outside the scope of this paper.

6 Discussion

We now turn to the relationship of constraint-based analysis to other approaches to program analysis
and its place in the theory of abstract interpretation. The accepted intellectual framework for designing
and justifying program analysis algorithms is abstract interpretation, due to Cousot and Cousot [CC77].
Abstract interpretation treats a program analysis as a sound approximation to the exact meaning of a
program. More precisely, an abstract interpretation gives a non-standard interpretation of the program
that is consistent with the standard interpretation. Let (D;�D) and (A;�A) be partially ordered domains
and let � : D ! A and : A! D be functions that form a Galois connection:

8d 2 D; a 2 A �(d) �A a, d �D (a)

Then �(d) is the abstraction of d and (a) is the concretization of a.
By de�ning the abstract domain A and explicit mappings � and it becomes possible to state

precisely what it means for an abstraction of a program to be correct. For example, let P be a program
with standard semantics � : Program! D ! D. Let � be a program analysis (an abstract interpretation)
with functionality � : Program ! A! A. The � is a sound abstraction if it satis�es:

8x 2 D:(� P x) �D (� P �(x))

Thus, the abstraction �(P) conservatively models the behavior of P .
There is confusion in the literature over the meaning of the term \abstract interpretation," which is

used at least to mean either a semantic framework for reasoning about program analysis (sketched above)
or a particular set of techniques for constructing program analyses. The author prefers to use the term
to refer to the semantic framework only. Given that meaning, abstract interpretation provides a clear,
well-de�ned framework for proving that a program analysis is correct. We are unaware of any program
analysis that cannot be explained in this framework,6 including constraints, although we have left the
abstraction and concretization functions implicit in our examples.

Program analysis is technically diÆcult and at the same time new problems typically bear some
resemblance to older, better understood problems. Hence, there is little enthusiasm for inventing program
analyses from �rst principles in every instance, and people have naturally developed sets of techniques
that can be reused. A few of these paradigms have developed large followings. We discuss three: �nite
lattice methods, type inference, and constraints.

6.1 Finite Lattice Methods

One of the most popular paradigms appeared in the Cousots' seminal paper on abstract interpretation
[CC77]. Program analyses in this style are variations on a theme. A �nite abstract domain A is designed

6Widening/narrowing can be de�ned without reference to abstraction (see [CC92]). However, when used on an abstract
domain there are associated abstraction and concretization functions.

21

(A is generally a lattice), and the program analysis is expressed as a system of recursive equations of the
following form

x1 = �1(X) : : : xn = �n(X)

where X = fx1; : : : ; xng is a set of variables and each �i is a monotonic function with signature AjXj ! A.
It is well-known that a generic iterative �xed point algorithm computes the least solution of such equations
[CC77].

Given that one can design a correct analysis in this framework, the implementation is straightforward
and has two additional useful properties: �rst, the computed analysis is the best possible within the
chosen parameters (i.e., it is the least solution of the equations) and second, the analysis is guaranteed
to terminate. Analyses for C and FORTRAN programs based on dataow equations are classic examples
of this program analysis paradigm.

The cookbook recipe \�nite domains plus monotonic functions equals program analysis" has proven
very popular, and there are an enormous number of applications of this excellent idea; representative
examples include [Myc80, JM86, Hud87, Wad87, HY88, PBJ+91]. The paradigm has become so popular
that the term abstract interpretation is often used to mean this speci�c technique for program analysis
rather than a general semantic framework. Pedagogically this is undesirable, as it implies that the
semantic framework of abstract interpretation cannot be applied to other paradigms.

6.2 Type Inference

The Hindley/Milner type inference algorithm has recently become popular as a model for program anal-
yses of a di�erent sort. In this approach, a program analysis is speci�ed as a non-standard type inference
system. Typically, such systems are sets of deductive inference rules, with one rule for each syntactic
form in the programming language. It is worth noting that analyses in this style have been designed
that prove all sorts of facts about programs, many of which have little to do with types. Representative
examples include [Hen92, TT94].

Specifying a program analysis as a formal logic corresponds nicely with the intuition that the role of
program analysis is to prove facts about programs. However, the inference rules alone normally do not
specify an algorithm. If the logic can prove multiple facts about a program, it is necessary to specify
which fact should be computed by program analysis; that is, it is necessary to specify how the proof
search is conducted. In practice, designing the logic often is only the �rst step and much hard work
remains in coming up with an algorithm and analyzing its complexity. For example, implementations of
Milner's type system are based on solving systems of equality constraints using uni�cation [Rob65].

