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Abstract

Obtaining performance models, like Markov chains and queueing networks, for systems of

signi�cant complexity and magnitude is a di�cult task that is usually tackled using human in-

telligence and experience. This holds in particular for performance models of a highly irregular

nature. In this paper we argue by means of a non-trivial example – a plain-old telephone system

(POTS) – that a stochastic extension of process algebra can diminish these problems by permit-

ting an automatic generation of Markov chains. We introduce a stochastic process algebra that

separates the advance of time and action occurrences. For the sake of speci�cation convenience

we incorporate an elapse operator that allows the modular description of time constraints where

delays are described by continuous phase-type distributions. Using this language we provide a

formal speci�cation of the POTS and show how a stochastic process of more than 107 states is

automatically obtained from this system description. Finally, we aggregate this model composi-

tionally using appropriate stochastic extensions of (strong and weak) bisimulation. As a result

we obtain a highly irregular Markov chain of about 700 states in an automated way, which we

use to carry out a transient performance analysis of the POTS. c© 2000 Elsevier Science B.V.

All rights reserved.
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1. Introduction

The construction of system models suited for performance and reliability analysis is

a di�cult task that to a large extent is solved using human intelligence and experience.

Due to the increase in size and complexity of systems, like embedded and distributed

systems, this tendency seems even growing: performance modelling becomes a task
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dedicated to specialists in particular for models with a high degree of irregularity.

Traditional performance models like Markov chains and queueing networks are widely

accepted as simple and yet adequate models in di�erent areas, but the lack of hierar-

chical composition signi�cantly hampers the modelling of systems that are developed

nowadays.

On the other hand, for describing and analysing the functional system behaviour

various speci�cation formalisms have been developed that are strongly focussed on the

facility to model systems in a compositional, hierarchical manner. A prominent example

of such speci�cation formalisms is the class of process algebra. Developed in the

mid-80’s on a strong mathematical basis, process algebra has emerged as an important

framework to achieve compositionality. Process algebra provides a formal apparatus for

reasoning about structure and behaviour of systems in a compositional way. In addition,

an abstraction mechanism provides means to treat system components as black boxes,

making their internal structure invisible. A formal semantics maps process algebra

terms onto transition systems consisting of a set of states with a distinguished initial

state, and a transition relation that describes how the system evolves from one state

to another. Transitions are labelled with actions, the most primitive notions in process

algebra. Transition systems can be visualised by drawing states as nodes of a graph and

transitions as directed edges (labelled with actions) between them. To overcome the

absence of hierarchical, compositional facilities in performance modelling, in the early

90’s a research e�ort started on integrating performance aspects into process algebras

– the class of stochastic process algebras emerged.

The basic idea underlying these class of process algebras is to change the role of

action-pre�x, denoted by a; P for action a and process P. Originally, the expression

a; P simply means that �rst an action a is o�ered, and after the appearance of a the

process behaves like P. In stochastic process algebras, like EMPA [2], PEPA [28] or

TIPP [19], a real-valued rate is associated to actions that determines probabilistically

the delay prior to an action. For rate �, the term (a; �); P denotes that action a is o�ered

after a certain delay that is determined by an exponential distribution. More precisely,

(a; �); P o�ers a and evolves into P within t time units with probability 1− e−�t . As

a semantical model for stochastic process algebras, transition systems are used where

transitions are labelled with pairs of actions and rates. By omitting the action labels

– but keeping the rate information – one obtains a (homogeneous) continuous-time

Markov chain for which steady state and transient performance metrics can be obtained

using traditional techniques [40]. To put it in a nutshell, stochastic process algebras

provide a compositional and algebraic formalism for describing Markov chains.

The bene�ts of this process algebra approach for the speci�cation and generation

of Markov chains is shown by several results. In the stochastic setting, bisimulation

equivalence, one of the most important notions of equivalence to compare labelled

transition systems, is shown to correspond to lumpability, a notion central for the

aggregation of Markov chains [28]. In addition, the congruence property of bisimulation

allows the aggregation to be carried out compositionally, i.e. component-wise. Several

(small and moderate) case studies have shown the practicality of the approach, for
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instance [1, 13], and important progress has been made in exploiting the compositional

structure of the speci�cation for performance analysis purposes [30, 33, 29].

The basic distinction between the aforementioned stochastic process algebras is the

treatment of time consumption in case of interaction. Technically, this amounts to

the computation of the resulting rate in case two actions like (a; �) and (a; �) synchro-

nise. The most natural interpretation is to require both delays to have expired before

the interaction (on a) can take place. The thus resulting distribution, the product of two

exponential distributions of rate � and � respectively, is, however, not an exponential

distribution. (The product of two distribution functions amounts to the maximum of

their corresponding random variables.) To overcome this problem, several solutions

have been suggested that, however, either lack a clear stochastic interpretation or have

a restricted applicability. In this paper we maintain the (to our opinion) most natural

stochastic interpretation (i.e. maximum of random variables) by explicitly separating

between the advance of time and the occurrence of actions. This distinction leads to

a behaviour where two distinct phases are mixed. Phases, during which one or more

actions occur (together with their corresponding state changes), but where no time

elapses, alternate with phases where time passes, but during which no actions happen.

This separation of discrete and continuous phases is similar to that in timed process

algebras as proposed in [35, 42]. We introduce a stochastic extension of Basic 2 LO-

TOS (Language Of Temporal Ordering Speci�cation), the process algebra standardised

by the ISO in 1989. Its formal semantics is de�ned using a mixture of labelled transi-

tion systems and Markov chains, called interactive Markov chains [22], in which both

action-labelled and rate-labelled transitions co-exist.

We show the applicability of stochastic process algebras to a large example, a plain-

old telephone system (POTS) with more than 107 states whose functional speci�cation

comprises more than thousand lines of process algebra code. For the sake of speci�ca-

tion convenience we incorporate an elapse operator that allows the modular description

of time constraints where delays are described by continuous phase-type distributions

[36], a general class of distribution functions that includes exponential, Erlang, Cox

and mixtures of exponential distributions. This operator facilitates the description of

time constraints in a modular way, that is, as separated processes that are composed in

parallel with the untimed speci�cation. This art of specifying time constraints �ts well

in the constraint-oriented speci�cation style [41], a speci�cation style where process

descriptions are considered as constraints.

Using our language we provide a formal speci�cation of the time-constrained POTS

and show how a stochastic process of more than 107 states is automatically obtained

from this system description. Subsequently, we aggregate this model compositionally

using strong and weak bisimulation and appropriate stochastic extensions thereof. As a

result we obtain a highly irregular Markov chain of about 700 states in an automated

way, which we use to carry out a transient performance analysis of the POTS.

2 The term Basic refers to the fact that data aspects are absent.
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To summarise, this paper makes the following contributions:

• it introduces a stochastic extension of Basic LOTOS that is based on the separation

of advancing time and the occurrence of actions, 3

• it provides a stochastic formal speci�cation of the POTS using a novel and sim-

ple elapse operator that allows phase-type durations while supporting a constraint-

oriented speci�cation style, and

• it shows how a highly irregular Markov chain is automatically generated and min-

imised starting from this speci�cation.

Organisation of the paper: Section 2 provides a brief introduction into the process

algebra Basic LOTOS. This introduction includes a formal syntax and semantics, de�-

nitions of the most important equivalence notions (bisimulation) and a short description

of tool and algorithmic support. Section 3 covers extensively the same ingredients for

our stochastic extension of LOTOS and describes how Markov chains are generated

and aggregated. Section 4 presents an informal description of the POTS, our example

telephone system and presents fragments of the formal LOTOS speci�cation. Section 5

shows how time constraints are included in the POTS speci�cation using the elapse

operator in a modular way. Section 6 exempli�es the strategy of compositional Markov

chain generation and reduction by means of the POTS, and presents our results obtained

by transient performance analysis. Section 7 concludes the paper.

