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Abstract

If the inverse of a nonsingular polynomial matrix L has a polynomial part
then one can associate with L a module over the ring of proper rational
functions, which is related to the structure of L at infinity. In this paper we
characterize homomorphisms of such modules.
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1 Introduction

According to Rosenbrock [6] a transfer matrixG ∈ Km×p of rational functions
over a field K admits a generalized state space realization

G(s) =
(

C1 C2

)

(

sI − A1 0
0 sN2 − I

)(

B1

B2

)

such that
G1(s) = C1(sI − A1)

−1B1 (1.1)

is the strictly proper part and

G2(s) = C2(sN2 − I)−1B2, (1.2)

where N2 is nilpotent, is the polyonomial part of G. It is well known that
the realizations (1.1) and (1.2) can be constructed by module theoretic ap-
proaches. In the case of (1.1) a construction is due to Fuhrmann [2]. For
a realization theory of anticausal input output maps we refer to Conte and
Perdon [1]. To describe the polynomial models that serve as state spaces for
(1.1) and (1.2) we use the following notation. A rational function f ∈ K(s)
is called proper or causal (resp. strictly proper or strictly causal) if f = 0
or if f 6= 0 and f = p/q, p, q ∈ K[s], q 6= 0, and deg p ≤ deg q (resp.
deg p < deg q). Let K∞(s) denote the ring of proper rational functions over
K. Then

K(s) = K[s]⊕ s−1K∞(s). (1.3)

To (1.3) correspond projection operators

π− : K(s) → s−1K∞(s)

and
π+ = (I − π−) : K(s) → K[s].

Put
(f)0 = (π+f)(0), f ∈ K(s). (1.4)

The decomposition (1.3), the projections π− and π+, and definition (1.4)
extend naturally from K(s) to Kn(s) and Km×p(s).

Let G ∈ Km×p(s) have a realization

G = W1 + P1D
−1

1 Q1 (1.5)

where W1, P1, Q1, D1 are polynomial matrices, with D1 of size n1 × n1. In
Fuhrmann’s theory [4] a state space for a realization (1.1) of π−G is provided
by

VD1
= Kn

1 [s]/D1K
n
1 [s].
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Obviously VD1
is a K[s]-module and therefore also a vector space over K.

The counterpart of (1.5) is a realization

G = W2 + P2D
−1

2 Q2, (1.6)

where P2 and Q2 are proper rational matrices, W2 is strictly proper rational
and D2 is a polynomial matrix, D2 ∈ Kn2×n2 . Define

UD2 = Kn2

∞
(s)/

(

Kn2

∞
(s) ∩D2s

−1Kn2

∞
(s)

)

. (1.7)

Then UD2 is a K∞(s)-module and at the same time a K-vector space. At the
end of this section we shall indicate why UD2 can be taken as a state space
of a realization (1.2) of π+G. Let us mention that the finite and infinite pole

modules (see [9]) of G(s) are given by VD1
and UD2 , if (1.5) is an irreducible

realization and (1.6) satisfies coprimeness conditions of the form (3.14).
We note that a nonsingular polynomial matrix L ∈ Kn×n[s] gives rise to

two types of modules, namely the K[s]-module

VL = Kn[s]/LKn[s]

and the K∞(s)-module

UL = Kn
∞
(s)/

(

Kn
∞
(s) ∩ Ls−1Kn

∞
(s)

)

. (1.8)

Beside realizations there is a wide range of issues such as similarity of state
space models, system equivalence or simulation of restricted input output
maps which involve two polynomial matrices L and L1 and homomorphisms
from VL to VL1

and from UL to UL1 . The K[s]-module homomorphisms from
VL to VL1

are well understood. According to Fuhrmann [4] their description
is based on intertwining relations between L and L1. In this note we study
K∞(s)-module homomorphisms from UL to UL1 . Our characterizations will
be in correspondance with Fuhrmann’s results in Ref. [2, 4]. Comparing the
definitions of VL and UL we observe that LKn[s] is a submodule of Kn[s]
whereas in general Ls−1Kn

∞
(s) is not contained in Kn

∞
(s). Hence it is not

surprising that UL is less easy to handle than VL and that in our study
technical obstacles have to be removed which do not appear in the case of
the module VL.