6.3 Constraints

In 1987 Wand wrote a short paper on the Hindley-Milner type system in which he proposed to recast the
usual typing rules with explicit equality constraints as side conditions, which simpli�es the understanding
of Hindley-Milner type inference algorithms [Wan87]. This paper is apparently the �rst to explicitly put
forth the constraint-based viewpoint (excepting Reynold's much earlier paper [Rey69]). Further devel-
opment has continued to emphasize the problems of constraint resolution over the problems of deductive
inference. Note that the constraint-based analysis notation for traditional type inference problems deftly
avoids using inference rules at all (see Section 4.2)!

A thesis of this paper is that constraint-based analysis uni�es much of the traditional dataow views
and the type inference views of program analysis. To the degree that dataow equations are a proxy for
more general abstract interpretations over �nite lattices there is considerable evidence for this thesis. In

22

the extreme, systems of equations of the form above x1 = �1(X) : : : xn = �n(X) can be viewed as just
another system of constraints to be solved. However, this level of generality obscures several important
di�erences.

What we refer to as �nite lattice methods generally exploit three assumptions: �rst, a particular
solution (the least or the greatest) to the equations is desired; second, the abstract functions can be
arbitrary monotonic functions; and third, that a �nite domain of abstract values gives suÆcient precision
for all programs.7

With respect to the �rst point, in constraint-based analysis a common (but not universal) view is
to compute all solutions of the constraints. For example, the constraint resolution procedure for live
variable analysis in Section 5 does not resemble the one in textbooks precisely because it computes all,
rather than the least, solution of the constraints. Computing all solutions becomes necessary for separate
analysis of programs split across multiple �les (where the least solution of the constraints for a particular
�le may have little to do with the least solution of the entire program) and when there is no least solution
(e.g., in the presence of anti-monotonic constructors like function space).

The second important di�erence lies in the nature of the abstractions chosen in �nite lattice and
in constraint-based analyses. All commonly used, and very nearly all proposed, �nite lattice methods
are either forwards (information ows from inputs to outputs) or backwards (information ows from
outputs back towards inputs; live variable analysis is an example). The dataow analyses tend to use
abstract functions to represent function values. Thus, information can ow easily only in the direction of
the abstract function, which is either forwards or backwards. Constraint resolution, however, naturally
allows information to ow in either or both directions, allowing forwards and backwards information ow
to be used in the same analysis.

It is important to understand that allowing bidirectional information ow is not a unique property
of constraints. For example, the technique of chaotic iteration admits analyses that are neither forwards
nor backwards [CC78].

The third important di�erence is that constraints can easily work over in�nite domains, while the
�nite lattice methods work with a �nite domain. Finite domains are a good �t for some problems (e.g.,
the two point domain commonly used in strictness analysis [Myc80]), but for others (e.g., particularly
problems involving recursive data structures) it is more natural to work directly with an in�nite domain.
A problem with in�nite domains, however, is that termination of the program analysis is not automatically
guaranteed. In the case of set constraints the termination of constraint resolution is guaranteed; resolution
computes a �nite representation of the solutions of constraints over an in�nite domain.

The distinction between in�nite and �nite domains is subtler than we have indicated. If an analysis
terminates for all programs, then clearly there is �nite structure (i.e., the �nite computation) regardless of
the choice of domain. Thus, even if the intended domain is in�nite, for each program it should be possible
to substitute a �nite domain that behaves indistinguishably from the in�nite domain.8 Essentially this
observation is used in [CC95] in showing the equivalence of several di�erent approaches to formulating
program analyses over �nite and in�nite domains.

Even if in�nite domains can be treated using �nite equivalents (as they must be if we wish to have
terminating program analyses), that does not mean that in�nite domains serve no useful role. In many
cases an in�nite domain is simply the natural framework, while the equivalent �nite domain may be
diÆcult to discover and justify. In the case of set constraints, the �nite domain can be taken to be all
subsets of the constraints of the initial system plus and those added by resolution rules. The full set
is only discovered by solving the constraints. A similar perspective is set forth in [CC92] in another

7Or that a suitable �nite domain can be derived from each particular program.
8Note that there may be a di�erent �nite domain for each possible input program.

23

discussion of �nite vs. in�nite domains.
No discussion of in�nite domains is complete without mentioning the use of widening to achieve

termination in in�nite abstract domains. Widening is very general and can be applied in any domain,
�nite or in�nite [CC92]. Widening has two drawbacks, however. First, the price for generality is that
widening is not guaranteed to produce a best solution. Second, widening is de�ned operationally (in terms
of how it accelerates convergence). Both of these properties are undesirable in applications where users
must be able to understand the results of the analysis and, if necessary, how to modify their programs so
that the analysis produces better results. (Type inference is the canonical example of an analysis where
user understanding is a requirement.) In other applications where user involvement is not expected, such
as low-level compiler optimizations, these concerns are unimportant.