2. The process algebra Basic LOTOS

In this section we present the basic de�nitions and concepts of Basic LOTOS that

are needed for the understanding of this paper. For a more thorough treatment of this

process algebra we refer to [4].

2.1. Syntax

Basic LOTOS has a parallel operator that allows multi-party synchronisation (like in

CSP). It has a special internal action i modelling internal (i.e. unobservable) activity.

Another distinctive feature is the so-called disabling operator which is quite convenient

for protocol speci�cation (e.g. a data-phase can be disabled by a disconnection phase).

Let P and Q be Basic LOTOS expressions, L be the universe of observable actions, a be

an action from L∪{i}; A⊆L be a set of actions, f be a function from L∪{i} to L∪{i}

such that f(i)= i, and x be a process identi�er. Then the syntax of Basic LOTOS is

recursively given by Table 1. P |[∅]|Q is abbreviated as P |||Q. The syntax of a process

de�nition is x :=P. A set of process de�nitions is called a process environment. A

behaviour expression is always considered in the context of a process environment.

To avoid too many parentheses we adopt the convention that the operators have a

decreasing binding power in the following order: ; ; []; |[A]|; [¿; /; hide A in and [f].

3 In fact we introduce a subset of the language that is originally proposed by the �rst author in [26].
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Table 1

Syntax of Basic LOTOS

Inaction stop Disabling P [¿Q

Successful termination exit Parallel composition P |[A]|Q

Action-pre�x a; P Hiding hide A in P

Choice P []Q Relabelling P[f]

Sequential composition P/Q Process instantiation x

(enabling)

2.2. Semantics

The formal semantics associates to each Basic LOTOS term P a labelled transition

system where states are identi�ed with expressions – the initial state being the term P

– and for which the transition relation is de�ned as the smallest relation that satis�es

the rules in Table 2. The distinguished action � that appears in the rule for exit models

the successful termination of an expression. It is, for example, used in the semantics

of sequential composition (like P/Q) to pass the control from P to Q in case P

successfully terminates. Notice that parallel processes are forced to synchronise on �;

this allows, for example, in (P |||Q)/R, process R to start its execution only once

both P and Q successfully terminated.

2.3. Bisimulation

By Table 2 a labelled transition system is associated to each Basic LOTOS expres-

sion. Often, these transition systems are too concrete in the sense that we would like

to identify certain behaviour expressions with di�erent transition systems, e.g. on the

basis of observability criteria. For these reasons several equivalences and pre-orders

have been de�ned; for an overview see [14, 15]. One of the most important classes

of equivalence relations are the so-called bisimulation equivalences. We consider two

variants, known as strong [38, 34] and weak [34] bisimulation. These relations are re-

called below, de�ned in a format borrowed from [16]. For the sake of convenience let

L denote the set of expressions de�ned by the syntax of Table 1. In the following

de�nitions let action a∈L∪{i; �}.

De�nition 1 (Strong bisimulation). An equivalence relation S on L is a strong

bisimulation i� for any pair (P;Q)∈L × L we have that (P;Q)∈S implies for

all actions a and all equivalence classes C ∈L=S:

s(P; a; C)= s(Q; a; C) with s(R; a; C)=

{

1 if {R′ ∈C |R
a

−→R′} 6= ∅;

0 otherwise:

Processes P and Q are strongly bisimilar, denoted P ∼ Q, if (P;Q)∈S with S a

strong bisimulation.
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Table 2

Standard semantics of Basic LOTOS

exit
�

−−→stop a; P
a

−−→P

P
�

−−→P′

P/Q
i

−−→Q

P
a

−−→P′

(a 6= �)

P/Q
a

−−→P′/Q

P
a

−−→P′

(a 6= �)

P [¿Q
a

−−→P′ [¿Q

Q [¿P
a

−−→P′

P
a

−−→P′

(a =∈A∪{�})

P |[A]|Q
a

−−→P′ |[A]|Q

P
a

−−→P′

P []Q
a

−−→P′

Q |[A]|P
a

−−→Q |[A]|P′ Q []P
a

−−→P′

P
a

−−→P′; Q
a

−−→Q′

(a∈A∪{�})

P |[A]|Q
a

−−→P′ |[A]|Q′

P
�

−−→P′

P [¿Q
�

−−→P′

Q [¿P
�

−−→P′

P
a

−−→P′

(a =∈A)

hide A in P
a

−−→hide A in P′

P
a

−−→P′

P[f]
f(a)

−−→P′[f]

P
a

−−→P′

(a∈A)

hide A in P
i

−−→hide A in P′

P
a

−−→P′

(x :=P)

x
a

−−→P′

Stated in words, two processes P and Q are strongly bisimilar i� all possible tran-

sitions from P can be simulated (i.e. mimicked) by equally labelled transitions in Q

that result in bisimilar states, and vice versa. Strong bisimulation treats internal actions

(i) in the same way as observable actions. For example, the following two processes

are distinguished by strong bisimulation:

a; i; stop 6∼ a; stop

From an external observer’s point of view, however, these two processes cannot be

distinguished, since the occurrence of i is internal. Weak bisimulation – as the name

suggests a weak version of strong bisimulation – takes this observability perspective

and does not distinguish between the two aforementioned processes. Its de�nition is ob-

tained from the de�nition of ∼ by replacing the transition relation
a

−→ by
a
=⇒. For a an
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external action (i.e. a 6= i),
a
=⇒ denotes an a-transition that is preceded and/or followed

by an arbitrary number (possibly zero) of internal actions, i.e.
a
=⇒=

i∗

−→
a

−→
i∗

−→.

Otherwise, if a is internal (a= i), then
a

−→ abbreviates
i∗

−→ (and not
i+

−→).

De�nition 2 (Weak bisimulation). An equivalence relation S on L is a weak bisim-

ulation i� for any pair (P;Q)∈L×L we have that (P;Q)∈S implies for all actions

a and all equivalence classes C ∈L=S:

w(P; a; C)= w(Q; a; C) with w(R; a; C)=

{

1 if {R′ ∈C |R
a
=⇒R′} 6= ∅;

0 otherwise:

Processes P and Q are weakly bisimilar, denoted P ≈ Q, if (P;Q)∈S with S a weak

bisimulation.

In the presence of composition operators, it is highly desirable that equivalence rela-

tions are substitutive. Intuitively, substitutivity allows to replace components by equiv-

alent ones within a large speci�cation without changing the overall behaviour. Indeed,

strong and weak bisimulation possess this desirable property. (Strictly speaking, ≈ is

not substitutive with respect to the choice operator, but a slight variant of ≈, known as

observation congruence [34], is.) Substitutive equivalences are also called congruences.

Practically important, such equivalences facilitate compositional aggregation, where the

state space of components may be reduced in size, without a�ecting any signi�cant

property of the whole speci�cation. Compositional aggregation has successfully been

applied to a variety of systems, we refer to [8] for an impressive industrial case study

of this technique.