To obtain a concrete representation of UL we define a map

ρL : Kn
∞
(s) → Kn[s]

by
ρLx = Lπ+L

−1x, x ∈ Kn
∞
(s).
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Put x̄ = ρLx. For q ∈ K∞(s) and x̄ ∈ Im ρL we set q · x̄ = qx. This product
is well defined since

Ker ρL =
(

Kn
∞
(s) ∩ s−1LKn

∞
(s)

)

.

Therefore Im ρL is a K∞(s)-module, isomorphic to the quotient module UL

in (1.8). From now on we identify both modules such that

UL = Im ρL = Lπ+L
−1Kn

∞
(s).

Clearly, UL = 0 if sL−1 is proper rational. A shift operator S−(L) on UL

is given by
S−(L)x̄ = s−1 · x̄, x̄ ∈ UL.

Clearly, S−(L) is a nilpotent endomorphism of UL.
Let us now give a concrete example for the use ofK∞(s)-module UL.Based

on the representation (1.6) of G we derive a realization of π+G having UD2

as its state space. We adapt a construction of [3]. Assume π+G(s) =
∑t

ν=0
Gνs

ν . Define the map B2 : K
p → UD2 by

B2ξ = ρD2 Q2ξ, ξ ∈ Kp.

Put N2 = S−(D2) and define C2 : U
D2 → Km by

C2x̄ = −
(

P2D
−1

2 x̄
)

0
, x̄ ∈ UD2 .

Then a straightforward computation yields

Gν = −C2N
ν
2B2, ν = 0, 1, . . . , t,

such that
t

∑

ν=0

Gνs
ν = C2(sN2 − I)−1B2.

2 Basic facts of the module U
L

For a nonzero proper rational function f = p/q, p, q ∈ K[s], let a degree
function be defined by δ(p/q) = degq−degp. It is well known that

(

K∞(s), δ
)

is a euclidean domain. The units K∗

∞
(s) are the proper rational functions f

with δf = 0. The ideal (s−1) is the unique maximal ideal of K∞(s). Let us
call a matrix P ∈ Kn×n

∞
(s) bicausal if detP ∈ K∗

∞
(s), i.e. if P is invertible

in Kn×n
∞

(s). If W ∈ Km×r(s) has rank n then there exist bicausal matrices
P and Q such that

W = P

(

Σ 0
0 0

)

Q
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with

Σ = diag(s−α1 , . . . , s−αt , sβt+1, . . . , sβn),

− α1 ≤ · · · ≤ −αt < 0 ≤ βt+1 ≤ · · ·βn. (2.1)

The integers −α1, . . . , βn are uniquely determined by W . In particular, if
L ∈ Kn×n[s] is nonsingular then

s−1L = PΣQ (2.2)

for some P,Q ∈ Kn×n
∞

(s)∗ and Σ as in (2.1). In the case of a linear pencil
L(s) = A0 −A1s the polynomials sα1 , . . . , sαt are the elementary divisors of
A0s−A1 belonging to the characteristic root 0. According to [7] the matrix
Σ in (2.2) and (2.1) provides information on the structure of UL. We have

UL ∼= ⊕
{

K∞(s)/s−αjK∞(s), j = 1, . . . , t
}

such that UL is a finitely generated torsion module over K∞(s) with elemen-
tary divisors

s−α1 , . . . , s−αt . (2.3)

We call (2.3) the infinite elementary divisors of L. Then sα1 , . . . , sαt are the
elementary divisors of the shift S−(L), and dimK UL = α1 + · · · + αt. To
describe a dual pairing [8] between the K-linear spaces ULT

and UL we note
that

〈ȳ, x̄〉 = (yTL−1x)0, ȳ ∈ ULT

, x̄ ∈ UL, (2.4)

is a well defined nondegenerate bilinear form on ULT

× UL.

