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Abstract

This paper addresses the problem of feedback stabilization of nonholonomic

chained systems within the framework of nonregular feedback linearization.

Firstly, the nonsmooth version of nonregular feedback linearization is formu-

lated, and a criterion for nonregular feedback linearization is provided. Then,

it is proved that a chained form is linearizable via nonregular feedback con-

trol, thus enable us to design feedback control laws using standard techniques

for linear systems. The obtained discontinuous control laws guarantee con-

vergence of the closed-loop system with exponential rates. Finally, simulation

results are presented to show the effectiveness of the approach.

Keywords: Nonholonomic systems; Stabilization; Nonregular feedback lin-

earization; Discontinuous control

1 Introduction

Control of nonholonomic systems is theoretically challenging and practically inter-

esting. Due to Brockett’s Theorem [4], these systems cannot be stabilized to a point

with pure smooth (or even continuous) state feedback control. As a consequence, the

classical smooth theory and design mechanism of nonlinear control systems cannot

be applied. Nonholonomic systems cover a wide range of practice systems. Nonholo-

nomic constraints are naturally imposed on the motion of a large class of mechanical

systems, typical examples including mobile robots, and cars with/without trailers

[6, 10].

During last decade, many papers have been published on the control of nonholonomic
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systems. Many control strategies and algorithms were developed, based on either

physical (kinematic/dynamic) models [11] or canonical (chained or power) forms

[1, 6, 12]. For point stabilization of nonholonomic systems, it has been shown that a

time-periodic smooth feedback control cannot be exponentially stabilizing [7], while

discontinuous state control or nonsmooth time-varying controllers are able to provide

exponential (or finite-time) stability, see, [3, 6, 8, 1, 2, 12] to list a few.

In this paper, we address the problem of stabilization for nonholonomic single

chained systems in the framework of nonregular feedback linearization. In Sec-

tion 2, the formulation of nonregular feedback linearization [13] is generalized to a

nonsmooth case to include discontinuous or singular state and feedback transfor-

mations. In Section 3, the chained systems are proved to be nonregular feedback

linearizable and discontinuous controllers are designed for a wheeled mobile robot.

The design mechanism is generalized to the general single chained systems in Section

4. In Section 5, simulation study is carried out to illustrate the effectiveness of the

proposed control strategies.

2 Nonsmooth Nonregular Feedback Linearization

In this section, we present a generalized formulation of nonregular static state feed-

back linearization [13].

Consider the multi-input affine nonlinear systems given by

ẋ = f(x) +
m∑

i=1

uigi(x) = f(x) + G(x)u (1)

where x ∈ <n and u ∈ <m. The entries of f(x) and G(x) are analytic functions of

x, and rank G(x) = m, ∀x ∈ <n.

Since Krener [9], the problem of exact linearization has been studied using increas-

ingly more general transformations. In [13], the use of nonregular state feedbacks

was investigated to achieve linearization of affine nonlinear systems which is of in-

dependent theoretical interest. In this paper, a nonsmooth version of the problem

of nonregular feedback linearization is introduced to cope with driftless systems.
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Definition 1 Any feedback transformation of the form

u(t) = α(x) + β(x)v(t) (2)

where α(x) : <n → <m, β(x) : <n → <m×m0 , v ∈ <m0 ,m0 ≤ m, is called a nonregular

static state feedback transformation.

Definition 2 Nonlinear control system (1) is said to be nonregular (static state)

feedback linearizable if there exist a discontinuous state transformation

z = T (x), z ∈ <n

and a nonregular state feedback (2), such that the transformed system with state z

and input v reads as a controllable linear system.

For nonregular feedback linearizability of two-input driftless systems, the results are

given in Lemma 1.

Lemma 1 For a two-input driftless system

ẋ = g1(x)u1 + g2(x)u2 (3)

if the nested distributions defined by

∆0 = span{g2}
∆i = ∆i−1 + adg1∆i−1, i = 1, · · · , n− 2

∆n−1 = ∆n−2 + span{g1}
satisfy

(i) ∆i is involutive and of constant rank for 0 ≤ i ≤ n− 1; and

(ii) rank ∆n−1 = n

then system (3) is nonregular feedback linearizable.