2.4. Algorithmic and tool support

Various algorithms have been developed to compute strong and weak bisimulation

on �nite-state processes. An e�cient way for computing strong bisimulation is based

on the partition re�nement algorithms of [37]. It has a worst-case time complexity that

is logarithmically proportional in the number of states and linearly in the number of

transitions. Weak bisimulation has a time complexity that is cubic in the number of

states, which is due to the most time-consuming step, the computation of the transitive

closure of
i

−→. Various tools for process algebras do exist that support the speci�-

cation and analysis, see the overview in [31]. For our example telephone system we

use the components C�SAR [12] and ALD�EBARAN [6] that are distributed as part of the

CADP tool-box (C�SAR=ALD�EBARAN Development Package). ALD�EBARAN is a veri�cation

tool-set that supports e�cient, compositional equivalence checking of labelled transi-

tion systems, and model checking. C�SAR supports the translation of (full) LOTOS

speci�cations into a transition system format that can be processed by ALD�EBARAN.
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3. Compositional Markov chain speci�cation

In this section we introduce the basic de�nitions and properties of the calculus we

investigate. It includes a distinct type of pre�xing to specify exponentially distributed

delays.

3.1. Syntax

The basic idea of our stochastic process algebra is to extend the syntax of L with

a (Markovian) timed pre�x, denoted by (�); P, where � is a parameter that uniquely

determines an exponential distribution. The process (�); P evolves into P within t time

units with probability 1−e−�t . That is, it behaves like P after a certain delay that is

determined by a (continuous) random variable, X say, such that Prob(X6t) equals

1−e−�t for positive t, and equals zero otherwise. The mean duration prior to P is 1=�,

the expectation of random variable X . The real-valued parameter � is called the rate of

the distribution. The pre�x (�); P can be considered as the probabilised version of the

timed pre�x (t); P that occurs in several timed process algebras, like in TCCS [35].

3.2. Semantics

Due to the explicit separation between the (probabilistic) advance of time and the

occurrence of actions, the semantics of our stochastic extension of Basic LOTOS is

de�ned using two transition relations. The transition relation
a

−→ corresponds to action

occurrences and is de�ned using the inference rules of Table 2. The transition relation
�
7→ represents the passage of time; this relation is the smallest relation de�ned using

the rules of Table 3. 4 The inference rules associate to each expression a transition

system in which we have action- and rate-labelled transitions. This model is adopted

from [22]. It can be considered as an extension of (continuous-time) Markov chains

with the possibility of interaction; accordingly it is referred to as interactive Markov

chains. We remark that using our stochastic process algebra we can describe labelled

transition systems (by omitting the time-pre�x (�); P), as well as pure Markov chains

(by omitting action-pre�x).

Let us consider and justify the semantics of some operators in more detail as their

interpretation has changed with respect to the untimed setting.

Action – pre�x: Observe that an action-pre�x cannot be involved in a timed transi-

tion. This entails that actions happen as soon as they are possible.

Parallel composition – delaying: Parallelly composed processes can delay com-

pletely independently. This is di�erent from a deterministic time setting where such

processes typically are forced to synchronise on the advance of time, see, e.g. [35]. The

4 Since the multiplicity of transitions is important (like in probabilistic process calculi)
�
7→ is a multi-relation.
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Table 3

Timed transitions for our stochastic process algebra

(�) ; P
�
7→ P

P
�
7→ P′

P []Q
�
7→ P′

Q []P
�
7→ P′

P
�
7→ P′

P/Q
�
7→ P′/Q

P
�
7→ P′

P [¿Q
�
7→ P′ [¿Q

Q [¿P
�
7→ P′

P
�
7→ P′

P[f]
�
7→ P′[f]

P
�
7→ P′ (x :=P)

x
�
7→ P′

P
�
7→ P′

P |[A]|Q
�
7→ P′ |[A]|Q

Q |[A]|P
�
7→ Q |[A]|P′

P
�
7→ P′

hide A in P
�
7→ hide A in P′

justi�cation for independent delaying relies on the so-called memory-less property of

exponential distributions. 5

De�nition 3 (Memory-less property). Let X be an exponentially distributed random

variable and t; t′ be positive reals. X possesses the memory-less property i� Prob(X6

t+t′ |X¿t)=Prob(X6t′).

To understand the meaning of this property in our context consider the process

(�); a; stop ||| (�); b; stop

and suppose that the delay of the left process �nishes �rst (with rate �). Due to the

memory-less property, the remaining delay until action b may occur is determined by

an exponential distribution with rate �, exactly the delay prior to the enabling of b

before the delay of the �rst process has been �nished. Stated di�erently, the delay of

the left process does not have any impact on the remaining delay in the other process

– the advance of time governed by memory-less distributions is independent. One of

the consequences of this independent delaying is that an expansion law is obtained

rather straightforwardly. This is neither the case for a deterministic time setting [18]

nor for a stochastic calculus that supports arbitrary distributions [9]. The expansion law

allows the elimination of parallel composition in terms of more elementary operators

(like action-pre�x and choice) and is of central importance for the veri�cation and

correctness-preserving transformation of process algebra speci�cations.

Synchronisation: Interactions can only appear when all participants are ready to

engage in it. For instance, the process

(�); a; stop |[a]| (�); a; stop

5 In fact, the exponential distribution is the only continuous probability distribution function that possesses

this property.
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is able to o�er action a after a delay with rate � and a delay with rate � (due to the

memory-less property these delays can be in arbitrary order). Technically speaking,

action a can be o�ered after the maximum of two exponentially distributed random

variables. Notice that this type of synchronisation naturally follows from our choice to

explicitly separate time- and action-transitions – all delays prior to an interaction must

have elapsed before the interaction can take place. We consider this interpretation as

a natural assumption, like many others do [7, 9, 20, 35].

In stochastic process algebras like TIPP [19], PEPA [28] and EMPA [2] that are also

focussed on exponential distributions, the action-pre�x a; P is replaced by (a; �); P.

The basic di�erence between these algebras is the calculation of the resulting rate in

case of synchronisation:

(a; �); stop |[a]| (a; �); stop=(a; ?); stop

TIPP proposes the product of rates, EMPA forbids this type of synchronisation and

requires one component to determine the rate only while the other components need to

be passive (i.e. willing to accept any rate), and �nally PEPA computes the maximum of

mean delays while incorporating the individual synchronisation capacities of processes.

None of these algebras uses the maximum (as we do), since the class of exponential

distributions is not closed under product. 6 The absence of this closure property does

not pose a problem for our approach since – due to the separation of the time- and

action-transitions – we can model the product of two exponential distributions explicitly

as the corresponding phase-type distribution, see De�nition 7.

Choice: The process P []Q behaves either as P or Q, but not both. At execution the

fastest process, i.e. the process that is enabled �rst, is selected. This is known as the

race condition. If this fastest process is not uniquely determined, a non-deterministic

selection among the fastest processes is made.

Selecting the fastest process among two time-pre�xed processes boils down to con-

sidering the minimum of the exponential distributions involved. The minimum of two

exponential distributions is an exponential distribution with the sum of the individual

rates. Thus, the delay until the resolution of the choice between two time-pre�xed pro-

cesses is exponentially distributed with a rate that equals the sum of the rates of the

time-pre�xes.

In case of a competition between a time-pre�xed and an action-pre�xed process,

the latter process will be selected if the o�ered action is not blocked by the envi-

ronment (e.g. an internal action). This stems from the fact that the probability that an

exponentially distributed duration �nishes instantaneously, is zero. However, to achieve

compositionality, the precedence of timed-pre�xed over (non-blocked) action-pre�xed

processes is not reected in the rules de�ning the transition relations
a

−→ and
�
7→.

Instead, we introduce below a notion of equality, weak Markovian bisimulation, that

(among others) takes care of the interplay of time and action-pre�xes.