3 Homomorphisms

Our main result is Theorem 3.3 below. Its proof will be based on the sub-
sequent two lemmas. In the following L ∈ Kn×n

∞
(s) and L1 ∈ Kn1×n1

∞
(s) will

be fixed nonsingular polynomial matrices.

Lemma 3.1. A map

Φ : Kn
∞
(s) → UL1 (3.1)

is a K∞(s)-module homomorphism if and only if there exists a matrix Θ ∈
Kn1×n

∞
(s) such that

Φx = ρL1(Θx), x ∈ Kn
∞
(s). (3.2)
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Proof. Let e1, . . . , en be the standard basis of Kn. Assume that Φ in (3.1)
is a K∞(s)-module homomorphism. Then Φei = ρL1θi for some θi ∈ Kn1

∞
(s)

and (3.2) holds with Θ = (θ1, . . . θn). The converse is obvious.

Condition (3.3) below together with a somewhat technical equivalent con-
dition will be crucial.

Lemma 3.2. We have

ΘKer ρL ⊆ Ker ρL1 . (3.3)

with Θ ∈ Kn1×n
∞

(s) if and only if there exist a matrix Θ1 ∈ Kn1×n
∞

(s) and a

matrix Ψ satisfying

Ψ ∈ s−1Kn1×n
∞

(s) and L1Ψ ∈ Kn1×n
∞

(s) (3.4)

such that

(Θ + L1Ψ)L = L1Θ1. (3.5)

Proof. It is evident that (3.5) implies (3.3). To prove the converse im-
plication we note that (3.3) is equivalent to ΘKer ρL ⊆ s−1L1K

n1

∞
(s). If

s−1L is factorized as in (2.2),

s−1L = PΣQ, Σ = diag(A, B),

A = diag(s−α1 , . . . , s−αt), B = diag(sβt+1, . . . , sβn) (3.6)

then Ker ρL = P diag(A, I)Kn
∞
(s). Hence if

G = L−1

1 ΘP diag(A, I)

then (3.3) is equivalent to G ∈ s−1Kn1×n
∞

(s). From (3.6) and

Σ = diag(A, 0) + diag(0, B)

we obtain

L−1

1 ΘL = G diag(I, 0)Q + L−1

1 ΘP diag(O, I)P−1L.

Now choose
Ψ = −G diag(I, O)Q.

Then Ψ satisfies (3.4) and if we put Θ1 = L−1

1 ΘL + ΨL then we have
Θ1 ∈ Kn1×n

∞
(s), which proves (3.5).

We extend the map ρL1 to Kn(s) and define

ρL1

e = L1π+L
−1

1 w, w ∈ Kn(s).
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Theorem 3.3. The map φ : UL → UL1 is a K∞(s)-module homomorphism

if and only if there exist matrices Θ,Θ1 ∈ Kn1×n
∞

(s) such that

ΘL = L1Θ1 (3.7)

and

φx̄ = ρL1

e Θx̄, x̄ ∈ UL. (3.8)

If (3.7) holds then we have

ρL1

e Θx̄ = ρL1Θx (3.9)

for all x ∈ Kn
∞
(s).

Proof. Let us show first that (3.7) implies (3.9). We have

ρL1

e Θx̄ = L1π+L
−1

1 Θx̄ = L1π+Θ1L
−1x̄ =

L1π+Θ1L
−1x = L1π+L

−1

1 Θx = ρL1Θx. (3.10)

Now let φ : UL → UL1 be a K∞(s)-module homomorphism. Define Φ = φρL

such that
Φx = φx̄, x ∈ Kn

∞
(s). (3.11)

Then Φ : Kn
∞
(s) → UL1 is also a K∞(s)-module homomorphism. Because

due to Lemma 3.1 there exists a Θ̃ ∈ Kn1×n
∞

(s) such that

Φx = ρL1Θ̃x. (3.12)

It follows from (3.11) that x, v ∈ Kn
∞
(s) and x̄ = v̄ imply ρL1Θ̃x = ρL1Θ̃v.

