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Achieving Nonvanishing Stability Regions with
High-Gain Cheap Control Using H* Techniques:
The Second Order Case*

Gregory J. Toussaint Tamer Bagar

Coordinated Science Laboratory and
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, IL 61801

December 10, 1999

Abstract

We demonstrate how to use an asymptotically optimal H*-optimal disturbance attenuation controller
to stabilize a second-order system subject to unknown disturbances such that the stability region does
not vanish as the feedback gains increase. The high-gain feedback arises when we try to approach the
disturbance attenuation lower limit of the H™ design. This type of gain increase can cause the stability
region to vanish if the disturbance contains nonlinear terms. Our analysis using Lyapunov techniques
derives a sufficient condition on the design parameters to prevent the stability region from vanishing.
The high-gain techniques create a two time-scale behavior in the system response which is similar to
the response from a singularly perturbed system. In addition to finding exact solutions for six different
cases, we provide simulations to illustrate the results for a second-order system.

1 Introduction

In simple terms, the stability region of a system is the set of initial conditions that lead to a stable response
for the system. The problem of describing the stability region for a dynamical system has been studied
at length for a variety of applications including electrical power systems, economics, chemical reactions and
ecology [1]. The importance of this problem has led to numerous techniques for estimating the stability region,
(which is also known as the region of attraction). Genesio, Tartaglia and Vicino [2] provide a comprehensive
summary of the basic approaches for determining the stability region and offer their own numerical approach.
Their technique is based on reversing the system trajectories and is also described by Genesio and Vicino
in [3]. Chiang and Thorp detail an iterative method using Lyapunov functions to monotonically improve
the stability region estimate [1]. Chiang and Fekih extend this method and specialize it to interconnected
nonlinear systems in [4]. Another algorithm by Chiang, Hirsch and Wu [5] determines the exact stability
region under certain conditions by finding the union of the stable manifolds of the equilibrium points. More
recently, Chiang and Fekih [6] have considered quasi-stability regions as a close approximation to the original
goal. All of this literature is a fraction of that available on the subject, which confirms that stability region
estimation is a fundamental problem in system analysis.

Having solved the problem of finding the stability region for several cases using an assortment of tech-
niques, one logical extension is to examine the behavior of the region under different conditions. Here we
focus on one condition that causes the stability region to vanish and how to compensate for it. The condition
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of interest is high-gain linear feedback arising from an optimal H* design, when also the cost on control
vanishes.

The H® design approach allows us to ensure that a given level of disturbance attenuation is achieved.
Using standard results on H*°-optimal control [7], if we choose to push the design toward the lower bound on
the attenuation level, then this will dictate an increase in the feedback gains. This high-gain linear feedback
offers a variety of advantages when controlling linear systems with unknown disturbances. As described in [8],
such designs feature a fast response, good disturbance rejection and insensitivity to parameter variations.
These benefits may come with a price: if we neglect the possibly nonlinear disturbances, then we may create
a vanishing stability region as the feedback gains increase. With a small stability region, the system to be
controlled would require only a minor perturbation to generate an unbounded response. Even if we design
an optimal controller in the H* sense, the resulting system would be unacceptable, if the stability region is
vanishingly small.

Kokotovi¢ and Marino [8] document the effects on the stability region of increasing feedback gains for
three second-order systems with nonlinear disturbances. In each case, using the linear feedback control law

U = —klml —-k2.’L‘2, kl = kg, (1)

caused the system’s stability region to vanish as the gain increased. Kokotovié and Marino describe how
to use feedback linearization to resolve this problem when the system satisfies certain conditions. Although
feedback linearization successfully addresses the problem, it may eliminate a potentially beneficial nonlinear
term in the system which improves the overall stability properties. See dAndrea and Levine [9] for a related
discussion of exact linearization and high-gain feedback with applications to robotics.

In the semi-global stabilization methods of [10], Teel and Praly develop high-gain controllers that lead
to nonvanishing stability regions for unknown but bounded disturbances. In the second-order case, they
produce linear feedback controllers with the property that

ky = K, n < 2 )

Their solution offers one approach for stabilizing the system and maintaining the stability region, but they
do not use the H* framework in their analysis. Krsti¢, Sun and Kokotovié¢ [11] consider and solve a
similar problem with input unmodeled dynamics. Their approach to achieve global asymptotic stability uses
a dynamic nonlinear damping design. They extend the results to higher-order systems using a recursive
integrator backstepping technique.

Our approach to designing a stabilizing controller contributes to the existing research by looking at the
problem from an H™ perspective. We want to use the power of H*?-optimal design methods to develop linear
feedback control laws to stabilize systems with bourided disturbances. Simultaneously, we want to ensure the
stability region for the feedback system does not vanish as the gain is increased and the optimal attenuation
level is approached. We will formally state this problem and provide a solution, including simulations, for a
second-order system.

Although not the primary intent of this paper, our solution to the problem reveals a two time-scale
behavior in the resulting system dynamics. The behavior arises because the feedback gains approach infinity
at different rates. Past research has discussed a wide range of techniques for controlling such systems. Chow
and Kokotovi¢ [12] outline a procedure to analyze a system with slow and fast modes and design a composite
regulator that approximates the optimal performance. Saberi and Khalil [13] extend the above technique
to nonlinear systems and Khalil [14] addresses a similar problem for nonlinear, multiparameter singularly
perturbed systems. Cheung and Chow [15] use the slow and fast manifold of a singularly perturbed system to
estimate the stability region of the system. Recently, and germane to our discussion, Pan and Basar [16, 17]
have combined the techniques from [12] with H° design using a differential game theoretical approach.
These approaches to studying the stability region and controlling systems with two time-scale behavior offer
reasonable alternatives for the basic approach we employ.

We will proceed as follows. In Section 2, we define a second-order version of the problem and use the
H*-optimal disturbance attenuation approach (from [7]) with cheap control to produce high-gain controllers.
‘We will describe parameter choices for our design that let the system approach the optimal attenuation level
and drive the gains to infinity. The method will allow for some selection of the rates and relative rate at
which the closed-loop eigenvalues increase and also allows for selection of the parameter n in (2).



After we show how to construct a high-gain linear feedback controller using an H* approach, in Section 3
we will build on these results by applying Lyapunov techniques to the second-order high-gain case [18]. We
will develop a sufficient condition for the parameter n to ensure a nonvanishing stability region as the gains
increase. Our analysis depends on the disturbance having a restricted form and on knowing a bound on the
nonlinear disturbance.

In Section 4, we present an example and simulate a second-order system for three different values of n to
show how the method can lead to nonvanishing stability regions. The simulation highlights the fact that our
conditions on n are only sufficient, since violating the conditions does not always lead to vanishing stability
regions. These results make sense given the Lyapunov-based design we used to describe the stability region.

Finally, Section 5 provides a summary, concluding comments and possible extensions to the current effort.
The three appendices provide the derivations and numerical details for some of the main results.

2 Problem Formulation and Solutions

We begin by describing the system we will focus on and by solving the H> problem associated with it.
We will also explore the conditions that must be satisfied to find a valid solution and the behavior of the
closed-loop system as the feedback gains increase. There are six variations of the original set of parameters,
so we will examine one in detail and just state the results for the others. The appendices provide the details
omitted here.

For the basic system we consider a double integrator with disturbances, described by

& = Az + Bu+ Dw, (3)

01 0 10
a=(00) 2=(1) »-(a %)
The state vector is z € IR?, the state feedback control input is v € IR and the disturbance is w € IR?.
Certain nonlinear systems can be transformed into a chain of integrators, similar to this system, by feedback
linearization (as in [19, 18}). If the costs used to evaluate the system are in a quadratic form or if we
can transform them into a quadratic form, then H* techniques and the following results may be useful in

controlling such systems.
Using standard notation, we can describe disturbance attenuation with the functional J, defined as

[l + Tl
J = 1/——W, @

lelfy = [ ” 2T (9)Qat) dt,

where,

where

and

Q=<q80)5 ¢11>07 42?_0, R=62>0'
gz

The parameter R determines the cost on the control input u. Since we will allow € to approach zero, R
will tend to be small and the control cost will be cheap. This cheap control is one way of guaranteeing
achievement of the high-gain feedback we want to examine.