6 Recall that the maximum of two statistically independent random variables amounts to the product of

their corresponding distribution functions.
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3.3. Bisimulation and its stochastic interpretation

For similar reasons as for the untimed case (cf. Section 2) we like to identify certain

behaviour expressions with di�erent interactive Markov chains. Therefore, we extend

the notions of strong and weak bisimulation to the stochastic setting. The resulting

equivalence notions are called Markovian bisimulation equivalences. They are de�ned

in the same style as strong and weak bisimulation. Let L′ denote the language de�ned

according to the syntax of Table 1 extended with the pre�x (�); P (and let ’{|’,’|}’

delimit a multiset).

De�nition 4 (Strong Markovian bisimulation). An equivalence relation S on L
′ is

a strong Markovian bisimulation i� for any pair (P;Q)∈L
′ × L

′ we have that

(P;Q)∈S implies for all actions a and all equivalence classes C ∈L
′=S:

(1) s(P; a; C)= s(Q; a; C), and

(2) m(P; C)= m(Q;C) with m(R; C)=
∑

� {| � |R
�
7→ R′; R′ ∈C |}

Processes P and Q are strongly Markovian bisimilar, denoted P ∼m Q, if (P;Q)∈S

with S a strong Markovian bisimulation.

Strong Markovian bisimulation is de�ned in the same style as probabilistic bisimula-

tion [32] and strong equivalence [28]. Intuitively, two processes are strongly Markovian

bisimilar if they are strongly bisimilar, and if the cumulated rates of moving by timed

transition to each equivalence class are equal. ∼m is a congruence with respect to all

language operators. Like for strong bisimulation, ∼m treats internal actions like any

other action. An important result [28] is that for timed transitions, strong Markovian

bisimulation coincides with lumpability, a notion on continuous-time Markov chains

that justi�es the aggregation of Markov chains without a�ecting performance properties.

Due to the fact that ∼m is a congruence, lumping can be performed in a compositional

way, i.e. component-wise. We will use this facility when generating the Markov chain

for our example telephone system.

The notion of weak Markovian bisimulation [23] is obtained in the following way.

For action-transitions we replace → by ⇒ as for the untimed case. The treatment of

timed transitions is a bit more involved. First, remark that the probability distribution of

a sequence of exponential distributions is not exponential (but constitutes a phase-type

distribution). Therefore, it is not possible to de�ne a weak version of the transition

relation 7→. The solution is to demand that timed transitions have to be bisimulated in

the strong sense, while they can be preceded and=or followed by arbitrary sequences of

internal action-transitions. The treatment of sequences of internal actions preceding a

timed transition can follow the usual style (cf. Section 2), but with a slight exception.

(The treatment is similar to that of branching bisimulation [17].) Since the probability

that a continuously distributed duration �nishes immediately (i.e. at time zero) is zero,

whereas the probability for an internal action-transition to take place immediately is

one, there is no need to require equality of cumulated rates for states that have an
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outgoing i-transition. Stochastically speaking, these states have a zero sojourn time

since they are immediately left using an internal move. Let P
i

6−→ be a predicate that

is true if and only if P has no outgoing i-transitions. Then, we de�ne

De�nition 5 (Weak Markovian bisimulation). An equivalence relation S on L
′ is a

weak Markovian bisimulation i� for any pair (P;Q)∈L
′×L

′ we have that (P;Q)∈S

implies for all actions a and all equivalence classes C ∈L
′=S:

(1) w(P; a; C)= w(Q; a; C), and

(2) P
i
=⇒P′

i

6−→ implies that ∃Q′: Q
i
=⇒Q′

i

6−→ and m(P
′; C)= m(Q

′; C)

Processes P and Q are weakly Markovian bisimilar, denoted P ≈m Q, if (P;Q)∈S

with S a weak Markovian bisimulation.

Weak Markovian bisimulation is a congruence with respect to our language operators

(except for the choice operator, for which the usual re�nement applies [34].). It inherits

the correspondence to lumpability from strong Markovian bisimilarity.

3.4. Generation and aggregation of Markov chains using process algebra

Starting from a system speci�cation in our stochastic process algebra we can gen-

erate and aggregate a (homogeneous, continuous-time) Markov chain in the following

way. Assuming that the speci�cation S contains all components that are relevant for

the complete system we abstract from all interactions A, thus yielding hide A in S. The

interactive Markov chain that is obtained from our semantics – that due to the abstrac-

tion only contains timed- and internal action-transitions – is subsequently aggregated

using ≈m. Since ≈m is a congruence we can perform this generation and aggregation

of the interactive Markov chain component-wise. We will see that in our telephone

example this property turns out to be crucial since the entire system is too large to

handle as a whole.

If the resulting transition system is free from non-determinism (like for our ex-

ample telephone system) we have obtained a (lumped) Markov chain that can be

analysed using the traditional techniques to study its transient or steady-state behaviour

[40]. If not, the non-determinism needs to be resolved and the procedure must be

repeated. We like to stress that the presence of non-determinism should not be con-

sidered as an artifact, it reects that the system speci�cation is not detailed enough

(for analysing its performance). Stated otherwise, it indicates that the speci�cation

is too abstract – which for design purposes might be even desired – since it con-

tains some under-speci�cation. Technically speaking, non-determinism can for example

arise from explicit non-deterministic choices (like a; P [] a; Q) or implicit ones (like

(a; P ||| a; Q) |[a]| a; R). There are several techniques to resolve (read: probabilise)

non-determinism, like schedulers, weights and so on, but it is beyond the scope of this

paper to further discuss these approaches.
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3.5. Algorithmic and tool support

The computation of strong and weak Markovian bisimulation can be performed using

adaptations of existing algorithms for computing (ordinary) weak and strong bisim-

ulation without increasing their worst-case time and space complexity [22]. Strong

Markovian bisimulation is computed using a modi�cation of the partition re�nement

algorithm of [37] and has a time complexity of O(m log n), where n denotes the number

of states and m the cardinality of the transition relation. Weak Markovian bisimulation

is determined using an adaptation of the algorithm of [5]. Its time complexity is O(n3).

For the telephone system example we use the implementation of these algorithms in

the TIPPTOOL [25].

4. The plain-old telephone system

In this section we informally describe the functional behaviour of the plain-old

telephone system (POTS) and provide fragments of its formal speci�cation in Basic

LOTOS. Telephone systems have traditionally been a standard speci�cation exercise

in the context of LOTOS, see for instance [11, 10]. It is not the intention of our case

study to develop yet another speci�cation of the POTS. Instead, we start our study

from an existing speci�cation of the POTS that has been developed by Ernberg at the

Swedish Institute of Computer Science, and tailor it to our purposes. This speci�cation

only describes the functional aspects; in the next section we exemplify how timing

constraints are imposed on this speci�cation in a modular way.

4.1. Informal problem description

The POTS is a model of the behaviour of classical telephony systems, often used as

a basis for studying the consequences of the introduction of new telephony services.

It describes the provision of support for physical analogue telephone, fax and modem

devices over a telephone line. The system structure is simple, as depicted in Fig. 1.

Several users are connected to a telephony network and they can phone each other

using the service o�ered by this network.

The controlling unit Provider is responsible for establishing a connection between

the originator and the recipient of a call. It handles various signals, like:

• ringing the bell on the arrival of a call,

• indicating a free line by means of a ‘dial tone’ (dialT) when a (registered) user has

picked up the phone,

• indicating the originator by means of a ‘busy tone’ (busyT) that the recipient’s

phone is currently o� hook,

• indicating the originator by means of a ‘ring tone’ (ringT) that the bell is ringing

at the recipient’s side,
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Fig. 1. A plain-old telephone system.

