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Abstract

For a class of in(nite-dimensional systems we obtain a simple frequency domain solution for the suboptimal Nehari
extension problem. The approach is via J -spectral factorization, and it uses the concept of an equalizing vector. Moreover,
the connection between the equalizing vectors and the Nehari extension problem is given. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The Nehari problem is naturally formulated in frequency domain: given a matrix-valued function G, (nd the
distance from G to the stable matrix-valued functions. The problem of (nding K that achieves the minimum
distance is called the Nehari extension problem. In this paper we consider the Nehari extension problem
together with a special version of this problem known as the suboptimal Nehari extension problem. This is:
given a matrix-valued function G and a �¿ 0, (nd (if it exists) a stable K such that

‖G + K‖∞ = ess sup
!∈R

‖G(j!) + K(j!)‖¡�:

These problems have received wide attention in the mathematical systems and control literature (see [1,3,7,8,
10,12,19–22]). Several control problems can be reduced to a Nehari problem (see e.g. [9, Chapter 9]). In [6],
the suboptimal Nehari extension problem is used, in an essential way, for solving the standard H∞-suboptimal
control problem for a class of in(nite-dimensional systems. For the solution of the Nehari extension problem,
the authors of [6] refer to the abstract results in [2,3].
Our class of in(nite-dimensional systems consists of systems whose impulse responses can be decomposed

into a delta distribution at zero plus an integrable function. For this class of systems we give a direct frequency
domain solution for the suboptimal Nehari extension problem. Using similar techniques, one can show that the
same result holds for the systems considered in [6], i.e., systems whose impulse response is a delta function
plus a weighted integrable function. The approach is via J -spectral factorization, and uses a recent result
obtained in [15]. Via a simple proof, we show that the suboptimal Nehari extension problem is solvable if
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and only if a certain J -spectral factorization exists. The simple proof is based on the concept of equalizing
vectors, which was introduced, for (nite dimensional systems, in [17]. The connection between the equalizing
vectors and the Nehari extension problem is provided in Section 4.

2. Preliminaries

We introduce our class of stable transfer functions via their impulse responses. We say that f∈A if f
has the representation

f(t) =

{
fa(t) + f0�(t); t¿ 0;

0; t ¡ 0;

where f0 ∈C;
∫∞
0 |fa(t)| dt ¡∞ and � represents the delta distribution at zero. Let f̂ denote the Laplace

transform of f. Then Â de(ned as Â:={f̂ |f∈A} is our class of stable transfer functions. By the de(nition
of A it is easy to see that for every f∈A; f̂ is well-de(ned on IC+:={s∈C |Re(s)¿ 0}, it is holomorphic
and bounded on C+:={s∈C |Re(s)¿ 0}, and continuous on jR:={s∈C |Re(s) = 0}. Furthermore, Â is
a commutative Banach algebra with identity under pointwise addition and multiplication (see [9, Corollary
A:7:48]).
For (matrix-valued) functions we de(ne F∼(s)=[F(− Is)]∗, where ∗ denotes the transpose complex conjugate.

We also consider the Wiener algebra

Ŵ = {f̂∈L∞ | f̂ = f̂ 1 + f̂ 2 with f̂ 1; f̂
∼
2 ∈ Â};

where L∞ is the space of essentially bounded functions on the imaginary axis. Ŵ is a Banach algebra under
pointwise addition, multiplication, and scalar multiplication. The elements of Ŵ are bounded and continuous
on the imaginary axis, and their limit at in(nity exists. For more properties of Ŵ we refer to [4].
The space H2 denotes the standard Hardy space on the right-half plane. The space H⊥

2 is the orthogonal
complement of H2 with respect to the inner product in the space L2 of square integrable functions on the
imaginary axis. We denote by Ln×m

∞ ; Â
n×m

; Ŵ
n×m

, the classes of n×m matrices with entries in L∞; Â; Ŵ,
respectively. We omit the size of the matrix when there is no danger of confusion. A square matrix-valued
function G ∈Ŵ is invertible over Ŵ if and only if detG(j!) 	=0 for !∈R∪ {∞} (see [5]). We say that a
matrix-valued function is bistable if it is stable, its inverse exists and it is also stable.
We consider the signature matrix

J�;n;m =
[
In 0
0 −�2Im

]
;

where n; m∈N and � a strictly positive real number. Sometimes we simply use J without indices.