Proof. By Frobenius Theorem, there exist real-valued functions φ(x) and h(x) :

<n → <, such that

dφ ⊥ ∆n−3, dφ 6⊥ ∆n−2, dh ⊥ ∆n−2, and Lg1h = 1
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Let

u1 = φ(x), f(x) = φ(x)g1(x)

System (3) can be rewritten as

ẋ = f(x) + g2(x)u2 (4)

Compute the following quantities

Lg2h = 0, Lg2Lfh = Lg2φ = 0

Lg2L
2
fh = Lg2(φLg1φ) = (Lg2φ)(Lg1φ) + φLg2Lg1φ = φ(L[g2,g1]φ + Lg1Lg2φ) = 0

In the same way, we have

Lg2L
i
fh = 0, for i = 3, · · · , n− 2

Lg2L
n−1
f h = φn−2Ladn−2

g1
g2

φ 6= 0

Define new coordinate z and new input v respectively as

z = [h, Lfh, L2
fh, · · · , Ln−1

f h]T

v = Ln
fh + u2Lg2L

n−1
f h

(5)

The state space description of system (4) in the z coordinates is then given by





ż1 = z2

...

żn−1 = zn

żn = v

(6)

which is exactly the single-input Brunowsky canonical system.

The above analysis shows that, under state feedback control




u1 = φ(x)

u2 = (Lg2L
n−1
f h(x))−1(v − Ln

fh(x))
(7)

and coordinate transformation (5), system (3) is transformed into single-input con-

trollable system (6). Because the input channel u1 is pure state feedback, the overall

input transformation (7) is nonregular. ♦

4



As a direct application of Lemma 1, we claim that the nonholonomic chained system





ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

...

ẋn = xn−1u1

(8)

is nonregular feedback linearizable. Moreover, the linearizing output h(x) and the

real-valued function φ(x) in the proof of Lemma 1 could be explicitly constructed,

say

h(x) = x1

φ(x) = φ1(x1, xn) with
∂φ1

∂xn

6= 0 (9)

As the restriction imposed on φ(x) by (9) is not very restrictive, we can fully explore

the freedom in controller design in practice. Different choices of φ(x) will result in

different linearizing feedback transformations. In the next section, we will utilize

this flexibility to develop different stabilization policies for nonholonomic chained

systems.

3 Stabilization of Wheeled Mobile Robots

Consider the kinematic model of wheeled mobile robots that is transformed into

chained form [5]: 



ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

(10)

As examples, two stabilizing strategies in the framework of nonregular feedback lin-

earization shall be proposed. One utilizes a discontinuous state transformation with

smooth inverse, while the other uses a smooth state transformation with discontin-

uous inverse. Both control laws render the origin exponentially convergent.
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3.1 Linearization with Discontinuous State Transformation

Consider the nonsmooth function φ(x) = x3
1
3 . From Lemma 1, we have

u1 = x3

1
3 (11)

and system (10) is changed into a single-input nonlinear system.

Let h(x) = x1. From (5), we have discontinuous state and input transformations





z1 = x1

z2 = x3
1
3

z3 = 1
3
x2x3

− 1
3

(12)

v =
1

3
x3
− 1

3 u2 − 1

9
x2

2x3
−1 (13)

which have discontinuous surface SD = {z : z2 = 0}.

The inverses of the state and input transformations are





x1 = z1

x2 = 3z2z3

x3 = z3
2

(14)





u1 = z2

u2 = 3z2v + 3z2
3

(15)

which are smooth.

The corresponding transformed linear system is of Brunovsky canonical form





ż1 = z2

ż2 = z3

ż3 = v

(16)

For the simple linear system (16), controller design can be carried out easily. Let

us assign them to be −λ1,−λ2 and −λ3 with 0 < λ1 < λ2 < λ3. Accordingly, the

controller is given by

v = −τ3z1 − τ2z2 − τ1z3 (17)

where τ1 = λ1 + λ2 + λ3, τ2 = λ1λ2 + λ1λ3 + λ2λ3, τ3 = λ1λ2λ3.
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Define set D1 as

D1 = {x ∈ <3 : −λ1λ2x1x
1
3
3 − (λ3 +

λ1λ2

λ3

)x3

2
3 <

1

3
x2 < −λ2λ3x1x3

1
3 − (λ2 + λ3)x3

2
3}

The closed-loop convergence is summarized in Theorem 1.