• indicating the originator by means of an ‘error tone’ (errorT) that it is necessary to

hang up the phone because either an unregistered number has been dialled, or the

connection has been interrupted by the partner.

4.2. Structure of the speci�cation

The structure of a formal speci�cation of the POTS reects the entities shown in

Fig. 1. The users User1; : : : ;Usern act mutually independent from each other, while

interaction between them is coordinated by the Provider. Each Useri has a private

set of communication signals Ai to interact with the provider, such as dialT oni and

dialT o� i to control the status of the dial tone in the user’s phone. Among others, this

set comprises oni and o� i signals for the bell, for dialTone, ringTone, errorTone,

and busyTone. For a �xed number n of subscribers, the POTS is speci�ed by

POTS := (User1 ||| : : : |||Usern) |[A1; : : : ; An]|Provider

4.3. Provider speci�cation

The main complexity of the POTS example lies in its controlling unit Provider. This

component has to keep track of the current status of each of the subscribers, and has to

establish and release connections. To ensure that all these duties are properly managed

is quite challenging. Ernberg has given a speci�cation of Provider consisting of more

than thousand lines of full LOTOS. This speci�cation has been used as a common

example during the Eucalyptus project, a European=Canadian project that focussed on

the elaboration of a toolset for LOTOS. During this project, 17 requirements have

been formulated to be ful�lled by Ernberg’s speci�cation. Garavel and Mounier have

shown that these requirements are indeed satis�ed by the speci�cation, using di�erent

techniques such as equivalence checking and model checking, that are implemented in

the Eucalyptus=CADP toolset [12, 6].

The details of this large speci�cation are beyond the scope of this paper. For the

purpose of compositional Markov chain generation, it is su�cient to know that the

full LOTOS speci�cation has been extensively veri�ed, and that it can be mapped to a
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Basic LOTOS description (where data types are absent) if the number of subscribers

is kept �xed. In the sequel we will consider a system of two subscribers, that are

aiming to phone each other. This restriction is su�cient to illustrate the key ideas of

compositional Markov chain generation.

4.4. User speci�cation

The basic model of user interaction we consider is depicted in Fig. 2 for Useri
(the index i is omitted to enhance readability). The state marked ⊙ denotes the initial

state of the transition system. For convenience, some states are labelled with names

for reference purposes.

We describe some details of the speci�cation here that ease the understanding of the

example. Initially, the user’s phone is on hook. There are three possibilities to proceed

from this initial state User.

• the user may either notice that the bell starts ringing (bell on), or

• may decide to pick up the phone (o�H out) in order to initiate an outgoing call, or

Fig. 2. Speci�cation of the user’s interaction possibilities.
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• may pick up the phone exactly at the time instant at which an incoming call reaches

the phone (o�H in), but just before the bell starts ringing.

This behaviour is formally speci�ed by

User := o�H out;Caller [] bell on;Ringing [] o�H in;Called

Let us �rst discuss what happens if an incoming call arrives. When the bell starts

ringing, the phone enters a state Ringing. Subsequently, the bell turns o� (bell o� )

either after the user picks up the phone (o�H in), or immediately because no reaction

of the user occurs in time.

Ringing := bell o� ;User [] o�H in; bell o� ;Called

In the former case (state Called), the connection to the caller is established (conn)

and the conversation can start, leading to the state Connected .

Called := conn;Connected

Conversation may go on until either the user hangs up (onH) and the connection is

released (disconn), or a disconnection is caused by the opposite side (or by the service

provider). In this case, the user may either notice an error tone (errorT on), or he

may simply hang up (onH).

Connected := onH ;disconn;User []

disconn; (onH ;User [] errorT on;Error)

If initially the user acts as a caller, he picks up the phone (o�H out), reaching a state

Caller. Under the assumption that no error occurs, the dial tone is received (dialT on),

after which the user may decide to hang up (onH) and subsequently return to its initial

state (after dialT o� ). In the successful scenario, the user dials a number j (dial j ),

waits until the dial tone ceases (dialT o� ), and reaches the state Dialled .

Caller := errorT on;Error []

dialT on; (dial j ;dialT o� ;Dialled []

onH ;dialT o� ;User)

If a ring tone now occurs, the state Calling is entered. We refer to Fig. 2 for further

details of any subsequent behaviour.

5. Constraint-oriented timing information

In this section we illustrate how stochastic timing information can be added to the

POTS speci�cation in a modular, constraint-oriented style. To enhance speci�cation

convenience, we introduce an auxiliary operator, the elapse operator, that is used

to impose phase-type distributed time constraints on speci�c occurrences of actions.
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Phase-type distributions can be considered as matrix generalisations of exponential dis-

tributions, they include frequently used distributions such as Erlang, Cox, hyper- and

hypo-exponential distributions. The elapse operator facilitates the description of such

time constraints in a modular way, that is, as separated processes that are composed

in parallel with the untimed speci�cation.

After introducing phase-type distributions (itself requiring some basic material

on continuous-time Markov chains) we provide the syntax and semantics of the

elapse operator and show how we extend the LOTOS speci�cation of the POTS with

phase-type time constraints in a modular way.

5.1. Continuous-time Markov chains

A (discrete space) stochastic process is a collection of random variables {X (t) |

t ∈T} where X (t) assigns probabilities to elements of a discrete set S of states, the

state space. If the set T (usually called the time range) is a continuous domain, the

stochastic process is referred to as continuous-time. A continuous-time Markov chain

is a continuous-time stochastic process that satis�es the Markov property: for each

sequence of time instances tn+1¿tn¿tn−1¿ · · ·¿t0 (of arbitrary length n), we have

Prob{X (tn+1)=Pn+1 |X (tn)=Pn; X (tn−1)=Pn−1; : : : ; X (t0)=P0}

=Prob{X (tn+1)=Pn+1 |X (tn)=Pn}:

Thus, the fact that the chain was in state Pn−1 at time tn−1, in state Pn−2 at time tn−2,

and so on, up to the fact that it was in state P0 at time t0 is completely irrelevant.

The probability distribution on states at time tn, given by X (tn), contains all relevant

history information to determine the distribution on S at time tn+1.

For each state of a continuous-time Markov chain there is some rate � representing

the distribution of the sojourn time for this state, which, in fact, turns out to be an

exponential distribution. Furthermore, a continuous-time Markov chain is completely

characterised by its generator matrix and its initial distribution. The entries of the

generator matrix specify the rates of moving from a certain state in the chain to another

state. The initial distribution speci�es the probability of starting in a certain state. More

precisely,

De�nition 6 (Generator matrix). A square matrix Q is the (in�nitesimal) genera-

tor matrix of a continuous-time Markov chain i�, for all i, Q(i; j)¿0 (j 6= i), and

Q(i; i)= −
∑

j 6=iQ(i; j).

The states of a continuous-time Markov chain can be classi�ed into recurrent, tran-

sient and absorbing states. A state Pi is said to be transient if there is a positive

probability of never returning to that state after leaving it. A recurrent state is revisited

(in a �nite amount of time) with probability 1. An absorbing state is a state without

any outgoing transition, i.e. Q(i; j)= 0, for all j.
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5.2. Phase-type distributions

A phase-type distribution is de�ned by means of a continuous-time Markov chain

with an absorbing state. The time until absorption determines the phase-type

distribution [36].