With u taken as a state feedback controller, we define v* as

~* = min max J, (5)



which is the minimax (optimal) attenuation level the system can achieve. Since (4, B) is controllable and
(4, Q) is observable, v* < co, and for all ¥ > ~v* the generalized algebraic Riccati equation (GARE)

ATZ+ZA- Z(BRBT - =DDT)Z+Q = 0, (6)
aé

has a minimal positive definite solution for the matrix Z [7], and for the two dimensional system above,
since A has no stable eigenvalues, (6) has exactly one positive definite and one negative definite solution.
Thus, for every v > v* we can achieve a disturbance attenuation level at least as good as v by solving for
the unique positive definite solution Z in (6) and using the linear state feedback

1
u = —RIBTZz(t) = ——8—2(212 Ty + 202 X3), (7)

where z;; stands for the ij-th entry of the matrix Z. As an additional result, the closed-loop system matrix,
A - BR™'BTZ, will be Hurwitz. On the other hand, if 7 < 4* in (6), then there is no real solution for Z
that leads to a stable closed-loop system.

One of the key steps in our solution to this control problem will be to determine the value of 4* for the
system. The parameter v* corresponds to the smallest® value of v that makes Z the unique positive definite
solution of (6). Once we know ~*, we can use a v that is greater than 4* and have a stable closed-loop
system. Since we are examining a second-order system, we can find an exact solution for v* from (6). For a
complete discussion of the theory associated with this analysis, see [7].

To proceed with the solution to our problem, we let

1 ,.),2 _ 82
B = 2 Bz = e
to simplify the following expressions from solving (6) for the entries of Z = ( Z; 22 ):
1 1
B2y — a1\ ? @2 + 2212 + P1 22,
211 = | — ) s 22 = (8)
b1 B2

with

7e [ae+ (@l - alh? - )

P ) Py e P ®)

212 =

For a valid solution we must have a real, positive definite Z matrix, which is equivalent to the following
conditions being satisfied:

B2 2%2 -qg > 0 (10)
28225 + (Boge — Pra1) 255 — 21212~ 1 gz > O. (11)

Condition (10) comes from making z;; real (and positive) and condition (11) comes from ensuring z;; 292 —
2%, > 0. In addition to satisfying these two conditions, we must ensure that 215 and 2o are real. To address
all of these requirements, we will first solve for the largest value of -y that makes the denominator of 215 zera.
Call this value 7. Next, we will show how ¥ satisfies all of the conditions and will explain why 7 actually
equals v*.

Consider the denominator of 215 in (9) as a quadratic in terms of 42 (ie., ay* + b~y + ¢ = 0), solve for
the larger root and then take the positive square root of the result to get

R

1 :
7 [‘12 +e2+ (g - 2% +et +4q 52)5] . (12)

v = \/5

! Technically, v* is the infimum of the set of values of v such that the GARE (6) has a positive definite solution.




Suppose we always choose v > 7. Then the denominator of z;o will always be positive. This choice will
make the argument of the square root in 212 positive since

(P -e)P-) =V —(+ed) P+ (13)

In (13), the left hand side is a portion of the argument of the square root in 212 and the right hand side is
always greater than the denominator of z;5. Since we selected <y to make the right hand side positive and
we must choose ¢; > 0, the argument of the square root in (9) is also positive. We can then conclude that
z12 will always be positive and real.

As 7y decreases to 7, the denominator of 21, approaches zero, the numerator remains positive and the
value of 215 approaches infinity. We now choose ¢ small enough to make B2 positive (which is always possible)
and we note that f3; is positive. For this fixed value of ¢, as 212 approaches infinity, conditions (10) and (11)
are satisfied, because 212 is the dominate factor in both expressions. Also with this value for ¢, from (8) we
see that z99 will be real for large values of z;2. We have thus successfully demonstrated that for any v > ¥
we satisfy conditions (10) and (11) and we also have real solutions for 215 and z22. Now we must explain
how ¥ is also the optimal disturbance attenuation level.

We have already noted that as v approaches 4 from above, the value of 212 approaches infinity. From (8)
we see that both z(; and 255 grow at rates proportional to z12, so they will also approach infinity as vy
decreases to 4. Our analysis above shows the matrix Z remains positive definite as 219 increases, but if we
allow 7 = ¥, then the entries of Z are not defined and we no longer have a solution to (6). Therefore, 7 is
the infimurm of values for v that allow a well-defined, positive definite solution for Z. Since the value of v*
is unique for this system, we can now conclude that, by definition, 7 = v*.

To quantify our analysis as we allow « to approach v*, we introduce a function p(e) = ¢, for ¢ > 0,
which represents the difference between ¥? and v**:

v = 7 +ple), (14)
and let & approach zero. Since v*? is dependent on €, we must make sure that

pe) _ g
e—0 y*

for 72 to approach v*2. Appendix A shows how this condition is satisfied for all of the parameter variations
we encounter. In addition, our simulations will verify this result. Using (14) to substitute for 72, we can
write the denominator of 215 as

V2 + 2 - la2 + €Iy +p(e)] + 2 — ] ® =

74+ 2% pe) + p2(e) — [a2 + 2] [v*2 + p(e)] + (g2 — @a] €%,

which becomes

2v*% p(e) + p* () — [gz + %] p(e),

after cancelling the terms that add to zero from the definition of ¥ = v*.

In our analyses, we restrict g; to be a positive constant, but we will study several different options for
the parameter go. Specifically, we will examine g, when it is a positive constant, zero or a positive function
dependent on . Consider the case where g is a positive constant and p(e) = &° < €? as € approaches
zero (that is, ¢ > 2). We will refer to this set of parameter choices as Case 1. Appendix B.1 provides the
derivation to show

z 201 € /G2 , 2¢, €2 , 2g; €3
~ T ~— 22 N S,
= p(e) 27 ple) IOND
as £ approaches zero. Using (7) we can calculate the feedback gains as
1 2q1
= = ~ 22 15
ks pot )’ (15)
1 2q; €
By = — ~ 16
* T e T ove 1o



The closed-loop system matrix becomes

0 1
Acl - ( "‘kl —k2 ): (17)

which gives a characteristic equation of
XNk d+k = 0.
If we denote the eigenvalues by A; and Az, and write
A=) (A=X) = X =D+ X) A+ X
as the characteristic equation, then we can solve for k; and ks as
ki = MAg,
ke = —=(A1+ ).

Without loss of generality, assume |A;| > |A2|- As € approaches zero, —ka follows the behavior of Ay, and
the ratio —% follows the behavior of Az. Then with the current parameter choices and the expressions (15)
and (16) we can see

qu &
A —m, (18)
Xy~ —@ ) (19)

‘We can also calculate the behavior of the parameter n from (2} and by taking the logarithm of (15) and (186)

. log. kK . log, 2g1 — ¢ c
~ 1 o - = < ol .
n e log, ko P log.2q; +1—1log, /g2 — ¢ c—1 (20)

Note that in Case 1, both feedback gains approach infinity as £ approaches zero (v approaches v*), since
p(e) € 2. Consequently, both eigenvalues approach negative infinity. Also note that for constant e, we
can let «y approach v* from above by increasing ¢. With this approach, the feedback gains and eigenvalues
again approach positive and negative infinity, respectively, since p(e) is in the denominator of the gains and
p(e) = &° goes to zero as ¢ approaches infinity for small values of &.