De�nition 2.1. Let Z = Z∼ ∈Ŵ. Z has a J -spectral factorization if there exists a bistable matrix-valued
function V such that

Z(s) = V∼(s)JV (s) for all s∈ jR:

Such a matrix V is called J -spectral factor of the matrix-valued function Z .

De�nition 2.2. A vector u is an equalizing vector for the matrix-valued function Z ∈Ŵ if u is a non-zero
element of H2 and Zu is in H⊥

2 .

The following theorem gives equivalent conditions for the existence of a J -spectral factorization for a
matrix-function Z = Z∼ ∈Ŵ. The proof can be found in [15].
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Theorem 2.3. Let Z =Z∼ ∈Ŵ be such that det Z(s) 	=0; for all s∈ jR∪{∞}. The following statements are
equivalent:
(a) Z admits a J -spectral factorization;
(b) Z has no equalizing vectors;

In order to prove the main result of this paper we need the following technical lemma.

Lemma 2.4. Let P ∈Ŵ
(nw+nz)×(ny+nz); and suppose that

P∼(j!)J�;nw;nzP(j!) = Jny;nz for almost all !∈R: (1)

Consider the equality[
X1

X2

]
=
[
P11 P12

P21 P22

] [
Q1

Q2

]
(2)

with X2 ∈ Â
nz×nz

; Q1 ∈ Â
ny×nz

; Q2 ∈ Â
nz×nz

; P21 ∈ Â
nz×ny

; P22 ∈ Â
nz×nz

. Then the following two conditions
are equivalent:
(a) X2 is bistable and ‖X1X−1

2 ‖∞ ¡�,
(b) P22 and Q2 are bistable and ‖Q1Q−1

2 ‖∞ ¡ 1

For a proof of this lemma, see [18].

3. The suboptimal Nehari extension problem

The Hankel operator with symbol G ∈L∞, is de(ned as

HG :H2 → H⊥
2 ; HGu=�−Gu

for u∈H2. Its adjoint is

H∗
G :H⊥

2 → H2; H∗
Gv=�+G∼v;

for v∈H⊥
2 . Here �+ and �− are the orthogonal projection from L2 to H2 and H⊥

2 , respectively (see [11]).
Using the fact that the suboptimal Nehari extension problem is trivial for stable matrix-valued functions,

we can restrict this problem, without loss of generality, to antistable matrix-valued functions. The following
theorem is our main result. The (nite dimensional version of this theorem is equivalent to a result of Kimura
[16, Theorem 7:4].

Theorem 3.1. Let G be a matrix-valued function such that G∼ ∈ Â
k×m

; and � a positive real number. The
following statements are equivalent:
(a) ‖HG‖¡�.

(b) There exists K(s)∈ Â
k×m

such that

‖G + K‖∞ ¡�: (3)

(c) There exists "(s)∈ Â
(k×m)×(k×m)

a J-spectral factor for

W (s) =
[

Ik 0
G∼(s) Im

] [
Ik 0
0 −�2Im

] [
Ik G(s)
0 Im

]
(4)

with "−1
11 (s)∈ Â

k×k
.
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Furthermore, all solutions for the suboptimal Nehari extension problem are parameterized by

K(s) = X1(s)X2(s)−1;

where [
X1(s)
X2(s)

]
= "(s)−1

[
Q(s)
Im

]
; (5)

with Q(s)∈ Â
k×m

; ‖Q‖∞ ¡ 1.

Remark 3.2. The equivalence between the (rst two items is well-known. We only present the proof of the
equivalence between the items (b) and (c).