Therefore we obtain
Θ̃Ker ρL ⊆ Ker ρL1 . (3.13)

We can replace Θ̃ in (3.12) and (3.13) by Θ = Θ̃ + L1Ψ if Ψ ∈ s−1Kn1×n
∞

(s)
and L1Ψ ∈ Kn1×n

∞
(s). From Lemma 3.2 we know that starting from (3.13)

we can find a Ψ which yields (3.7) with Θ1 ∈ Kn1×n
∞

(s). Thus we have shown
that

φx̄ = ρL1Θx = ρL1

e Θx̄

with Θ satisfying a relation (3.7).
Conversely, if a map φ : UL → UL1 is defined by (3.7) and (3.8) then it

is easy to verify that φ is a K∞(s)-module homomorphism.

We remark that Theorem 3.3 remains true if condition (3.7) is replaced
by

π+L
−1

1 Θ = π+Θ1L
−1.

Given the duality (2.4) between UL and ULT

it is not difficult to obtain
the dual map of φ. We set ¯̄w = ρL

T
1 w, w ∈ Kn1

∞
(s).
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Theorem 3.4. Let Θ,Θ1 ∈ Kn1×n
∞

(s) be such that ΘL = L1Θ1. Let

φ : UL → UL1 be defined by (3.8). Then the dual map

φ∗ : ULT
1 → ULT

is given by

φ∗ ¯̄w = ρL
T

ΘT
1w, ¯̄w ∈ ULT

1 .

We now turn to surjectivity and injectivity. For a pair Θ ∈ Kn1×n
∞

(s) and
L1 ∈ Kn1×n1 we set (Θ, s−1L1)l = I if there exist proper rational matrices C
and D such that

ΘC + s−1L1D = I. (3.14)

Similarly, for Θ1 ∈ Kn1×n
∞

(s) and L ∈ Kn×n we write (Θ1, s
−1L)r = I if

(ΘT
1 , s

−1LT )l = I.

Theorem 3.5. Let φ : UL → UL1 be defined by (3.9) and (3.7). Then

(i) φ is surjective if and only if (Θ, s−1L1)l = I,

(ii) φ is injective if and only if (Θ1, s
−1L)r = I.

Proof. (i) Assume first that φ is surjective. Let w ∈ Kn1

∞
(s) be given.

Then ρL1w = ρL1Θv for some v ∈ Kn
∞
(s). We have w−Θv ∈ Ker ρL1 , which

implies
w ∈ ΘKn

∞
(s) + s−1L1K

n
∞
(s)

or equivalently (Θ, s−1L1)l = I. Conversely, suppose that (3.14) holds. To
show that w = ρL1x is in φUL we note that (3.14) implies x = Θv+ s−1L1x2

for some v ∈ Kn
∞
(s), x2 ∈ Kn1

∞
(s). Because of s−1L1x2 ∈ Ker ρL1 we obtain

w = ρL1Θv = φv̄.
(ii) By duality the statement follows at once from (i).

If M is a finitely generated p-module over a principal ideal domain and S
is a submodule and Q is a quotient module of M then the relations between
the invariants of M and those of S and Q are well known (see e.g. [5, p.
92, 93]). We complete our note with a corresponding observation on the
existence of surjective and injective homomorphisms. Let

s−α1 , . . . , s−αt , α1 ≥ · · · ≥ αt,

and
s−γ1 , . . . , s−γp, γ1 ≥ · · · ≥ γp,

be the infinite elementary divisors of L and L1, respectively. Then there
exists a surjective K∞(s)-module homomorphism φ : UL → UL1 if and only
if

t ≥ p and α1 ≥ γ1, . . . , αp ≥ γp,
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and there exists an injective φ if and only if

t ≤ p and α1 ≤ γ1, . . . , αt ≤ γt.
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