6.4 Other Constraint Systems

Constraints are a popular formalism for program analysis and the associated literature is large. We give
a necessarily abbreviated survey of this work.

The most widely used constraint language is undoubtedly equality constraints between terms, solved
via uni�cation (see [Ste96] for a recent example). Uni�cation and its variants are almost the only technique
where performance has been demonstrated to scale well to large programs. While we have argued that
such constraints can be captured as set constraints (which they can), there is an important distinction
to be made. The generic resolution algorithm for set constraints is at least O(n3) while term equations
can be solved in nearly linear time. Thus, straightforward set constraint algorithms are not necessarily
the best implementation of any particular fragment of set constraints.

Equations between record types are another popular constraint formalism, intermediate in power
between term equations and set constraints [R�89, Wan93]. A record type is a set of typed �elds. For
example fx : int; y : int; �g is a record with two �elds x and y, both of type int. In program analysis
applications the \types" in a record are replaced by descriptions appropriate to the particular analysis.
An important aspect of record types is that additional, unknown �elds are permitted through variables
that range over record extensions. In the example above, � may take on any set of �elds and associated
types except for x and y. In this way record types allow polymorphism not just over particular record
�elds but also over record extensions.

Missing from set constraints is the notion that constructors may stand in non-trivial inclusion rela-
tionships to each other. For example, we may have a rule that c(X) � d(X) for any X. For the case
where there are only nullary constructors (constants) and where the inclusion ordering de�nes a meet
semi-lattice, the inclusion constraints can be solved in linear time [RM96]. The case where the inclusion
relationships do not de�ne a semi-lattice is more diÆcult (as shown in [RM96]; an earlier example is
[Mit91]). The situation for higher-arity constructors with inclusion relationships is less clear; see [BM97]
for an example of such a system.

The examples discussed so far are primarily aimed at analyzing data structure or type descriptions.
A bit a�eld from these kinds of constraints are integer constraints, which �nd application in gathering
information about patterns of array references and loop bounds. The studies done using the Omega
system are good examples of how a well-engineered integer constraint library simpli�es many tasks (see,
e.g., [Pug91, PW95]).

Beyond the standard formalisms, there are a number of more specialized constraint systems that have
been developed for particular analysis problems; [Hen92, TT94] are good examples. These constraint
languages have specialized features that are not easily categorized.

A very important consideration in program analysis of any sort is how polymorphism (also called

24

polyvariance and context sensitivity) is expressed. Polymorphic analysis is a large topic in its own
right and beyond the scope of this paper. Constraints are well adapted to using the standard let-style
polymorphism of functional languages. In some cases even more powerful polymorphic recursion can be
used [Hen88, TT94].

Another approach to constraint-based analysis is to mix multiple constraint systems in a single ap-
plication [FA97]. This idea has the advantage that one need no longer �nd a single constraint theory
that models all needed aspects of a program. Instead, di�erent aspects of computation can be modeled
separately, using whatever constraints are appropriate for eÆciency or semantic reasons.

7 Conclusions

As a �eld, program analysis su�ers from a fair degree of balkanization, with several di�erent traditions
that address related problems with related techniques but di�erent terminology, thereby obscuring what
is common and what is di�erent. We have given a brief overview of constraint-based program analysis,
focusing on three classical analyses (dataow analysis, type inference, and closure analysis) and showing
how they can be presented using the constraint-based point of view. We hope these examples serve to
lower the barriers to understanding between the di�erent program analysis communities.

8 Acknowledgments

This paper is based in part on an invited talk on constraint-based program analysis given with Nevin
Heintze at the ACM Symposium on Principles of Programming Languages in 1995. Much thanks goes to
Nevin for discussions on the relationship of constraint-based analysis to other analysis paradigms. Je�
Foster provided many useful comments on an earlier draft of this paper and Manuel F�ahndrich provided
corrections to some errors in the �rst published version.

References

[AF95] A. Aiken and M. F�ahndrich. Dynamic typing vs. subtype inference. In Proceedings of the

8th Conference on Functional Programming and Computer Architecture, pages 192{191, June
1995.

[AFS98] A. Aiken, M. F�ahndrich, and Z. Su. Detecting races in relay ladder logic programs. In Tools

and Algorithms for the Construction and Analysis of Systems, 4th International Conference,

TACAS'98, volume 1384 of LNCS, pages 184{200, Lisbon, Portugal, 1998. Springer.