De�nition 7 (Phase-type distribution). Let

Q=

(

T T 0

0 0

)

be the (in�nitesimal) generator matrix of a continuous-time Markov chain with transient

states {1; : : : ; m} and absorbing state m+1, and initial probability vector (�; �m+1) with

�1 + �m+1=1 such that the row sums of Q equal 0, i.e. T1 + T 0=0. The phase-type

distribution de�ned by this Markov chain is de�ned by 7

F(x)= 1− �eTx1

for x¿0, and F(x)= 0, for x¡0.

T is a square matrix of order m such that T(i; i)¡0 and T(i; j)¿0 (i 6= j). The row

sums of Q equal zero, i.e. T1 + T 0=0. T(i; j) (i 6= j) can be interpreted as the rate

at which the chain changes from transient state i to transient state j. Stated otherwise,

starting from state i it takes an exponentially distributed time with mean 1=T(i; j) to

reach state j. T 0(i) is the rate at which the system can move from transient state i

to the absorbing state, state m+1. −T(i; i) is the total rate of departure from state i.

Notice that for m=1 the above de�nition boils down to an exponential distribution,

highlighting that phase-type distributions can be considered as matrix generalisations

of exponential distributions.

The moments �i of phase-type distribution F(x) are �nite and given by

�i=(−1)
ii!(�T−i1) for i=1; 2; : : :

�1 is the expectation, �2−�
2
1 the variance, and the fraction of the expectation over

the standard deviation (the square root of the variance) is called the coe�cient of

variation, CV.

5.3. Algebraic speci�cation of phase-types

In terms of our language, phase-type distributions can be described by successfully

terminating processes that do not contain any action-pre�x. The occurrence of success-

ful termination action � signals the time instant of �nishing. For example, the process

PH := (�); ((�); exit [] (�); (�); (�); (�); exit)

7 For square matrix T of order m; eTx is de�ned by eTx =
∑

∞

k=0
Tkxk =k!.
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Fig. 3. Transition system of an absorbing Markov chain.

Fig. 4. Probability distribution described by PH (�=10; �=100; �=150; �=2).

describes the absorbing Markov chain of six states that is depicted in Fig. 3. The

distribution of the time until absorption is plotted in Fig. 4, for a speci�c choice of the

parameters �; �; �, and �. In the sequel we will refer to a process that has the potential

of successful termination, and where action-pre�x does not occur, as an absorbing

Markov chain. The possibility of specifying phase-type distributions is of signi�cant

interest, since phase-type distributions can approximate arbitrary distributions arbitrarily

closely [36]. In other words, we can impose an arbitrarily distributed time constraint,

by choosing the appropriate absorbing Markov chain.

5.4. Syntax and informal semantics of elapse

To �x terminology, we will refer to a time constraint as a delay that necessarily has

to elapse between two kinds of interactions, unless some interaction of a third kind

occurs in the meanwhile. In order to facilitate the de�nition of such time constraints

the elapse operator, syntactically denoted by [on s delay d by Q b], is an operator

with four parameters:

• an absorbing Markov chain Q that determines the duration of the time constraint,

• an action s (start) that determines when the delay (governed by Q) starts,

• an action d (delay) that has to be delayed, and

• an action b (break) that may interrupt the delay.
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The intuition behind this operator is that it enriches the chain Q with some synchroni-

sation potential that is used to initialise and reset the time constraint in an appropriate

way. The time constraint is imposed on a process P by means of parallel composition,

such as

P |[s; d; b]| [on s delay d by Q b]

where the action d is delayed by Q inside P.

5.5. Semantics of elapse

The elapse operator is an auxiliary operator. Hence, we can provide a semantics by

means of a translation into the basic operators.

De�nition 8 (Elapse operator). For a given absorbing Markov chain Q [on s delay d

by Q b] is de�ned as the process Q̂, where

Q̂ := (d; exit [] s; (Q/d; exit) [¿b; exit)/Q̂

For the above example, we have depicted in Fig. 5 the interactive Markov chain

that corresponds to [on s delay d by PH b]. For illustration purposes, the transition

system is factorised with respect to weak Markovian bisimulation (≈m). In the initial

state, actions s; d, and b are possible, but only s induces a change of state, starting

the phase-type distributed delay. Once the delay started, action d is no longer possible,

until either the delay has elapsed completely, or an interrupting action b has occured,

resetting the delay.

We use the elapse operator in a constraint-oriented fashion [41], by synchronising it

with the system under investigation. Let us, for example, consider the POTS speci�ca-

tion and assume User1 has successfully dialled a number (i.e. consider state Dialled).

Suppose we want to constrain the time until an impatient caller may put down the

phone in case the called party is not answering the call. If we assume this phase-type

Fig. 5. E�ect of the elapse operator on PH (modulo weak Markovian bisimulation).
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Fig. 6. A time constraint for User1, governed by PH (modulo weak Markovian bisimulation).

distribution to be governed by PH , we can specify this time constraint by

User1 |[A]| [on ringT on1 delay onH1 by PH ringT o�1]

where A= {ringT on1; ringT o�1; onH1}. Starting from ringT on1, the action onH1 is

prohibited for a time governed by PH , with the exception that the delay is interrupted

if the ring tone ceases (ringT o�1), indicating a timely reaction of the called party.

The corresponding interactive Markov chain for the user is depicted in Fig. 6.

The elapse operator can be easily adapted to situations where the starting, delayed

and interrupting actions are sets rather than singletons, basically by replacing the action-

pre�xes in the de�ning equation of Q̂ by sums of pre�xes [22].

5.6. Time constraints for the POTS

In order to incorporate stochastic time into the POTS model, we incorporate several

delays that have to elapse between certain interactions. There is, of course, a variety

of di�erent choices where to introduce time constraints. We add the following 14 time

constraints to the speci�cation.
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• Whenever an existing connection is released, the error tone is raised after a while,

except if the respective user hangs up the phone in the meanwhile. The delay is

governed by ErrorDelay, and is imposed for User1, as well as User2.

• After a user has picked up the phone in order to make a call, it requires some time

(to check whether the user is registered, for instance) before some tone is raised.

The corresponding time constraint is governed by InitDelay, for both User1 and

User2.

• Establishing a connection (or detecting that no connection can be established) re-

quires some time. Thus we impose a delay DialDelay between dialling a number

and getting a reaction from the provider’s side, symmetrically for both users.

• When noticing a ring tone, User1 waits for a connection. He may hang up the

phone after a while, except if a connection has been established in the meanwhile.

The time until hanging up the phone is determined by WaitDelay1. For User2, a

time constraint governed by WaitDelay2 is imposed in the same manner.

• Between two phone-calls User1 takes a rest, but if the phone rings, he decides to

go and pick up the phone. We let IdleDelay1 govern the time that elapses between

two phone-calls originated by User1. For User2, the situation is symmetric, but the

delay is given by IdleDelay2. Since both phones are initially on hook, we initialise

the corresponding time constraint such that both users have to wait before they may

pick up the phone.

• If the phone bell starts ringing, User1 needs a certain time to reach the phone,

given by PickupDelay1. For User2, the corresponding constraint is governed by

PickupDelay2.

• Once a connection is established, User1 contributes to the conversation a certain

amount of time, but a disconnection may occur anyway in the meanwhile. The

corresponding delay is imposed by a time constraint governed by SpeakDelay1 for

User1, and similar for User2.