Theorem 1 If x(0) ∈ D1, then the feedback control law




u1 = x3
1
3

u2 = −τ1x2 − 3τ2x3
2
3 − 3τ3x1x

1
3
3 + 1

3
x2

2x3
− 2

3

(18)

derives the chained system (10) to the origin at an exponential rate with bounded

input.

Proof. Note that the linearizing transformations (12) and (13) are well-defined

if the trajectory of z(t) do not cross the discontinuous surface SD. Note also that

x(0) ∈ D1 if and only if z(0) ∈ D0 with

D0 = {z : z2(λ1λ2z1+
λ1λ2 + λ2

3

λ3

z2+z3) > 0, z2(λ2λ3z1+(λ2+λ3)z2+z3) < 0} (19)

Consider the closed-loop system of (16) and (17). It is straightforward to calculate

that

z2
def
= ae−λ1t + be−λ2t + ce−λ3t (20)

where

a =
−1

(λ2 − λ1)(λ3 − λ1)
[τ1z1(0) + λ1(λ2 + λ3)z2(0) + λ1z3(0)]

b =
1

(λ2 − λ1)(λ3 − λ2)
[τ1z1(0) + λ2(λ3 + λ1)z2(0) + λ2z3(0)]

c =
−1

(λ3 − λ1)(λ3 − λ2)
[τ1z1(0) + λ3(λ1 + λ2)z2(0) + λ3z3(0)]

To guarantee z2(t)z2(0) > 0, the following conditions suffice

z2(0)a > 0, z2(0)(a + b) > 0, z2(0)(a + b + c) > 0 (21)

Routine calculation shows that this is equivalent to (19). Therefore, the linearizing

transformations are well-defined. From (14), state x(t) is bounded and converges to

the origin exponentially. From (15), input u(t) also exponentially converge to zero,

and is bounded.
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Remark 1 Note that set D1 is invariant under the feedback law (18). That is,

every trajectory starting from D1 will stay in D1 for good. To see this, it suffices

to show that set D0 is an invariant set of the closed-loop system (16)-(17). Routine

calculation gives that, for any t ≥ 0, we have

λ1λ2z1(t) +
λ1λ2+λ2

3

λ3
z2(t) + z3(t) = (λ3−λ1)(λ3−λ2)

λ3
(ae−λ1t + be−λ2t)

λ2λ3z1(t) + (λ2 + λ3)z2(t) + z3(t) = −(λ2−λ1)(λ3−λ1)
λ1

ae−λ1t

which, together with (21) and z2(0)z2(t) > 0, yield

z2(t)(λ1λ2z1(t) +
λ1λ2+λ2

3

λ3
z2(t) + z3(t)) > 0

z2(t)(λ2λ3z1(t) + (λ2 + λ3)z2(t) + z3(t)) < 0

which is exactly z(t) ∈ D0 for all t ≥ 0.

To steer the chained system (10) globally convergent, we only need to drive any

initial configuration into set D1 by an appropriate control input. For example,

if x2(0) 6= 0, one may first let u2 = −k1sgn(x2) to achieve x2 = 0, then apply

u1 = −k2sgn(x3) until λ3x1x
1
3
3 + x

2
3
3 < 0, and finally make

u2 = −k3sgn(x2 + λ3x
2
3
3 +

3λ2(λ1 + λ3)

λ3

(λ3 + x
1
3
3 )x

2
3
3 )

which will steer the state trajectory into D1.

Denote the respective control laws as

u1 =


 0

−k1sgn(x2)




u2 =


 −k2sgn(x3)

0




u3 =


 0

−k3sgn(x2 + λ3x
2
3
3 + 3λ2(λ1+λ3)

λ3
(λ3 + x

1
3
3 )x

2
3
3 )




u4 =


 x3

1
3

−τ1x2 − 3λ1λ2λ3x1x
1
3
3 − 3τ2x3

2
3 + 1

3
x2

2x3
− 2

3




(22)

Define the logic-based switching controller as

u =





u4 if x ∈ D1

u3 if x 6∈ D1 and λ3x1x
1
3
3 + x

2
3
3 < 0

u1 if x 6∈ D1 and λ3x1x
1
3
3 + x

2
3
3 ≥ 0 and x2 6= 0

u2 else

(23)
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This controller steers system (10) globally convergent. In view of Remark 1, the

total number of switching is less or equal to three.