For each variation of the g» parameter presented below, the resulting controller gains approach infinity as
~ approaches v*. The gains become large because the denominator of 212 goes to zero, as described above,
or because the cost on the control, R = €%, becomes small and allows large control signals. We have tailored
the H* problem in this way to ensure we achieve the high-gain control that could cause the stability region
to vanish. Section 3 will derive the conditions that prevent the stability region from vanishing, even with
high-gain control.

We performed analyses similar to the one above for five other cases of different parameter classes as
outlined in Appendix B. The different cases and the results of the analyses are summarized in Table 1.
Since we are examining the rates at which the values change, the results in Table 1 contain only the relevant
parameters and we have dropped any constant multipliers from the eigenvalue expressions for simplicity. In
addition, we have written p(¢) where appropriate, so that v approaches v* as € approaches zero if ¢ > 0.
In each case we can verify that the Z matrix is positive definite using conditions (15) and (16), and that
="

The results in Table 1 indicate that each case allows some freedom in the selection of the parameter
n. Cases 4 and 5 allow for the most complete selection of eigenvalue behavior because we can access both
eigenvalues through the choices of I and ¢. All of the six cases allow for total freedom in the choice of
the relative eigenvalue behavior, which can be defined as the parameter m in the equation A\; = AF. By
adjusting the parameters g» and p(e) we have succeeded in using the H* approach to adjust the behavior
of the linear feedback gains and the closed-loop eigenvalues to suit our performance requirements.



Table 1: Behavior of n, A; and As for the six parameter cases analyzed.

Case g2 (e) c n -1 -2
1 g >0 ple) =& | e>2 &1 | ot £
2 g2 >0 ple) = €° c< 2 1+ % 1 ;(E)
3 g2 =0 ple) = elte c>0 oy ;‘(% \/LE
4 @ =&,0<l<l|pe) =¢ere|e>2-2 ;ﬁ;;c_)z E(;zj; o Fu—lé 5
5 @ =¢&,0<i<1| ple) = e+ |e<2-2 e ;1—:1—%——5 \/1%(_5
6 g = ¢€,1<l | ple) = elte c>0 iy % T

The above results also indicate that the closed-loop system will exhibit a two time-scale behavior because
the eigenvalues approach infinity at significantly different rates. A two time-scale behavior means that one
of the state variables will converge much faster than the other. We can expect the slow variable to remain
nearly constant while the fast variable converges. Then, the fast variable should remain relatively steady
over the period of time required for the slow variable to converge. We will look for this type of behavior
when we examine the results of our simulations.

Having stated and solved the problem of finding stabilizing gains for a second-order system, we now focus
on maintaining the stability region. In the next section we develop a sufficient condition on the parameter n
to ensure that the closed-loop system exhibits a nonvanishing stability region for a given maximum degree of
the disturbance. We will translate this condition into a condition on ¢, the exponent parameter of p(e), for
the cases we have already considered. Our analysis will show that each case allows for a range of parameter
selections that ensure the stability region will not vanish as the gains increase.

3 Stability Analysis

We know that all of the controllers produced by the H* techniques used in the previous section will yield
closed-loop systems that are bounded-input bound-output stable [7]. Another important measure of stability,
though, is the size of the stability region or the region of initial conditions that allow the system to reach
a stable equilibrium point. As mentioned above, as we approach the optimal attenuation levels, we employ
high-gain controllers so we want to understand what happens to the stability region as the gains increase.
If the region shrinks, as described in [8] for some nonlinear disturbances, then the desired gains may result
in a region of stability that is too small to be practical.

QOur stability analysis is based on standard Lyapunov techniques to develop sufficient conditions on n
in (2) such that the resulting closed-loop second-order system has a nonvanishing stability region as the
gains increase. We will combine the result with our previous analysis to develop conditions on the design
parameters p(e) and g used in Section 2.

To develop the nonvanishing stability region, we will use the closed-loop system derived in Section 2 with
minor changes to variables to simplify the analysis. Consider the closed-loop system without disturbances

T = Aux (21)
with
0 1
Acl - ( —rr —k ))
which is identical to Ay in (17) if we let k™ = ki, k = ko, (or equivalently v = —k™z; — kzs and no

disturbances). Note that the parameter n is the same as in (2), and we will assume that 1 < n < 2, since
this is the complete range of n produced by the methods in the previous section in each of the six cases.



For the above choices of B and D, the algebraic Riccati equation (6) reduces to the Lyapunov equation
ATZ 4+ ZA,+Q = 0. (22)

We will choose a () matrix that has a different form than the one we used in Section 2 because it allows us
to more easily solve the problem. The new () matrix, denoted (), has ones for the off-diagonal terms. With
this new matrix our analysis is still mathematically valid because we are using it to find a bound on the
parameter n. In this case, the method we use to find the bound is not as important as the results. Now,
with some foresight?, set

- kn—1+ k2n—3 1
Q=Q= < 1q kl—n+pk—l>7 » >0, g >0, (23)

and solve for Z from (22) to find

1 n—2 2n—4 177.~1 n-—3
slp+qg+1)k +qk sk~ +qgk
7 = 5 [(P q ) q ] 2[ q ] ) (24)
L[k~ + gkn3) HETm+ o+ 1) k72 + gk

We take V = 2T Zz, as a Lyapunov function which is equivalent to

Vizi, z2) = % {[p+g+ )" 2+ gk *] 2 +2[k" + gk %] 21 22
+ [+ (p+ 1)k + gk™ ] 23} (25)

Theorem 1 If the point (z1, z2) is a part of the region defined by
V(z, 22) < My k™72, (26)

where My > 0 is a constant, and will continue to be a part of this region as k increases to infinity, then the
following are true:

IN

o)

|71

A

|z2] O™ ).

Proof. We apply the Law of Cosines inequality |2ab] < a2 + b% to the cross term in the expression for
V{zy, x2) to get

1 1
'2 <§k‘“1 -+ §q k”‘?’) T1 To

1 n n_ 87
= o[ e [ st

2
< %1.];;"” T2+ [k%(n—2) + qk%(n—?-)] z3. (27)

Now subtract the right hand side of {27) from V to get the following lower bound on V'

Vo> [%(p +qg+ l)kn—z + %qk2(n—2) _ k’n—2 _ zqu(n—Z) _ q2 kS(n—z)} 117%

1 1 1
+ [Zk“" +5p+ k™2 + Eqk”“*} z2. (28)

2We picked this particular structure for Q because it admits a straightforward solution for Z with all entries depending on
k. The exponents for the k terms were set to allow us to find a nonvanishing stability region.




Recall that 1 < n < 2, which implies n — 2 < 0. For the expression (28), as k grows large, the term in which
k has the largest exponent dominates the expression and the right hand side approaches

1 1
sp+g-1) k"2 g2 + Zk-"xg. (29)

Now suppose that we can choose p and ¢ such that p+ ¢ > 1, to keep expression (29) positive. For (21, z2)
that continue to satisfy (26) as k grows large, we know the following inequalities hold:

1

MiE"2 > 5(29 +q-1k" %22
1

M k™2 > 7+ T2

Then, to prevent the right hand sides of the above two expressions from growing faster than the left hand
sides, the following must be true:

IA

o)

|1]

IA

o@k™).

|z2]

O

Now we will activate the disturbance in the system and study the stability region in the presence of
bounded perturbations. Consider the system (21), with A, the same as before and add Dw to the right-

hand side with
_ 10 o wi(z1, 22)
D= ( 01 )’ w= ( ’LU2(£E1, 132)

such that the following inegualities hold:

IN

w1 (21, 22)] M |z |* (30)

A

|’IU2(Z1, xz)l M |$1!# + M IiZ?Q[V, (31)

with M > 0, 4 > 0 and v > 0. These inequalities represent sector bounds on the possibly nonlinear
disturbance terms. We can now state and prove the main results of this séction.