Proof. (b) ⇒ (c). It is easy to see that W (s) = W∼(s); and detW (s) 	=0 for all s∈ jR ∪ {∞}. In order to
prove that the matrix-valued function W (s) has a J -spectral factorization it is suLcient to show that W (s)
has no equalizing vectors (see Theorem 2.3).
Let u be an equalizing vector for the matrix-valued function W (s). This means that

u=
[
u1
u2

]
∈H2; u 	=0; Wu =

[
v1
v2

]
∈H⊥

2 : (6)

So, we have that[
v1
v2

]
=Wu

[
Ik 0
G∼ Im

] [
Ik 0
0 −�2Im

] [
Ik G
0 Im

] [
u1
u2

]
=
[

Ik G
G∼G∼ G − �2Im

] [
u1
u2

]
;

which is equivalent to

u1 + Gu2 = v1; G∼u1 + G∼Gu2 − �2u2 = v2:

In the (rst equality we split Gu2 using the projections �− and �+. We obtain that

u1 +�+Gu2 = v1 −�−Gu2; G∼(u1 + Gu2)− �2u2 = v2: (7)

From (6) and the de(nition of the projection operators we have that the left-hand side of the (rst equality
lies in H2 and the right-hand side lies in H⊥

2 . This implies that

u1 +�+Gu2 = 0 and v1 −�−Gu2 = 0: (8)

Now we can replace u1 in the second equality of (7) by −�+Gu2. Splitting the term G∼�−Gu2 according
to the projections, we obtain that

G∼�−Gu2 − �2u2 = v2 ⇔�−G∼�−Gu2 +�+G∼�−Gu2 − �2u2 = v2

⇔�+G∼�−Gu2 − �2u2 = v2 −�−G∼�−Gu2:

Using similar arguments as before, we have that

v2 =�−G∼�−Gu2 (9)

and

�+G∼�−Gu2 − �2u2 = 0;

which is equivalent to

(H∗
GHG − �2Im)u2 = 0: (10)

Since (b) holds, we have that (a) holds, and thus we obtain that u2 must be zero. From (8) we see that also
u1 must be zero as well, so u=0. We conclude that the matrix-valued function W has no equalizing vectors,
which by Theorem 2.3 implies that W has a J -spectral factorization.
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Let " be a J -spectral factor. We prove that "11(s)−1 is a stable matrix-valued function. The following
equality holds:[

G + K
I

]
=
[
I G
0 I

] [
K
I

]
=
[
I G
0 I

]
"−1"

[
K
I

]
=
[
P11 P12

P21 P22

] [
Q1

Q2

]
; (11)

where [
P11 P12

P21 P22

]
=
[
I G
0 I

]
"−1 and

[
Q1

Q2

]
= "

[
K
I

]
(12)

with P21; P22; Q1 and Q2 stable matrix-valued functions. Now, by the de(nition of ",

P∼J�;k;mP = ("−1)∼
[
I G
0 I

]∼
J�;k;m

[
I G
0 I

]
"−1 = J:

Combining this with (3), we conclude from Lemma 2.4 that P22 is bistable. Using matrix block manipulation,
it can be proved that "−1

11 = V11 − V12P−1
22 V21, where V = "−1. Since all the elements expressing "−1

11 are
stable, we have that "−1

11 is also stable.
Applying Lemma 2.4 once more, we obtain that Q2 is a bistable matrix-valued function. Multiplying relation

(12) to the left with "−1 and to the right with Q−1
2 we have that[

KQ−1
2

Q−1
2

]
= "

[
Q1Q−1

2
I

]
: (13)

Denoting X1 = KQ−1
2 and X2 = Q−1

2 , gives

X1X−1
2 = KQ−1

2 Q2 = K

and, using (13), X1 and X2 satisfy (5), with Q = Q1Q−1
2 .

(c) ⇒ (b). Suppose that there exists a J -spectral factor " for the matrix-valued function W such that "11

is bistable. Let V denote "−1. Using matrix block manipulation, it can be proved that

V22(s)−1 = "22(s)− "21(s)"11(s)−1"12(s):

Since "22(s); "21(s); "11(s)−1 and "12(s) are stable, also V22(s)−1 is stable. So, we conclude that V22 is a
bistable matrix-valued function. If we de(ne K0 = V12V−1

22 , then k0 is stable. Furthermore, from the equality[
G + K0

Im

]
=
[
Ik G
0 Im

]
V
[

0
V−1
22

]
and Lemma 2.4, we see that K0 is a solution for the suboptimal Nehari extension problem.
Using again Lemma 2.4, it is easy to see that any function of the form K = X1X−1

2 where X1 and X2 are
given by (5), is a solution for the suboptimal Nehari extension problem.