[Aik94] A. Aiken. Set constraints: Results, applications, and future directions. In Second Workshop

on the Principles and Practice of Constraint Programming, pages 171{179, Orcas Island,
Washingtion, May 1994. Springer-Verlag LNCS no. 874.

[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints. In
E. B�orger, Y. Gurevich, and K. Meinke, editors, Computer Science Logic '93, volume 832 of
Lect. Notes in Comput. Sci., pages 1{17. Eur. Assoc. Comput. Sci. Logic, Springer, September
1993.

[AKW95] A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints with negative
constraints. Information and Computation, 122(1):30{44, 1995.

25

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[AW92] A. Aiken and E. Wimmers. Solving systems of set constraints. In Symposium on Logic in

Computer Science, pages 329{340, June 1992.

[AW93] A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Proceedings

of the 1993 Conference on Functional Programming Languages and Computer Architecture,
pages 31{41, Copenhagen, Denmark, June 1993.

[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In Twenty-

First Annual ACM Symposium on Principles of Programming Languages, pages 163{173,
Portland, Oregon, January 1994.

[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. In
Symposium on Logic in Computer Science, pages 75{83, June 1993.

[BM97] Francois Bourdoncle and Stephan Merz. Type-checking higher-order polymorphic multi-
methods. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 302{315, January 1997.

[CAC+81] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein. Register
allocation via graph coloring. Computer Languages, 6(1):47{57, 1981.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static anal-
ysis of programs by contruction or approximation of �xed points. In Fourth Annual ACM

Symposium on Principles of Programming Languages, pages 238{252, January 1977.

[CC78] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.
In E. Neuhold, editor, Formal Description of Programming Concepts. North-Holland, 1978.

[CC90] F. Cardone and M. Coppo. Two extensions of Curry's type inference system. In P. Odifreddi,
editor, Logic and Computer Science. Academic Press, 1990. volume 31 of APIC series.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing ap-
proaches to abstract interpretation. In PLILP '92, pages 269{295. Spring-Verlag, 1992.
volume 631 of LNCS.

[CC95] P. Cousot and R. Cousot. Compositional and inductive semantic de�nitions in �xpoint,
equational, constraint, closure-condition, rule-based and game-theoretic form. Lecture Notes

in Computer Science, 939:293{303, 1995.

[CG92] M. Coppo and P. Giannini. A complete type inference algorithm for simple intersection types.
In Proceedings of the 17th Colloquium on Trees in Algebra and Programming. Spring-Verlag,
1992. Lecture Notes in Computer Science 581.

[CP94a] W. Charatonik and L. Pacholski. Negative set constraints wtih equality: An easy proof of
decidability. In Symposium on Logic in Computer Science, July 1994. To appear.

[CP94b] W. Charatonik and L. Pacholski. Set constraints with projections are in NEXPTIME. In
Foundations of Computer Science, 1994. To appear.

26

[FA96] M. F�ahndrich and A. Aiken. Making set-constraint program analyses scale. In CP96 Work-

shop on Set Constraints, August 1996.

[FA97] M. F�ahndrich and A. Aiken. Program analysis using mixed term and set constraints. In
Proceedings of the 4th International Static Analysis Symposium, September 1997.

[FF97] C. Flanagan and M. Felleisen. Componential set-based analysis. In Proceedings of the 1997

ACM SIGPLAN Conference on Programming Language Design and Implementation, June
1997.

[FFK+96] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen. Catching bugs in
the web of program invariants. In Proceedings of the 1996 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 23{32, May 1996.

[GTT92] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints using tree au-
tomata. In Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer

Science, pages 505{514, 1992.

[GTT93] R. Gilleron, S. Tison, and M. Tommasi. Solving Systems of Set Constraints with Negated
Subset Relationships. In Foundations of Computer Science, pages 372{380, November 1993.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University, 1992.

[Hei94] N. Heintze. Set-based analysis of ML programs (extended abstract). In Proceedings of the

1994 ACM Conference on Lisp and Functional Programming, June 1994. To appear.

[Hen88] F. Henglein. Type inference and semi-uni�cation. In Proceedings of the 1988 ACM Conference

on Lisp and Functional Programming, pages 184{197, July 1988.

[Hen92] F. Henglein. Global tagging optimization by type inference. In Proceedings of the 1992 ACM

Conference on Lisp and Functional Programming, pages 205{215, July 1992.

[HJ90] N. Heintze and J. Ja�ar. A decision procedure for a class of Herbrand set constraints. In
Symposium on Logic in Computer Science, pages 42{51, June 1990.

[Hud87] P. Hudak. A semantic model of reference counting and its abstraction. In S. Abramsky
and C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages 45{62. Ellis
Horwood Limited, 1987.