Theorem 2 Consider the following values of n for fized v:

n € (1,2 for v <2

1
n < 1+Z/T3 for v > 2

Then, V < 0 on state trajectories within the region déﬁned by (26), and the closed-loop system is asymptot-
ically stable over the same region.

Before we begin the proof, we offer an explanatory note and an outline. The proof is lengthy and based
on a single lemma which proves a key inequality. To prove V < 0, we will expand the expression for V and
then use the lemma (proved below) to find a bound on the positive portion of the expression. We construct
the bound piece-by-piece such that the magnitude of the positive portion will be smaller than the magnitude
of the negative portion of the expression. We will choose two fractional multipliers, % and %, so that when
we combine the various pieces, the positive portion is sufficiently small. We finally note that the argument
holds only in the limit as the feedback gain & grows large.



Proof. We differentiate V on a state trajectory and, after some algebraic manipulation, we get
V o= —k" (o + B 20)? — gk %2 — ph 2 + (T + gh™%) 3 we
+E+ @+ DE? 4+ gk maws + [(p+ g+ DE 2 + gk* ] 2wy
+ (7 4 gk %) zp wy
= =k (21 + kM 20)? — gk 322 — ph T 22 4 kT w (2 + KT 1)
+ gk Pz we + [(p+ DET2 + gk™ 4] zowe + k" 2wy (21 + K 2)
+ [(p+ @)k 2 + gk®™ ] 21 w1 + gk Sz wn
= —k" Nz + B " 20)? — gk* 3 22 - pkTt 22
+E 7 wy + BT we) (21 + BT x0) + [(p 4+ k"2 + gk 4] 2wy
+ k™" % 2o wy 4+ gk 3 2y wo + [(p+1)k™2 + g&™*] 2o we (32)
As an intermediate step, we now prove the following lemma:
Lemma 1 As k approaches infinity,
k772 (wy + kY we)(m + 1 20)

+ [(p+ k"2 + gk?™4] 2y wy . { Lgn—1(gy + k1" 2)? + T g2 22 } )

+ qk™ 3 o wy + qk™ % 1y we + S pk~t 2}

+ [(p+ 1)k +qk™ 4] zpws

provided that n < 1+ 5;1;-5 or v > 2.

Proof. We will find a bound for each term on the left hand side of (33) and then combine the results to
prove the lemma. Applying the Law of Cosines inequality to the first term on the left hand side of (33), we
find that
1
E2 (wy + B ) (@ + B es) < 5 " (g + K77 )2 + k"3 (wy + BT w2)2] ,
or
E™2 (wy + B ws) (2 + B xs) <

1 1 1
5 E gy + kT ms)? 5 3wl k2w we + 5 k7l (34)

The first term on the right hand side of (34) is in an acceptable form for our analysis, so we will leave it
alone. Taking the second term on the right hand side of (34), if

_;_k'n-—S M2 |z < 9 p2n-3 22,

0.2]

then

kn—3 g q
< =
7 “1>3

kI3 g2,

10



Both of these inequalities are true as k approaches infinity, since 2n — 3 > n — 3. Now take the third term
of the right hand side of (34) and use the sector bounds on the disturbances, to get:

|k—2 w1y ’wzl < l [k-—z M? l.’l!lly' IIL‘QIV] I -+ l[k—z M? I.’Ztll?'”] l s
and so
1
lk—Q wy ,w2| S 5 k2n—3—e M2 |x1[2p. 4 %k—1—2n+e MZ Im2|2V o+ k_2 MZ lzllizu, (35)
for some small € > 0. The first and third terms of the right hand side of (35) can be grouped to show that

(_;_ k23 4 B2 M2 |2 ¢ < 9 p2n-3 22,

co

as k approaches infinity, since 2n —3 —¢ < 2n — 3 and —2 < 2n— 3. The second term of (35) can be treated
as follows:

1 :
_2_ k—1—2n+e M2 |m2l2V S -?_ k—l .’IJ%,

-3

which is equivalent to saying

2p
2uv—2 2n—e

< —k

22| = TM2 ’

and by applying Theorem 1, these two inequalities will be true as k& approaches infinity if 2(v — 1)(n — 1) <
2n — €. Since we can choose ¢ arbitrarily small, this condition is equivalent to

1
TL<1+;:—§, for v > 2, (36)

and for v < 2 it will always be satisfied. We have shown, then, that when (36) is satisfied, and for k
approaching infinity,

k=2 wy ws| < % K23 g2 4 %;- ka2l (37)
Now we can bound the fourth term on the right hand side of (34) as follows:
1 —1—-n 2 1 —1l~n 2 v\2
§k wy < §k M= (Jz1|* + |z2|*)
1 —1ln pr2 20 —1—n 352 " v 1 E—1-n pf2 g2
= -2-k M=z* +k M= |z |# |2q] +§ z5
< KV MELR 4 Er MR g2, (38)

where in the last inequality, we again used the Law of Cosines relationship. We know that, for large &,
FITT MY < SR ad,
since 2n — 3 > —1 — n. Also, if we restrict n such that
n > 2(v—1)(n—-1) (39)
we can show

Eim M2 zg" <

or equivalently



as k approaches infinity. The condition on n in (39) is equivalent to

1 3
n < 1+§—1/———§’ for v > 5, (40)

and it will always be satisfied for v < % We have thus shown that if (40) holds, then

1
Sk < g B3 g2 4 1’7’ k1 ol (41)

Now, combining the results from the arguments since (34), we have
1 3 2
E™2 (wy + B wg) (o 4+ B as) < 5 E (e + BT ) + gq k>822 4 71” ErzZ. (42

The expression in (42) is a convenient bound on the first term in (33). We will next find similar bounds for
the remaining terms on the left hand side of (33). For the second term, we find that

o+ k™2 + gk*™ ] 21w, [ < % k2n=3 42 (43)

since 2n — 3 > n — 2 and 2n — 3 > 2n — 4, which takes care of the second term. The third term on the left
hand side of (33) can be bound as

@k fppwy] € (RT3 wd + K ad) (44)

for some small € > 0. Applying the Law of Cosines inequality again, we see

%an—-S-—ew% < g_an—3—e M2 |z2 12,; < %k%—a :z;% (45)

as k approaches infinity. Similarly, if € < 2, then
-g-k—”é 2 < gk“l 2. (46)

From the inequalities (44), (45) and (46), then we have that as k approaches infinity, the inequality
ak™3 |zown| < -g- K28 g2 4 gk—l o2 (47)
holds. Now taking the fourth term on the left hand side of (33) we can show

lgk" 2 zyws] < gk % M (|| + |zy||z2]”)

IN

gk™3 M|$1|p+1 + %M (k2n——3-—e :c% + 3te 1x2|2u)
for some small € > 0. We then have that as k& approaches infinity,
ak™=* Mm [+ + S ME e gl < Lt (48)
We can also say that as k approaches infinity,
ng-—-3+e Iz2|2v S E k-—l QI%,
2 7
which is equivalent to saying

2p
2v-1) 2—e

12



provided that 2(v — 1)(n — 1) < 2 — €. Since we can choose e arbitrarily small, this condition becomes
1
n < 1+1/_—_1’ for v > 1, (49)
and it will always be satisfied for v < 1. If (49) is satisfied, then we have shown that as & approaches infinity,
n—3 9,o9n-3,2 , DP;_1 2
|qk T ’LU2[ < gk x] + - k™" x5, (50)

Now for the fifth and final term on the left hand side of (33), we use the fact that 1 < n < 2 to show the
following inequalities

l[(p+1)k_2+qk"_4] m2w2| < p+g+1)k™2zow,
< (P+a+DME? (Joo" + [22]l21 %)
< (p+q+1)ME 2|z