Remark 3.3. In case that the matrix-valued function W (s); de(ned in (4) admits a J -spectral factorization; we
can construct a J -spectral factor using the procedure described in [13–15]. The disadvantage of the method
used there is that it relies on the existence of solutions for two equations involving projection operators.

Corollary 3.4. Let

u=
[
u1
u2

]
∈H2

be an equalizing vector for the matrix-valued function W (s) de;ned in (4). The following assertions hold:
(a) u has the following representation:

u=
[−�+Gu2

u2

]
: (14)
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(b) u2 is an eigenvector for the compact nonnegative operator H∗
GHG corresponding to the eigenvalue �2.

Moreover; u2 can be chosen to have norm one.
(c) If v=Wu∈H⊥

2 ; then

v=
[
v1
v2

]
=
[

HGu2
�−G∼HGu2

]
: (15)

(d) (u2; v1=�) is a Schmidt pair corresponding to �; a nonzero singular value of the Hankel operator with
symbol G.

Proof. (a) Using (8); we see that u has the representation (14).
(b) Let

u=
[
u1
u2

]
∈H2

be an equalizing vector for the matrix-valued function W (s); de(ned in (4). From (10), we see that u2 is
an eigenvector for H∗

GHG corresponding to the eigenvalue �2, and that, without loss of generality, u2 can be
chosen to have norm one.
(c) From (8), (9), and the de(nition of the Hankel operator, we obtain the representation (15) for the

vector v=Wu.
(d) From (15) we see that v1 = HGu2, so

HGu2 = �
v1
�

and using (b)

H∗
G

(v1
�

)
= H∗

G

(
HGu2
�

)
=

1
�
H∗

GHGu2 = �u2:

Corollary 3.5. If (%;  ) is the Schmidt pair of the Hankel operator with symbol G corresponding to a
nonzero singular value �; then

u=
[−�+G%

%

]

is an equalizing vector for the matrix-valued function W (s) de;ned in (4); and

Wu= �
[

 
�−G∼ 

]
: (16)

Proof. Let (%;  ) be the Schmidt pair of the Hankel operator with symbol G corresponding to a nonzero
singular value �. We have the following sequence of equalities:

Wu=
[

Ik G
G∼ G∼G − �2Im

] [−�+G%
%

]
=
[ −�+G%+ G%
−G∼�+G%+ G∼G%− �2%

]

=
[

�−G%
G∼�−G%− �2%

]
=
[

�−G%
�−G∼�−G%+ (�+G∼�−G%− �2%)

]

=
[

�−G%
�−G∼�−G%+ (H∗

GHG%− �2%)

]
=
[

�−G%
�−G∼�−G%

]

=
[

HG%
�−G∼HG%

]
∈H⊥

2 :
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This shows that u is an equalizing vector for the matrix-valued function W (s) de(ned in (4). Since (%;  ) is
the Schmidt pair of the Hankel operator with symbol G corresponding to the nonzero singular value �; we
have that HG%= � . So; relation (16) is satis(ed.

4. The Nehari extension problem and equalizing vectors

The problem of (nding K ∈Hk×m
∞ that achieve the minimum distance in

inf
K∈Hk×m∞

‖G + K‖∞ = ‖HG‖

is called the Nehari extension problem. The following theorems give connections between the equalizing
vectors and the solutions of the Nehari extension problem.

Theorem 4.1. Suppose that G ∈Ŵ
k×m

. Then any K0 ∈Hk×m
∞ solving the Nehari extension problem; that is;

satisfying

‖G + K0‖∞ = ‖HG‖ (17)

also satis;es

(G + K0)u2 = HGu2; (18)

where u2 is an eigenvector for the compact nonnegative operator H∗
GHG corresponding to the largest eigen-

value ‖HG‖2. Moreover; G + K0 has constant modulus almost everywhere on the imaginary axis.