This summarises the major time constraints we assume to exist. Note that the time

constraints that are due to the provider (InitDelay;DialDelay, and ErrorDelay) are

identical to both users. So, the provider is assumed to be fair and not to prefer ei-

ther of the users. On the other hand, the time constraints that are caused by the users

(SpeakDelayi ; IdleDelayi, PickupDelayi, and WaitDelayi) are parametric in the iden-

tity of the user. This makes it possible to incorporate di�erent user pro�les.

The complete speci�cation of the time-constrained POTS is given in the appendix.

For our purpose, it is su�cient to sketch the structure of the speci�cation, where TC

summarises the constraints: 8

TimedPOTS := ((User1 |||User2) |[A1; A2]|Provider) |[: : :]|TC

8 Owing to some speci�c associativity laws enjoyed by parallel composition [3], the time constraints can

appear at the outermost level. Note, however, that parallel composition, in general, is not associative.
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Table 4

Stochastic time delays imposed on the POTS

User1 User2 CV Type of distribution

ErrorDelay 15 s 15 s 1 Exponential

InitDelay 2 s 2 s 1 Exponential

DialDelay 6 s 6 s 0.408 Erlang6
WaitDelay 60 s 30 s 1 Exponential

SpeakDelay 15 min 5 min 1.5 Phase-type

IdleDelay 60 min 75 min 0.316 Erlang10
PickupDelay 40 s 10 s 1 Exponential

5.7. Time values

Table 4 shows the time values we have used for the numerical analysis of the tele-

phony system speci�cation. The table lists the mean durations (�rst two columns), the

coe�cient of variation of the distribution (third column) and the distribution function

(last column).

The pro�les of User1 and User2 di�er with respect to their time values in a particular

manner. We assume that User2 is generally reacting quicker than User1, while User1
likes to phone more often and longer than User2. The majority of delays simply consist

of a single exponential phase. DialDelay describes an Erlang distribution (a sequence

of equally rated exponential phases), because we assume that the time required to

establish a connection should not exhibit too much variance. On the other hand, the

time of conversation may vary a lot, and the variance of the respective distribution,

given by SpeakDelayi, should therefore be rather high. We use a phase-type distribution

similar to PH for this purpose. The delays that are imposed between two successive

phone-calls, IdleDelayi, are assumed to be governed by an Erlang distribution with

fairly low variances, consisting of ten exponential phases each.

6. Analysing the POTS

In this section we describe how we manage to analyse the POTS by means of

compositional generation of the Markov chain and present the numerical results from

the transient analysis of the behaviour.

6.1. State space of the system

The speci�cation we want to analyse is quite complex. Therefore, the state space,

obtained by means of the operational semantics, is rather large. It consists of more than

10 million states. Indeed we are not even able to generate the complete state space of

the speci�cation at all. The tools we are employing, TIPPTOOL and C�SAR ran out of
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memory after generating 0.3, respectively 10.2 million states (on a SUN Ultra-1 with

512 MB main memory).

6.2. Compositional generation

In order to circumvent the state space explosion problem, we generate the state space

in a compositional way. We produce the state space component-wise, and perform an

aggregation on components. The aggregation is based on building the quotient (i.e. the

equivalence classes) with respect to a bisimulation. The congruence property of (strong

and weak) Markovian bisimulation justi�es to use aggregated components instead of

the original ones in the context of further composition.

In order to perform this aggregation e�ciently, we apply the operational semantics

rules to the non-constrained speci�cation, POTS. Since this speci�cation is a Basic

LOTOS expression, strong and weak Markovian bisimulation (∼m respectively ≈m)

boil down to ordinary strong and weak bisimulation (∼ respectively ≈). We therefore

rely on the e�cient algorithms provided by the CADP tool-set to generate and aggregate

the transition system. The transition system generated from this speci�cation turns out

to be smaller by one order of magnitude, compared to the time-constrained speci�cation.

It consists of 1 040 529 states and 2 527 346 transitions. Using ALD�EBARAN we compute

the quotient of this transition system with respect to ∼ (in about four minutes), resulting

in 327 states only. Note that we can rely on the algorithms for ordinary bisimulation,

since neither Useri nor Provider gives rise to any timed transitions. This is due to the

use of a constraint-oriented style, where time delays are speci�ed as separate processes.

The reason for the enormous reduction of state space essentially originates from the

fact that Ernberg’s LOTOS speci�cation of Provider uses a variety of data variables to

keep track of the current status of each individual subscriber. The LOTOS semantics

produces di�erent states for every (reachable) combination of actual variable assign-

ments, as it is the case in a real implementation. However, from a behavioural point of

view, many states are equivalent, since they exhibit the same behaviour. These states

are therefore equated by ∼.

Let POTSmin denote (an expression corresponding to) the quotient transition system

that we obtained with ALD�EBARAN:

POTS ∼ POTSmin

Due to the congruence property (and the fact that ∼ ⊆ ∼m), our time-constrained

speci�cation TimedPOTS is bisimilar to the speci�cation obtained by imposing the

same time constraints on POTSmin, i.e.

TimedPOTS ∼m POTSmin |[: : :]|TC

We continue with investigating the latter speci�cation. Since TC consists of vari-

ous parallel components, we may compositionally construct some TCmin in a similar

modular way (using ∼m). We do not work out the details. The interactive Markov
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chain of

POTSmin |[: : :]|TCmin

has 3215 states and 10 421 transitions, instead of more than 107 states, as for the origi-

nal, yet bisimilar, speci�cation TimedPOTS. We base the analysis of the speci�cation

on this interactive Markov chain. In order to analyse the timing dependent behaviour,

we aim to transform the system into a Markov chain. As outlined in Section 3, this

requires abstraction from all interactions, yielding

hide A1; A2 in POTSmin |[: : :]|TCmin

which is essentially the above interactive Markov chain, with all action labels renamed

into i. Its state space, in turn, can be aggregated once again using ≈m to a minimal

representation consisting of 720 states, say TimedPOTSmin. This computation using

TIPPTOOL lasts about 30 min.

So, in order to analyse the behaviour of the time-constrained POTS speci�cation,

we have to analyse an interactive Markov chain with 720 states. This chain does not

contain any non-determinism. As a consequence, we have obtained a (lumped) Markov

chain. It is worth to remark that this Markov chain has a highly irregular shape.

6.3. Transient analysis of the POTS

Analysis of the lumped Markov chain relies on the computation of state probabilities

of each of the 720 states. We can compute transient state probabilities, in order to

obtain the time-dependent probabilities �P(t) for each of the states P of the Markov

chain at a given time instant t. This analysis requires the solution of an ordinary

di�erential equation system. Alternatively, we can compute the steady state probability

distribution, since the lumped Markov chain is ergodic [40]. As a result, we obtain the

probabilities �P that the system is in a certain state P, assuming that an equilibrium has

been reached. Steady state analysis requires the solution of a linear equation system.

E�cient algorithms are known for steady state as well as transient analysis [39].

State probabilities are the starting point to obtain more general insight into the

behaviour of a system. They form the basis of a wide class of performance measures

that appear (in the simplest cases) as weighted sums of such probabilities. To obtain

a particular measure each state P is equipped with a reward ℜ(P) provided by a

real-valued reward function ℜ.

For instance, we can isolate the states where User1 is actually using his phone by

assigning a reward ℜ(P)= 1 to those states P where User1 is able to put down the

phone (action onH1) while all other states obtain reward 0. A measure of interest, the

probability (at a certain time instant t) that User1 has actually picked up the phone,

then arises as the weighted sum over all states P.