1
+5 g+ DM (B o BT o)
As before, we let k approach infinity to get
(p+q+1)ME 2|zt < Pr1a2,

if n <1+ 225 for v > 1. We can also say that

1
5 (p q 1)2‘{]{:2”_3-6 I:BIIQ;L < g k2n 3 .’II%,
and that

1
3 (p+q+1)MEI720Fe 5,2 < gk‘l z2,

provided ¢ is sufficiently small and k is sufficiently large. We have thus shown that if (49) is satisfied,

2
o+ Dk + gk ] zowa| < S22+ kol (51)

Lemma, 1 follows from (42), (43), (47), (50) and (51), given the following conditions on the parameter n:

n < 1+——1—, v > 2
v—2

n < 1+ L 1/>3
v -3’ 2
1

n < 1+—:, v > 1L
v—1

The third condition subsumes the first condition, so we can ignore the latter. We are only considering n
such that 1 < n < 2, so the second and third conditions are not binding for » < 2. For » > 2, the second
condition subsumes the third, so the second condition is the only one we need to enforce. Therefore, the
final form of the condition on n is

1

—r 52
n<1+2y_3, v>2, (52)

which completes the proof of the lemma. 0
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It follows directly from the results of Lemma 1 that
. 1
VS -3k R e - SRl - Baiad <o,
in the region defined by (26), which completes the proof of Theorem 2. d

Theorem 2 states that the stability region for the system must contain the region defined by (26). With
this theorem in hand, we can now prove that the stability regions do not vanish as the feedback gains
increase.

Theorem 3 The region defined by (26) is a nonvanishing one as k approaches infinity.

Proof. Using (25) and (27), we can show

2
Vo, o) < 5 [(p + g+ DE2 + gk 42 (kD) 4 gpEno2)) } 22
Ty, T2) =

+3 T+ @+ DR+ gkt + 1 E7] o

‘We can then conclude that the region defined by

1 n—2 = W2(n—2 2 1.3n~6 2
3 [o+q+3)k"2 +5¢k*"D 1+ 207k z
3 p+a+3) q q ] # < M,k (53)
+5 BE+(+1)E72 4 gkt 3
is a subset of the region defined by (26). We can rewrite (53) as
I [(p+q+3)+5gk"2 + 2% k*"4] 22 < u 54
= 1,
+3 B+ (p+ 1Dk + ¢k 73

which is a closed ellipse. The ellipse has one axis converging to a constant and the other expanding to infinity
as k approaches infinity. The region defined by (26), therefore, must be nonvanishing as k approaches infinity.
0

We can now state a theorem which summarizes the main results of this section.

Theorem 4 The stability region for the closed-loop system described by (3), (80) and (51), and under linear
feedback u = —k™x; — kxo, will be nonvanishing as the feedback gains approach infinity if (52) is satisfied.

Proof. The theorem follows directly from the results of Theorems 2 and 3. O

We can translate condition (52) in terms of the parameters used in Section 2. For example, in Case 1
from Table 1, condition (52) becomes

C 1
_t 2
e I w— v>s

which can be developed as follows, with v > 2 throughout:

< 2v~2)(c—-1) — |- 2v—2 . < 2-2
2v—3 2v—3 20—-3

-1 2 -2y
-2
= 21/_3c< 5,3 = ¢ > 2w (55)

14



We performed a similar translation for the other five cases listed in Table 1 and Table 2 contains the
resulting conditions. See Appendix C for details. We can conclude from our analysis that all six cases
we have considered contain a range of parameter selection that will satisfy (52) and therefore guarantee a
nonvanishing stability region. Note that in Case 4, the condition ¢ > 2v — 2, v > 2 is sufficient for all values
of | contained in the case. Also note that in Case 5, it is necessary that I is chosen so that | < -1+ for a

v—1
valid ¢ > 0 to exist.

Table 2: Stability conditions in terms of the design parameters. Note, in all cases v > 2.
Case g (e) c Condition on ¢
1 g2 >0 ple) = €€ c>2 c>2v—2
2 g2 >0 p(e) = ¢° e<2 c< 525
3 g2 =0 p(e) = gtte c>0 c>v—2
4 =, 0<l<l|ple)=e* | e¢>2-2 | c>v(2-1)—-2
5 @=c, 0<l<l | pe)=¢er |e<2-~2] c<2—t22—£{1—3:1l
6 g =¢, 1<l | ple) =glte c>0 c>v—2

In applying these conditions in the structure of Section 2, it is important to note that the sector bound
on the disturbance is often unknown. In this situation, we would complete our design using a guess for the
value of v and test the results. If we found the stability region vanished with increasing gain, we would
increase the value of v until we found an acceptable solution.

We have stated and solved the H* control problem for a second order system and found a sufficient
condition for the stability region to be nonvanishing as the feedback gains increase. To verify our analysis,
we will next simulate a system and study the stability region as the gains are increased.

4 Simulation Results

As a test case we selected a second-order system with a nonlinear disturbance term similar to the first
example in [8]. The system state equations are

(i?l = T2 (56)
—ky 21 — ko o + 5. 57

Ty =

We selected this system because if we set k1 = k% and allow the gains to increase to infinity, the stability
region will vanish. This system can be expressed in the standard form

i = Az + Bu+ Dw (58)

with

and control input

and disturbances



Note that the disturbance term can be bounded by a sector bound of the form of (31), with v = 3, which
allows us to directly apply the results from Section 3. To solve the algebraic Riccati equation we selected
the following @ and R expressions:

0
Q:((l) qz), R=¢ >0 (59)
We note that the expression for @ here is consistent with our original definition in Section 2, but is different
from that given in (23). Recall that we used (23) to find a condition on the parameter n to ensure a
nonvanishing stability region. The choice of Q in (59) is part of the performance function for our disturbance
attenuation measurement given in (4) and still provides a stable solution.

Using the system described above, we outline our simulation as follows:

1. Select a form for g; and p(e) which corresponds to one of the six cases presented in Section 2.

2. Use the sector bound parameter v and the conditions in Table 2 to determine appropriate values for ¢
and, if necessary, I.

3. Pick a small value for £ > 0.
4. Compute g2 and p(e).

1
2

5. Compute v* using v* = \—/1—5 [Q2 +62 4+ (g3 — 2go 62 + et 4 4gy £2) 2 ]
6. Solve for Z using ATZ +ZA - Z(BR™'BT - 5DDT)Z+Q = 0.
7. Compute Ay = (A— BR™'BTZ).

8. Simulate the system in MATLAB using Ay to estimate the stability region. For this step we give
the system a small nonzero initial condition and let the system run in reverse time to find the stable
limit cycle around the equilibrium point at the origin. See [2] for details on this trajectory reversing
technique.

9. Adjust the value of £ and return to Step 4.

For our first simulation, we selected Case 5 from Table 1 with

g2 = &, Il =<

ple) = €7° c= 7

For the disturbance given above with ¥ = 3 and using the results in Table 2, we must choose ¢ < % to
guarantee a nonvanishing stability region. For ¢ = %-, = ;11— and the formula from Table 1 for n, we compute
the maximum value for n as %. With ¢ = % the actual value of n is %, which is less than the maximum, so
the stability region should not vanish. We note that the value of n is the important factor in determining
how the stability region behaves. The specific choices for g; and p(g) are not critical.

We followed the procedure outlined above to simulate the system, and Figure 1 displays the graphical
results. Table 3 contains the numerical values for the key parameters in the simulation as we vary e.
Figure 1(a) shows the estimated stability region for different values of €. The stability region initially
contracts and then expands along the z;-axis while it continuously expands along the z2-axis. The plots in
Figure 1(b) show the maximum and minimum values for z; and z» versus € on a semi-log scale to simplify
the interpretation of the stability region estimates.