Proof. We have that the Hankel operator with symbol G is a compact operator (see [9; Lemma 8:1:7]); and
the equality

‖HGu2‖H⊥
2
= ‖HG‖ ‖u2‖H2 (19)

holds (see [9; Lemma 8:1:12]). The rest of the proof follows from Theorem 8:1:11 in [9].

The following theorem provides a connection between the equalizing vectors and solutions of the Nehari
extension problem.

Theorem 4.2. Let � = ‖HG‖. Suppose that G ∈Ŵ
k×m

is a given matrix-valued function and that

u=
[
u1
u2

]
∈H2

is an equalizing vector for the matrix-valued function W (s); de;ned in (4). If there exists a solution K0 of
the Nehari extension problem; then on the imaginary axis it satis;es

K0u2 = u1: (20)

Proof. Let

u=
[
u1
u2

]
∈H2

be an equalizing vector for the matrix-valued function W (s); de(ned in (4). By Corollary 3:4b we know that
u2 is an eigenvector corresponding to the eigenvalue ‖HG‖2. If K0 is a solution for the Nehari extension
problem; then by Theorem 4.1 it must satisfy

(G + K0)u2 = HGu2;
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which is equivalent to

K0u2 =−Gu2 +�−Gu2 =−�+Gu2 = u1 from (14):

So; the equality (20) holds.

Remark 4.3. From; relation (20) one can see that the equalizing vector is (xing the solution of the Nehari
extension problem in the direction of the eigenvector corresponding to the largest singular value of the Hankel
operator with symbol G.

If the symbol is a scalar function, an equalizing vector can be used to prove the uniqueness of the solution
for the Nehari extension problem.

Corollary 4.4. Consider the scalar transfer function g∈Ŵ and let � = ‖HG‖. Suppose that

u=
[
u1
u2

]
∈H2

is an equalizing vector for the matrix-valued function W (s); de;ned in (4). If there exists a solution k0 of
the Nehari extension problem; it is unique; and on the imaginary axis it is given by

k0 =
u1
u2

: (21)

Proof. Since u2 ∈H2; it is zero; at most; on a set of measure zero (see [9; Lemma A:6:20]) of the imaginary
axis. This means that we can divide the equality (20) through u2 and obtain (21).

Remark 4.5. For the scalar case; the previous corollary gives the solution for the Nehari extension problem;
providing that we have an equalizing vector. From Theorem 4.1 we have that g + k0 has constant modulus
almost everywhere on the imaginary axis. This means that once we have an equalizing vector; we (nd a k0
which “equalizes” g over the imaginary axis (complete g to a function of constant modulus almost everywhere
on the imaginary axis).

Remark 4.6. The Nehari extension problem corresponding to every G ∈ Â
k×m

has a unique solution. Let
us denote it by K . If (�n)n∈N is a decreasing sequence with limit ‖HG‖ and (Kn)n∈N is a corresponding
sequence of solutions (can be choosen rational) for the suboptimal Nehari extension problems; then there
exists a subsequence K((n) such that

lim
n→∞ 〈K((n)f(s); g(s)〉L2 = 〈Kf(s); g(s)〉L2

for every f∈Lm
2 and every g∈Lk

2.
A proof for the results stated in the previous remark can be found in [9, Theorem 8:3:8].

Remark 4.7. The results stated in this paper hold also for

Ŵ− = {f̂∈L∞ | f̂ = f̂1 + f̂2 with f̂1; f̂
∼
2 ∈ Â−}:

where the impulse responses in A− are the sum of a weighted L1-function with a delta function. More
precisely; we say that f∈A− if f has the representation

f(t) =

{
fa(t) + f0�(t); t¿ 0;

0; t ¡ 0;
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where f0 ∈C;
∫∞
0 e)t |fa(t)| dt ¡∞ for some )¿ 0 and � represents the delta distribution at zero. The class

of impulse responses Â− consists of the Laplace transforms of functions in A−. The set Â− is the class of
stable transfer functions from [6].
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