Remark 2 For linear system (16), the feedback law (17) assigns distinct and real-

valued poles. Other choices of pole location, though straightforward for linear system

(16), may lead to more complicated situation in determining the invariant set D0

and finding the finite switching strategy (23). In particular, if (a couple of) poles

are complex-valued, the situation becomes too complicated to handle.

3.2 Linearization with Smooth State Transformation

As stated in Section 2, different choices for φ(x) satisfying (9) may result in differ-

ent state transformations and the corresponding linearizing feedbacks. Due to the

nonholonomic nature of system (10), if the state transformation is nonsingular, then

its inverse must be discontinuous. Similarly, if the state transformation is smooth,

then its inverse must be singular. Apart from the choice made in Subsection 3.1,

smooth change of coordinates with singular inverse is also feasible.

Consider the smooth function φ(x) = x3 − λ1x1 with λ1 > 0. From Lemma 1, we

have

u1 = x3 − λ1x1 (24)

and system (10) is transformed into a single-input nonlinear system.

Let h(x) = x1. From (5), we have the smooth state and input transformations





z1 = x1

z2 = x3 − λ1x1

z3 = (x2 − λ1)(x3 − λ1x1)

(25)

v = (x3 − λ1x1)u2 − (x2 − λ1)
2(x3 − λ1x1) (26)

Under the smooth state transformation (25) and nonregular feedback control (24)

and (26), the transformed system is of Brunovsky canonical form (16).
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The inverses of the state and input transformations are





x1 = z1

x2 = λ1 + z3

z2

x3 = z2 + λ1z1

(27)





u1 = z2

u2 = v
z2
− z2

3

z2
2

(28)

which are discontinuous.

Thus, linear system (16) is stabilizing by linear feedback control (17).

It can be verified that z(0) ∈ D0 iff x(0) ∈ D2 with

D2 = {x ∈ <3 : λ2 +
λ1λ2x1

x3 − λ1x1

< λ1 − λ3 − x2 <
λ1λ2

λ3

+
λ2λ3x1

x3 − λ1x1

}

Theorem 2 If x(0) ∈ D2, then the feedback control law





u1 = x3 − λ1x1

u2 = −(λ2 + λ3 − λ1)x2 − x2
2 − λ1λ3x3

x3−λ1x1

(29)

steers chained system (10) to the origin at an exponential rate with bounded input.

Proof. From (27) and the fact that z(t) is exponentially convergent, x1(t) and x3(t)

converge to the origin exponentially. Now we prove that x2(t) converge to zero.

Simple calculation gives (see (20))

z2(t) = 1
(λ2−λ1)(λ3−λ1)(λ3−λ2)

(ae−λ1t + be−λ2t + ce−λ3t)

z3(t) = − 1
(λ2−λ1)(λ3−λ1)(λ3−λ2)

(aλ1e
−λ1t + bλ2e

−λ2t + cλ3e
−λ3t)

Note that the assumption x(0) ∈ D2 implies that a 6= 0. Therefore,

x2(t) =
λ1z2(t) + z3(t)

z2(t)
= e−(λ2−λ1)tθ(t)

where θ(t) = b(λ1−λ2)e−(λ2−λ1)t+c(λ1−λ3)e−(λ3−λ1)t

a+be−(λ2−λ1)t+ce−(λ3−λ1)t which bounded by a linear function

of time. As a consequence, x2(t) approaches to zero exponentially.

In the same way, we may prove that u2(t) is bounded and converges to zero with an

exponential rate.
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If x0 6∈ D2, then it can be steered into D2 in finite time by applying some closed-loop

control. For example, we may first apply u2 = −k1sgn(x2−λ1) to achieve x2(t1) = λ1

at t1 ≥ |λ1−x2(0)|
k1

, then apply u1 = −k2sgn(x3−λ1x1) until x1(t2)+ λ3

x3(t2)−λ1x1(t2)
< 0

with t2 > t1 + x1(0)(x3(0)−λ1x1(0))
k2(x3(0)−λ1x1(0))

, and finally, the control

u2 = −k3sgn(x2 − λ1 + λ3 +
λ2(λ1 + λ3)(λ3 + x1(x3 − λ1x1))

2λ3(x3 − λ1x1)
)

will bring the state trajectory into D2.