To explore the behavior of our system in a little more detail we included the results presented in Figures 2
and 3. In Figure 2(a) we plot the two eigenvalues obtained during the simulation against their predicted
values. The top row in Figure 2(a) compares the eigenvalues to their values estimated using the formulas in
Table 1. Since we dropped the constants in Table 1, we expect the line to be straight with a slope different

16
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Figure 1: Simulation 1. Case 5 with parameter values: g = £, p(e) = e%,and n = 2. Part (a) shows the
simulated stability region boundary as the value of € decreases. Part (b) plots the extreme values for state
variables z, and x5 versus e.

Table 3: Simulation 1 numerical results. The table contains the absolute value of each quantity to simplify
comparisons.

€ p(e) *? k1 ko A A2

1.00e+00 || 1.00e+00 | 2.00e+00 | 3.00e+00 | 3.87e+00 | 2.80e+00 | 1.07e+00
1.00e-01 3.16e-01 | 5.80e-01 | 2.02e+01 | 1.01e+01 | 7.38e+00 | 2.74e+00
1.00e-02 1.00e-01 | 3.17e-01 | 2.14e+02 | 6.00e+01 | 5.62e+01 | 3.81e+00
1.00e-03 3.16e-02 | 1.78e-01 | 2.61e+03 | 4.28e+02 | 4.22e+02 | 6.18e+00

1.00e-04 1.00e-02 | 1.00e-01 | 3.33e+04 | 3.17e+03 | 3.16e+03 | 1.05e+01

1.00e-05 3.16e-03 | 5.62e-02 | 4.34e+05 | 2.37e+04 | 2.37e+04 | 1.83e+01

1.00e-06 1.00e-03 | 3.16e-02 | 5.71e+06 | 1.78e+05 | 1.78e+05 | 3.21e+01
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from one. The bottom row in Figure 2(a) compares the eigenvalues to the gain expressions we developed
in Section 2. Again, we see the linear behavior we expected. Figure 2(b) confirms that the ratio p(e)/v*>
approaches zero as € goes to zero. Recall that we required this condition to ensure that v approached v* as
€ became small.

& & Actual vs Predicted, Sim 1 xz: Actuai vs Predicted, Sim 1
o 10" Y

Behavior of p(e) + (Gammasur)z, Sim 1
07 T

08

o
n

o
»

1.5 2 0 1] P ZOd Y 40
x16° redicted A,

At Actualvs Gain Behavior, Sim 1 A, Actuat vs.Gain Behavior, Sim

5 1
Predicted 2,

1.5 2 [

10 20 £ 40 10
s Predicted k, /k,

5 1
Predicted k,

Figure 2: Simulation 1. Part (2) eigenvalue relationships as € varies. Part (b) behavior of p(e)/v** as € — 0.

Figure 3 captures the two time-scale behavior of the system for this simulation with ¢ = 10~¢. In
Figure 3 the plots in the left column show each state variable plotted versus time. The two time-scale
behavior becomes apparent when we stretch the time axis as shown in the right column of Figure 3. We can
see that the variable z; is nearly constant during the time required for z2 converge to a steady-state value.
Then, the z» variable changes relatively slowly while 2; transitions through its range of values. This cycle
repeats because the state variables are traversing a stable limit cycle in this simulation. To clarify these
results, we recall that we ran the simulation in reverse time, which explains why the trajectory starts at a
small value and approaches a stable limit cycle. If we were to run the simulation in forward time, any initial
condition within the limit cycle would converge to the stable equilibrium point at the origin.

For this simulation, the value for n satisfies the sufficient condition we established in Section 3 and
the results confirm the stability region is expanding as the feedback gains increase. The next simulation
highlights the fact that our condition on = is only sufficient and not necessary.

For our second simulation, we made the following parameter choices:

g = €, | =

1
ple) = €75, ¢ =3

These choices correspond to Case 5 with n = -I:IQ. Since the value for v = 3 has not changed, both ¢ and
n are now larger than the maximum values specified by our sufficient conditions. We simulated the system
and found that the stability region did not vanish as the gains increased, as shown in Figure 4. As we saw
in the first simulation, the stability region initially contracts and then expands along the z;-axis, while it
continuously expands along the zs-axis. The expansion along the zi-axis occurs at a smaller value for e,
which indicates we must increase the feedback gains to larger values for the stability region to expand. These
results are a clear indication that the condition (52) does not provide a tight bound on the parameter n to
achieve a nonvanishing stability region.

To allow for a complete comparison between the first and second simulations, we have included Table 4
and Figures 5 and 6, which correspond to the table and figures presented for the first simulation.
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Original Time-Scale, Sim 1 Two Time-Scale Behavior, Sim 1
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Figure 3: Simulation 1. Two time-scale behavior for € = 1.0 x 1078, Note the variable ranges differ by two
orders of magnitude.
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Figure 4: Simulation 2. Parameter values: g = €%, p(e) = &%, and n = L. Part (a) shows the simulated
stability region boundary as the value of ¢ decreases. Part (b) plots the extreme values for state variables

z; and zo versus €.
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Table 4: Simulation 2 numerical results. The table contains the absolute value of each quantity to simplify
comparisons.

€ p(e) 7*? k1 k2 AL A2

1.00e+00 || 1.00e4-00 | 2.00e+00 | 3.00e+00 | 3.87e+00 | 2.80e+00 | 1.07e+00
1.00e-01 1.78¢-01 | 5.80e-01 | 2.68e+01 | 1.10e+01 | 7.35e+00 | 3.65e+00
1.00e-02 3.16e-02 | 3.17e-01 | 3.65e+02 | 6.27e+01 | 5.62e+01 | 6.49e+00

1.00e-03 5.62e-03 | 1.78¢-01 | 5.89e+03 | 4.36e+02 | 4.22e4-02 | 1.40e+01

1.00e-04 1.00e-03 | 1.00e-01 | 1.02e+05 | 3.19e4+03 | 3.16e4+03 | 3.21e4+01
1.00e-05 1.78e-04 | 5.62e-02 | 1.79e+06 | 2.38e+04 | 2.37e+04 | 7.53e+01
1.00e-06 3.16e-05 | 3.16e-02 | 3.17e4-07 | 1.78e4+05 | 1.78e+05 | 1.78e+4-02
1.00e-07 |} 5.62e-06 | 1.78e-02 | 5.63e+08 | 1.33e+06 | 1.33e+06 | 4.22e+02
1.00e-08 1.00e-06 | 1.00e-02 | 1.00e+10 | 1.00e407 | 1.00e+07 | 1.00e+03

1.00e-09 1.78e-07 | 5.62e-03 | 1.78e+11 | 7.50e+07 | 7.50e+-07 | 2.37e+03
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Figure 5: Simulation 2. Part (a) eigenvalue relationships as & varies. Part (b) behavior of p(e)/7** as € — 0.
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Figure 6: Simulation 2. Two time-scale behavior for £ = 1.0 x 107°.



Our third and final simulation used the following values for the parameters:
@ =1
ple) = ¢, ¢ =1,

which correspond to Case 2 in Table 1. The value for n is now % which is again larger than the prescribed
maximum of §. As shown in Figure 7(a), the stability region contracts along the z;-axis while it continuously
expands along the zs-axis. The stability region is narrow along the z;-axis and shows no signs of expanding
along that direction, so any perturbation of the initial condition for z; greater than approximately 0.4 would

cause the system response to be unbounded.
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Figure 7: Simulation 3. Parameter values: go = 1, p(e) = ¢, and n = —g— Part (a) shows the simulated
stability region boundary as the value of € decreases. Part (b) plots the extreme values for state variables
z1 and zo versus &.

As before, we also present Table 5 and Figures 8 and 9 to allow for a complete comparison among the
simulations.

Our three simulations illustrate the results of Sections 2 and 3 and demonstrate how condition (52) allows
us to construct linear feedback controllers using an H* approach and still maintain the stability regions.
These numerical results verify our analysis and deliver the expected behavior for the parameters we studied.