[HY88] P. Hudak and J. Young. A collecting interpretation of expressions (without powerdomains).
In Proceedings of the 15th Annual ACM Symposium on the Principles of Programming Lan-

guages, pages 107{118, 1988.

[JM79] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like structures.
In Sixth Annual ACM Symposium on Principles of Programming Languages, pages 244{256,
January 1979.

[JM86] N. D. Jones and A. Mycroft. Dataow analysis of applicative programs using minimal fuc-
ntion graphs: Abridged version. In Thirteenth Annual ACM Symposium on Principles of

Programming Languages, pages 296{306, January 1986.

27

[Mit91] J. C. Mitchell. Type inference with simple subtypes. Journal of Functional Programming,
1(3):245{286, July 1991.

[MPS84] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymophic types. In
Eleventh Annual ACM Symposium on Principles of Programming Languages, pages 165{174,
January 1984.

[MW97] S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings of the

International Conference on Functional Programming, June 1997.

[Myc80] A. Mycroft. The theory and practice of transforming call-by-need into call-by-value. In
Proceedings of the 4th International Symposium on Programming, pages 269{281, April 1980.
In LNCS No. 83.

[NN97] F. Nielson and H. R. Nielson. In�nitary control ow analysis. In Proceedings of the 24th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 332{
345, January 1997.

[Pal95] J. Palsberg. Closure analysis in constraint form. ACM Transactions on Programming Lan-

guages and Systems, 17(1):47{62, January 1995.

[PBJ+91] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill. Dependence ow graphs:
An algebraic approach to program dependencies. In Eighteenth Annual ACM Symposium on

Principles of Programming Languages, pages 67{78, January 1991.

[Pot96] F. Pottier. Simplifying subtyping constraints. In Proceedings of the 1996 ACM SIGPLAN

International Conference on Functional Programming, pages 122{133, May 1996.

[PP97] A. Podelski and L. Pacholski. Set constraints|a pearl in research on constraints. In Pro-

ceedings of the Third International Conference on the Principles and Practice of Constraint

Programming, October 1997. Springer-Verlag LNCS no. 1330.

[PS91] J. Palsberg and M. Schwartzbach. Object-oriented type inference. In Proceedings of the OOP-
SLA '91 Conference on Object-Oriented Programming Systems, Languages and Applications,
pages 146{161, November 1991.

[Pug91] W. Pugh. The Omega test: A fast and practical integer programming algorithm for depen-
dence analysis. In Proceedings of the 4th Annual Conference on Supercomputing, pages 4{13,
November 1991.

[PW95] W. Pugh and D. Wonnacott. Going beyond integer programming with the Omega test to
eliminate false data dependences. IEEE Transactions on Parallel and Distributed Systems,
6(2):204{211, February 1995.

[R�89] D. R�emy. Type checking records and variants in a natural extension of ML. In Sixteenth

Annual ACM Symposium on Principles of Programming Languages, pages 277{87, January
1989.

[Rey69] J. C. Reynolds. Automatic Computation of Data Set De�nitions, pages 456{461. Information
Processing 68. North-Holland, 1969.

28

[RM96] J. Rehof and T. A. Mogensen. Tractable constraints in �nite semilattices. In Proceedings of

the 3rd International Static Analysis Symposium, pages 285{295, September 1996.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23{41, 1965.

[Ses91] P. Sestoft. Analysis and EÆcient Implementation of Functional Programs. PhD thesis, DIKU,
University of Copenhagen, October 1991.

[Shi88] O. Shivers. Control ow analysis in Scheme. In Proceedings of the ACM SIGPLAN '88

Conference on Programming Language Design and Implementation, pages 164{174, June
1988.

[Ste96] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd Sympo-

sium on Principles of Programming Languages, pages 32{41, January 1996.

[TS96] V. Trifonov and S. Smith. Subtyping constrained types. In Proceedings of the 3rd Interna-

tional Static Analysis Symposium, volume 1145, pages 349{365. Springer Verlag, 1996.

[TT94] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value �-calculus using a
stack of regions. In Twenty-First Annual ACM Symposium on Principles of Programming

Languages, pages 188{201, January 1994.

[Wad87] P. Wadler. Strictness analysis on non-at domains (by Abstract interpretation over �nite
domains). In S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative

Languages, pages 266{275. Ellis Horwood Limited, 1987.

[Wan87] M. Wand. A simple algorithm and proof for type inference. Fundamenta Informaticae,
X:115{122, 1987.

[Wan93] M. Wand. Type inference for record concatenation and multiple inheritance. Information

and Computation, pages 1{15, 1993.

29