Denote the respective control laws as

u1 =


 0

−k1sgn(x2 − λ1)




u2 =


 −k2sgn(x3 − λ1x1)

0




u3 =


 0

−k3sgn(x2 − λ1 + λ3 + λ2(λ1+λ3)(λ3+x1(x3−λ1x1))
2λ3(x3−λ1x1)

)




u4 =


 x3 − λ1x1

−(λ2 + λ3 − λ1)x2 − x2
2 − λ1λ3x3

x3−λ1x1




Define logic-based switching controller

u =





u4 if x ∈ D2

u3 if x 6∈ D2 and x1(x3 − λ1x1)
2 + λ3(x3 − λ1x1) < 0

u1 if x 6∈ D2 and x1(x3 − λ1x1)
2 + λ3(x3 − λ1x1) ≥ 0 and x2 6= λ1

u2 else

This controller steers system (10) globally convergent. As D0 being an invariant set

for the transformed linear system (16)-(17), D2 is an invariant set for the original

system (10)-(29). Accordingly, the total number of switching is less or equal to

three.

4 Control of General Single Chained Systems

In general, the discontinuous state transformation mechanism can be extended to

the more general case of nonholonomic single chained form (8) though the smooth
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state transformation approach is hard to visualize for higher order systems. The

design steps are outlined as follows.

Let the first control be

u1 = φ(x) =





x
1
n
n if n is odd

x
1

n+1
n if n is even

(30)

Denote f(x) and g(x) by

f(x) = [φ(x), 0, x2φ(x), x3φ(x), · · · , xn−1φ(x)]T

g(x) = [0, 1, 0, 0, · · · , 0]T

Define the real-valued function h(x) = x1, and new coordinates z and input v as

z = T (x) = [h, Lfh, L2
fh, · · · , Ln−1

f h]T

v = Ln
fh + u2LgL

n−1
f h

The explicit expressions for z and v can easily be calculated, though they become

more and more tedious as n increasing. Note that T (x) is discontinuous on the

surface {x ∈ <n : xn = 0}.

It may be verified that the inverse of z = T (x), denoted by x = T−1(z), is a vector

function with polynomial components. Therefore, exponential convergence of z(t)

implies exponential convergence of x(t) = T−1(z(t)).

Consider the Brunovsky canonical system (6). It is standard that we may find a

linear feedback control

v = −Kv = −
n∑

i=1

kizi

to exponentially stabilize this system. Let W denote the subset of <n such that

every trajectory of the closed-loop system started from W will never cross the surface

{z ∈ <n, z2 = 0}.

Define D = {x ∈ <n : T (x) ∈ W}. For nonholonomic system (8), and the following

control law 



u1 = φ(x)

u2 = −(LgL
n−1
f h)−1(Ln

fh + KT (x))
(31)
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every trajectory of the closed-loop system started from D will exponentially ap-

proach to the origin.

To achieve global convergence, before applying control law (31), a control strategy

must be exploited to drive an arbitrary configuration outside D into D in finite

time. This strategy may depend on the parameters ki, i = 1, · · · , n and could be

determined if the k′is are given.

5 Simulation Studies

In this section, simulation studies are carried out to demonstrate the effectiveness

and procedure of the proposed controllers for three dimensional chained system (10).

Firstly, consider the case when the initial states x(0) = [−4, 1,−2]T ∈ D2. Accord-

ingly, smooth controller (29) can be used. Figure ?? shows the convergence of the

states, while Figure ?? demonstrates the boundedness of the control signals. As

shown in Figure ??, the first control channel never crosses zero, as a consequence,

x2(t) monotonically approaches zero.

For the case when the initial state is outside sets D1 and D2, appropriate control

laws have to be derived to drive into the system into them in a finite time, then the

pure state feedback control (18) or (29) can be applied accordingly. For simplicity,

let us consider the initial state x(0) = [−3,−4, 1]T /∈ D1, as a consequence, switching

logic (23) can be used. Figure ?? shows the converging trajectories of the states,

while Figure ?? demonstrates the discontinuous switching and boundedness of the

control signals. Due to the switching of the control signals, the state trajectories

are not continuous as shown in Figure ??.

6 Conclusion

In this paper, control design strategies have been proposed to exponentially sta-

bilize the nonholonomic chained systems in the framework of nonregular feedback

linearization. Two discontinuous control laws based on logic-driven switching have
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been presented for three dimensional chained systems and simulation study has also

been provided to show the effectiveness of the control schemes. In addition, the

discontinuous state transformation approach was extended to general single chained

systems.
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