5 Conclusion

We analyzed a second-order system with nonlinear disturbance terms and derived a sufficient condition on
the design parameters to ensure that the stability region would not vanish as the feedback gains increased.
‘We were interested in the high-gain case because we considered the asymptotically optimal H* design
approach to the problem. Using this technique, as we allowed the disturbance attenuation level to approach
the optimal value and the cost on control to become cheap, the feedback gains increased to infinity. We
manipulated the attenuation level and the control cost because both terms play a role in determining the
magnitude of the feedback. The rate at which the two terms approach their limits determines which plays
the dominant role in computing the feedback gains for the six cases we examined. Previous results showed
that such high-gain feedback could lead to vanishing stability regions if the disturbance terms contained
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Table 5: Simulation 3 numerical results. The table contains the absolute value of each quantity to simplify
comparisons.

€ p(e) 7 k1 Ky AL Az

1.00e-++00 || 1.00e+00 | 2.00e+00 | 3.00e+00 | 3.87e+00 | 2.80e+00 | 1.07e+00
1.00e-01 1.00e-01 | 1.01e+4-00 | 4.48e+01 | 1.45e+01 | 9.99e4-00 | 4.48e4-00
1.00e-02 1.00e-02 | 1.00e+00 | 1.11e4+03 | 1.11e+02 | 1.00e+02 | 1.11e4-01
1.00e-03 1.00e-03 | 1.00e4+00 | 3.27e+04 | 1.03e+03 | 1.00e+03 | 3.27e+01
1.00e-04 1.00e-04 | 1.00e+00 | 1.01e4+06 | 1.01e4+04 | 1.00e+04 | 1.01e4-02
1.00e-05 1.00e-05 | 1.00e+00 | 3.17e+07 | 1.00e+05 | 1.00e4-05 | 3.17e4-02
1.00e-06 1.00e-06 | 1.00e+00 | 1.00e+09 | 1.00e+06 | 1.00e4-06 | 1.00e+4-03
1.00e-07 1.00e-07 | 1.00e400 | 3.16e+10 | 1.00e-+07 | 1.00e4-07 | 3.16e+4-03
1.00e-08 1.00e-08 | 1.00e+00 | 1.00e-+12 | 1.00e+08 | 1.00e-+-08 | 1.00e-+04
1.00e-09 1.00e-09 | 1.00e+00 | 3.28e+13 | 1.00e+09 | 1.00e+09 | 3.28e+04
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Figure 8: Simulation 3. Part (a) eigenvalue relationships as & varies. Part (b) behavior of p(e)/7** as e — 0.
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Figure 9: Simulation 3. Two time-scale behavior for € = 1.0 x 107°.

nonlinearities. To prevent the stability region from vanishing, we first determined the relationship between
the design parameters and feedback gains. We then applied a Lyapunov-based analysis to determine a
sufficient condition on the design parameters to prevent the stability region from vanishing. We described
three simulations that illustrate and verify our design method. Our approach is unique because it considered
the asymptotically optimal H® design for the controller and offers the optimal solution with respect to a
given performance measure.

There are several avenues of research that start where we leave off. One direction could be to find a
simplified version of the stability proof offered in Section 3. We found one approach using Lyapunov theory,
but there may be other more elegant solutions to the current problem. Our analysis offers only a sufficient
condition for stability, so a proof that develops necessary conditions would be a second valuable extension.

A third challenging problem is to extend the results to higher-order systems. Preliminary simulations
show that the stability region for a simple third-order system can vanish as the feedback gains increase.
However, fully analyzing this system is significantly more difficult than the second order case presented here.
The essential step to extending the results is to find an analytical expression for the Z matrix solving the
algebraic Riccati equations. Numerical solutions will not be adequate for a rigorous proof and the analytical
solution is quite difficult. One tactic may be to use a derivation based on behavior of the entries in Z in
the limit as the matrix approaches the minimal solution. We expect this type of approach to be similar to
the analyses of systems with multiple time-scale behavior. Another approach could be to use a backstepping
inspired technique where the results from a higher-order system are simplified by removing one dimension
at a time [18, 11]. Finally, the techniques from [16, 17] offer another option for resolving the extension
to higher-order systems. Solving the nonvanishing stability regions problem associated with optimal H*
control for third- and higher-order systems remains an open and challenging research problem.
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A Limiting Behavior of p(¢) versus v**

We demonstrate that for the six cases of interest, the condition

im 2&) — g
g0 y*

always holds. Before we present the details for each case, we observe that a Taylor’s series expansion of y*2
as a function of £ is

72e) = @+ e+ 06,
a2
The derivation for this expression is given in Appendix B.
A.1 Case 1 and Case 2
The parameter settings are
g > 0, constant
ple) = &5 ¢>2 (Casel); c<2 (Case?2).

‘We start with the original condition, apply the Taylor’s series expansion and take the limit to get the results.

limIng)=lim|: < ]=3=o.
- ¢

£—=0 7y e=0 | gz + L e2 + O(e?) a2
A.2 Case 3
The parameter settings are
g = 0, constant
ple) = &7*°, c>0.
The limit condition is
. p(a) _ . El+c
im T2 = g [0 + T2+ 0(E)
1+c
T gz € T —
= [ql €2+ g2 0(52)] =g 0
A.3 Case 4 and Case 5
The parameter settings are
g = ¢&, 0<li<1
ple) = &t c>2-21 (Case4d); c<2—-21 (Caseb).
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The limit condition is

I+c
lim p(e) = lim l: £ ]

£—0 y*2 =0 | g + ;L; €2 + 0(g?)
. El+z: E.l—i—c
= lm 5 21 n| == =0
e=0 |et+ g1 271+ 0(e?) €
A4 Case 6
The parameter settings are
Q2 = El, 1 < l
ple) = &'*e, ¢>0.
The limit condition is
lim p(e) = lim et
e=0 %2 = % €2 + O(g2)
51+C €l+c
= lim |5 = = 0.
e=0 | el + g1 271+ 0(e2) g g2t

B Derivation of 7 Matrix Values

This appendix outlines the derivations we used to compute the Z matrix values in Section 2. We analyzed
six cases and will provide the complete derivation for the first case. For the other five cases, we will outline
the key steps and skip some of the details. The Z matrix has the form

z 212
7 = 11 ’
212 222

and we recall

1 y? —g?
B = 7 B2 = e
from Section 2. For convenience, we rewrite here the formulas for the elements of the Z matrix also presented
in Section 2
1 1
2 z 2z z2 b3
Z1y = (_ﬂﬁg__@_) . mpg = <42+ 12 + B1 12) (60)
B B2

with

e [ql e+ ([ - @l -€%) %]

BT TR e (@ - a) e (©1
Finally, we will refer to the expression for v*?, computed from (12) as
A*? = % [qz +e2 4 (2 —2g26* +e* +4q 52)%] , (62)
along with its relationship to y?
7 = 7 +ple). (63)

With these universal equations stated, we are now prepared to complete the derivations.
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B.1 Casel
Case 1 corresponds to g2 as a positive constant and p(e) = &° with ¢ > 2. As e approaches zero, from (62),

we see v*? approaches

. . 1
lim -y ? = ) [Q2+ q%} = {o.

=0
To make « approach v*, we need

pE) = e =0

s0 we require that ¢ > 0. As £ approaches zero, the denominator of z12 (abbreviated as Den(z12)) approaches
g2 p(€) as shown below

Den(zi2) = 7*—(@+e)?V¥+(@—q)e

Den(ma) = |72 +(6)] — (@ +¢2) [r? +26)] + (@~ a)
lim Den(z12) ~ [7*2 + p(E)r ~ g2 [7*2 +p(€)}

~ 7+ 270 pe) + pPE) —q2 v — g2 p(e)
——

—0
~ @ +2qp(E) — ¢ —gp(e) ~ g@pE).