∑

�P(t)ℜ(P):
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Fig. 7. Transient behaviour of the POTS. Left: Probability of being o� hook and of being connected for

User1. Right: Probability of ringing bell and ring tone at User1:

In the context of this case study we have computed measures of interest using similar

reward functions. More complicated reward functions are known, that are applicable to

describe advanced performance, performability and dependability aspects [21].

In Fig. 7 we have depicted some results obtained by means of transient analysis. The

�gure shows how the system behaviour converges to an equilibrium as time progresses.

To achieve these plots we have iteratively calculated the state probabilities every 2 min

of system life time, using the TIPPTOOL. The state probabilities are cumulated by means

of appropriate reward functions.

The plot on the left indeed has been achieved using the reward function described

above. It shows the probability that User1 has currently picked up the phone, together

with the probability that a speech connection is actually established, which is slightly

less probable. The shape of these plots is mostly governed by our choice of IdleDelays.

The time constraints controlled by these delays initially prohibits that either of the users

may pick up the phone, until some IdleDelay has elapsed. If this has occurred (given

by a superposition of two Erlang10 distributions) the probabilities depicted in Fig. 7

raise. A �rst peak is reached after approximately 77 min. The probabilities oscillate

for a while, because idle phases and connection phases alternate. An equilibrium is

reached, due to the stochastic perturbation caused by the distributions, especially the

phase-type distributed SpeakDelays.

The right plot in Fig. 7 shows the probability that User1 is noticing a ring tone,

respectively a ringing bell. The probabilities are fairly small compared to the ones in

Fig. 7. The probability of a ringing bell increases later than that of a ring tone. This

is a consequence of the fact that User1 (in the mean) is calling User2 earlier than the

other way around. The �rst attempt to call User2 occurs after roughly 60 min. The

opposite direction is delayed for about 75 min.
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In summary, the inuence of the time that elapses between two phone calls is deci-

sive for the transient behaviour of the system. If we change the distribution of IdleDelay

such that the variance is increased, the oscillation is attened. On the other hand, equi-

librium probabilities are not a�ected signi�cantly. To study the e�ect of di�erent dis-

tributions is quite easy, due to the constraint-oriented speci�cation style used for time

constraints. Of course, employing di�erent distributions for a time constraint requires

that the state spaces have to be generated again (except from POTSmin), since di�erent

distributions lead to di�erent state spaces. For instance, changing both IdleDelays to

single exponential phases leads to a lumped Markov chain of 351 states.

7. Concluding remarks

In this paper we presented a case study in which we analysed the performance of

a plain-old telephone system (POTS) using a non-traditional performance technique.

Starting from a process algebra description of the POTS in LOTOS which we extended

with time constraints, a continuous-time Markov chain is generated and minimised using

the formal apparatus – in particular, semantics and equivalence checking – of process

algebra.

To specify the stochastic time constraints we introduced an extension of Basic LO-

TOS with the time-pre�x (�);P. The semantics of the resulting stochastic process

algebra is an orthogonal extension of the standard LOTOS semantics, and of (ho-

mogeneous) continuous-time Markov chains. The explicit separation between phases in

which actions and their state transitions occur, but no time passes, and phases in which

time advances, but no actions appear, naturally supports an intuitively clear semantics

for synchronisation (of rates). The auxiliary elapse operator eases the speci�cation of

phase-type durations in a modular way.

It has not been our intention to carry out an extensive performance analysis of the

POTS. Although the generated Markov chain allows several (traditional) kinds of anal-

yses, we just presented some transient analysis. Instead, we focussed on the use of a

stochastic process algebra for the generation and minimisation of a Markov chain. We

like to make the following remarks concerning our experience with respect to this issue.

First, the resulting aggregated Markov chain (of 720 states) is highly irregular, whereas

the formal speci�cation of the timed POTS is rather well-structured – its compositional

structure reects the system structure and time constraints are added in a constraint-

oriented way. We do believe that such irregular minimised Markov chains can hardly

be obtained by applying any of the standard techniques for obtaining such models.

Secondly, our case study has shown that an aggregated Markov chain can be obtained

in an almost fully automated way, starting from an existing LOTOS speci�cation. The

only step in which we used ‘intelligence’ has been the decision on how to decom-

pose the timed POTS speci�cation. Due to its large size (more than 107 states) we

were not able to apply the bisimulation algorithms on the speci�cation as a whole. In-

stead, we exploited compositionality and applied these algorithms component-wise. This
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required to break down the speci�cation into pieces of moderate size. The constraint-

oriented character of the elapse operator has been of crucial importance here. For

aggregation purposes we applied ordinary strong and weak bisimulation (using C�SAR=

ALD�EBARAN [12, 6]) and stochastic variants thereof (using TIPPTOOL [25]). Although the-

oretically the worst-case time and space complexity of these algorithms is the same [22],

we experienced that the implementation of ALD�EBARAN outperforms that of TIPPTOOL

to a signi�cant extent. With respect to the state space generation, the same is true for

C�SAR compared to TIPPTOOL.

A challenging issue for the future research is to investigate the practical applicability

of techniques that support general distributions symbolically, that is, not as encodings

of phase-types. Interesting approaches in this direction are the generation of generalised

semi-Markov processes [9] and the mapping onto stochastic task graphs [27] which can

be formalised using the true concurrency semantics of [7].

Appendix A. Time-constrained POTS

In this appendix we list the detailed time constraints imposed on the POTS speci-

�cation by means of our elapse operator. The time constraints labelled (†) require a

straightforward extension of this operator to sets of actions to be delayed. The last two

constraints, labelled (‡) require a similar extension of a variant of the elapse operator,

[on’ s delay d by Q b], de�ned by

((Q/d; exit) [¿b; exit)/[on s delay d by Q b]

the di�erence being that the time constraint is initially running.

TimedPOTS :=

(: : : (

POTS

|[disconn1; errorT on1; onH1]|

[on disconn1 delay errorT on1 by ErrorDelay onH1])

|[disconn2; errorT on2; onH2]|

[on disconn2 delay errorT on2 by ErrorDelay onH2])

|[conn1; onH1; disconn1]|

[on conn1 delay onH1 by SpeakDelay disconn1])

|[conn2; onH2; disconn2]|

[on conn2 delay onH2 by SpeakDelay disconn2])

|[bell on1; o�H in1; bell o�1]|

[on bell on1 delay o�H in1 by PickupDelay1 bell o�1])

|[bell on2; o�H in2; bell o�2]|

[on bell on2 delay o�H in2 by PickupDelay2 bell o�2])

|[ringT on1; onH1; conn1]|

[on ringT on1 delay onH1 by WaitDelay1 conn1])
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|[ringT on2; onH2; conn2]|

[on ringT on2 delay onH2 by WaitDelay2 conn2])

|[dial 2 1;A1; onH1]|

[on dial 2 1 delay A1 by DialDelay onH1]) (†)

|[dial 1 2;A2; onH2]|

[on dial 1 2 delay A2 by DialDelay onH2]) (†)

|[o�H out1;B1; onH1]|

[on o�H out1 delay B1 by InitDelay onH1]) (†)

|[o�H out2;B2; onH2]|

[on o�H out2 delay B2 by InitDelay onH2]) (†)

|[onH1;C1; bell on1]|

[on’ onH1 delay C1 by IdleDelay1 bell on1]) (‡)

|[onH2;C2; bell on2]|

[on’ onH2 delay C2 by IdleDelay2 bell on2]) (‡)

where

Ai = {ringT oni ; busyT oni ; errorT oni ; conni}

Bi = {dialT oni ; busyT oni ; errorT oni}

Ci = {o�H outi ; o�H ini}
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