To find a valid nonzero expression for the numerator of z;2 (abbreviated as Num(z;2)) we need to find a
Taylor series expansion of 4*? around zero. Consider v* as a function of € and write v*?(g) as in (62). We
note that v**(0) = %[g. + /3] = ¢. Now compute the first two derivatives of v**(¢) and evaluate them
at zero as shown below.

dy*? 1
70 . 1 2e + 1(qg — 2g06% + et 4+ 4g1 €2) 7% (—4gy £ + 4% + 8¢y €)
de 2 2 o
= 0,
d2 *2 0 1
zsz( ) - [1 + (_5)((13 —2¢p6® + &' +4q16%) 72 (—dg e + 4% + 8q1€)°

1
+7 (2 — 2o % + € + 4y £2)7 7 (—dgy + 122 + 8q1)]

£=0

1 1 1. 241 2q1
14+ -(g2)"2 (—4ga+8q1) = 1+ ——(—4g2+8q) = 1 -1+ == = —,
1 (95)77% (—4g2 + 8q1) 15 (—4g2 + 8q1) o -

So now writing v*? as a Taylor’s series we get
12
7*26E) = @+0+z kR 0O(e?)
2 ¢

go + B2y O(&?).
gz
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Now we can derive an expression for the numerator of z12 as follows:

Num(z2) = +%e [q1 e+ (a1 [V’ — @[y’ ~ €%) %]

]

e [7*2 +p(e)] [ql e+ (QI [v** +p(e) = 2] [v*® + ple) — 52]) %}

. <Q2 + L0 +p<s>)

X {ql e+ <q1 [@ + 3—252 + O(e?) + p(e) — Q2]

1
2

X [qg—i-g—;eQ-{—O(ez)—i-p(s)—EQD—}

. @ 2 :
31_1}1(1) Num(z12) EqQ2 [q15+ (111 [q2 € } [42]) }

1
~ eo [ne+ (@) ] ~eqlnet e ~ 2 g
Now we combine the denominator and numerator expressions to get
2g1¢28"  2qi€°
g2 p(€) pe)

We can now use z12 to find similar expressions for z1; and zs2 using (60). We will need the expression for
2

z

12

Zia ~

Now solve for z11

211 =

ng-n)t_ [(5F) (56) e %
B

1 1
r 402 &2 3 dv2 g2 €2 — dg2 et — 42 g1 p2(e) ] 2
(72__62) ( g1 )_,yqu] - [’Y a9 a3 7 g1 p°(e)

p2(e) p2(e)

1 - L
. 47 ¢ 52]5 [4q2 @#e?l? 2qe @
lim 217 ~ | —%—~— ~ | = ~ =V
€0 L p?(e) p*e) | p(e)
Similarly solve for zos

_ it 4q; €° 147 ¢t z
2oy = g2 + 2210 + B1 21 | _ e + pze) METL0)
- — 2 =2
L B2 | -772;2—

_ (2P (PP e+ 4 pE) a e’ + 4} 54” :
[\7? —¢? 7°p*(€)

lim Zoo o~
e=+0

[ 4q2 ® } 5 2q, €3
L% P?(e) p(e) /a2
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With these derivations, we ¢can now return to Section 2 and follow the rest of the analysis for Case 1 starting
with (15). For completeness, we inciuded all of the constants in this derivation to make the steps easier to
follow. For simplicity, we will eliminate the constants in the remaining derivations below.

B.2 Case 2

For the second case and those that follow, we will state the main results similar to those given for Case 1.
Case 2 corresponds to gs as a positive constant and p(e) = &€ with ¢ < 2. We note that the expression for
z11 is not required to compute the expressions for the feedback gains or the eigenvalues so we will omit 213

from now on. Also recall the following relationships from Section 2:

kl = Elg Z192 kg = Elf 299
)\1 ~ ko Ao~ TIt'.‘l,'
log, k
nE R
The results for Case 2 are
Den(z12) ~ p(e) Num(z12) ~ &+/p(e)
o E ~
212 ) 232 g
~ 1 by~ L
ka e+/p(e) & €
AN o~ L Xo ~ i
1 € 2 v p(e)
n = 1+3.

B.3 Case 3

Case 3 corresponds to gs set to zero and p(e) = e*+¢ with ¢ > 0. The results for Case 3 are

Den(z15) gite Num(zis) ~ &°
3
Z12 El_c Zonp o~ gz—¢
1
ki gm1—¢ ko ~ g7%7°¢
A A
I G d2 o~ 7
2¢+2
n 2c+1°

B4 Case 4

Case 4 corresponds to g» = &' with 0 <1 < 1 and p(e) = e"*° and with ¢ > 2 — 2. The results for Case 4 are

Den(zlg) ~ &‘ZH_C Num(zlz) ~ 82+l
z1s ~ g2l=c P g3—%1i—c
kl ~ E—l—c k2 ~ El—% l—c
(=30 1
€
Ao ple) Az~ 1= In
n = 2(l+c)
— 3l42¢—2"
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B.5 Case 5

Case 5 corresponds to g» = £! with 0 < 1 < 1 and p(e) = £"*° and with ¢ < 2 ~ 2. The results for Case 5 are

1
Den(zlz) ~ €2l+c Num(zlg) ~ 51+2l+-2- ¢
—1 1
Zig o~ El ¢ Zog o~ El+2 I
1 1
ki ~ gl—z¢ ky ~ g7 l¥3l
M o~ Ay o~ 1
! =10 2 V)
—  ct+2
n = £,

B.6 Case6

Case 6 corresponds to g = &' with 1 <1 and p(e) = &' with ¢ > 0. The results for Case 6 are

Den(z12) ~ g2*¢ Num(zp) ~ &3
_ s_
219 0~ 81 ¢ 9y ~ E£2 ¢
ki ~ gml—¢ ko ~ 6_%-6
e 1
AL~ p(e) Az Ve
— 242
o= 5aT-

C Derivation of Conditions on Parameter c

This appendix provides the details on translating condition (52) into a condition on the ¢ parameter. The
results for Case 1 from Section 3 are repeated here along with the other five cases. Each derivation begins
with (52), which is restated here for convenience:

1
77.<1+2—V_—3, v>2. (64)
C.1 Casel
n = C
T e~1
(2v —2)(e-1)
o1 Sty T e T3
— |1- (22 2= o Tl 22 L s oo
2w—3)1°° 2,3 2% —3 2%—3
C.2 Case 2
C
n—1+§
1482 e 1 o e
2 20 -3 2 2v—3 2v—~3
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C.3 Case 3

2c+ 2

2c+1
c+1 2v—2 — ctl < 2v—2 v—1
c+ 3 20 —3 2v—3 2v—3

2v—3 2v—3 T 2w— 2v—3
C.4 Case 4
n 2(I+¢)
T 3l42-2
—l—c < 20— 2
—%l—c 2v—3

2—2 3
= ~l—-c > (21/—3) (1—§l—c>
= lec> —o(HIZ2) 4 (13 (2222
2w -3 2 2v—-3
20—-2 3 2v—2
— [(2U_3)_1}c>z+(1_§z) (21/_3)

23 sl (-3 o)

= ¢>2v-3+2w-2-3lv+3l = > Ww—-lv-2 = c>v2-1)-2

C.5 Caseb
n = c+2
21
c+2 2v—2 1
5] < 5 3 = c+2 < 21/_3(41/—21/1—4+2l)

1 1 2+20(1-v)
= ¢ < 2V_3(41/—2111—4-{—21—4u+6) = ¢ < 2y_3(2+2l—2yl) = ¢ < 5 =3
C.6 Case6

_ 2¢c+ 2
T 2¢+1

c+1 < 2v—2
c+3 v —3

2v—2 v—1
<~ c+1l<ec

2v—3 2v—3

= |1 -2 <,,_1 1 e |-t c< 27Y e o> v—2
“\w-3)|¢ 2w—3 2 -3
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