A DUALITY PRINCIPLE FOR HOMOGENEOUS
VECTORFIELDS WITH APPLICATIONS
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ABSTRACT. We introduce a duality principle for homogeneous vectorfields. As
an application of this duality principle, stability and boundedness results for
negative order homogeneous differential equations are obtained, starting from
known results for positive order homogeneous differential equations.
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1. INTRODUCTION

Homogeneous vectorfields are vectorfields possessing a symmetry with respect
to a family of dilations. They play a prominent role in various aspects of nonlinear
control theory. See, for example, (Hermes, 1991; Kawski, 1990; M’Closkey and
Murray, 1993; Morin et al., 1997) for some applications in feedback control.

Recently, interesting results have been obtained for the particular class of positive
order homogeneous differential equations: Peuteman and Aeyels (1999) have proven
that a time-varying positive order homogeneous differential equation is asymptoti-
cally stable if the associated averaged differential equation is asymptotically stable;
and Peuteman et al. (1999) have proven that a time-varying positive order homo-
geneous differential equation is bounded if each associated time-frozen differential
equation is bounded. These results allow to reduce a stability and boundedness
analysis of a time-varying differential equation to an analysis of time-invariant dif-
ferential equations, possibly resulting in an important simplification. The proofs of
these results exploit the inherently slow character of solutions of positive order ho-
mogeneous differential equations near the origin, and the inherently fast character
far away from the origin.

In the present paper, we prove the dual results for negative order homogeneous
differential equations: a time-varying negative order homogeneous differential equa-
tion is asymptotically stable if each time-frozen differential equation is asymptot-
ically stable; it is bounded if the averaged is bounded. We provide an indirect
proof for these results, obtaining them as corollaries of the above-mentioned results
for positive order homogeneous differential equations: we first introduce a duality
principle for homogeneous vectorfields; this duality then provides an elegant way to
pass from the results for positive order homogeneous differential equations to the
dual results for negative order homogeneous differential equations.

We end this introduction with a well-known example from the literature. Con-
sider the differential equation
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which is a classic example illustrating the concept of finite escape time. In order
to determine its nonzero solutions, it is convenient to introduce the new variable
Yy = % yielding

g=—1.

Notice that this change of variable has transformed a homogeneous differential
equation of order 1 into a homogeneous differential equation of order —1 with
respect to the standard dilation'. The duality transformation to be introduced in
the present paper may be seen as a generalization of this particular transformation,
casted in a geometric framework.

This paper is organized as follows. Having introduced the preliminaries in Sec-
tion 2, we define in Section 3 a duality transformation between positive and negative
order homogeneous vectorfields. We start Section 4 with recalling a stability and
boundedness result for positive order homogeneous differential equations. Then,
as an application of the duality concept, we obtain the dual results for negative
order homogeneous differential equations. These results are illustrated on a par-
ticular example in Section 5. Section 6 presents a generalization of the duality
transformation and Section 7 concludes the paper.

2. PRELIMINARIES

2.1. Time-varying vectorfields and differential equations. This paper is con-
cerned with differential equations on R} := R™ \ {0}. Notice that we exclude the
origin from the state space. Although not standard, this seems to be natural within
the study of homogeneous vectorfields; it allows to avoid complications that would
otherwise arise from singularities at the origin. We emphasize that results obtained
in this framework may be reinterpreted in terms of differential equations on the
complete state-space R, as is illustrated in Section 5.

We take Rff with the relative topology induced by the usual topology on R". Let
F(RY) (resp. X (R )) be the set of all real-valued functions f : RxRy — R : (¢,z) —
f(t,x) (resp. the set of all vector-valued maps X : R x R} — R" : (¢,z) — X(t,x))
that are

1. continuous in (¢, ),
2. locally Lipschitz in x uniformly with respect to ¢t € R,
3. bounded in ¢ uniformly with respect to x in compact subsets of Rf .

An element X of X' (Ry) is called a time-varying vectorfield. Clearly X(Ry) is closed
under summation and multiplication with functions f € F(Ry).
Associated to a time-varying vectorfield X € X' (Ry) is a differential equation

z=X(t,x)

on R} that has the existence and uniqueness property of trajectories. Its trajectory
passing through state xo at time ¢, evaluated at time ¢ is denoted by (¢, to, xo)-
The map (t, to, xo) — x(t, o, o) is called the flow of this differential equation.

Remark 1. In general the flow = need not be forward complete: trajectories may
escape to infinity or approach the origin in finite time. Similarly, the flow = may
not, be backward complete.

We adhere to the convention according to which a linear vectorfield is homogeneous of order
zero with respect to the standard dilation.



2.2. Push-forward. Let ¢ : R — RZ? be a smooth? diffeomorphism. We are
interested in “pushing forward” functions f € F(Rf}) and vectorfields X € X' (Rf)
by this diffeomorphism.

The push-forward ¢, f of f by ¢ is defined as

Guof :RXRG = R (t,2) = (9 f)(t,2) = f(t, 07 (). (1)
It is easy to see that ¢.f is again in F(RY).
For vectorfields, we first introduce the tangent map T, ¢ of ¢ at x € Rf:
T, :R* 5 R" : v~ (Tp0)(v) = Dp(x) v

where D¢(z) is the Jacobian of ¢ at z and where - indicates the matrix product.
The push-forward ¢, X of X by ¢ is then defined as

G X R X R = R : (t,2) = (6. X)(t,2) = (Ty1(0)9) (X (1,67 (). (2)
It is easy to see that ¢.X is again in X' (R]}).
2.3. Homogeneity. We give a geometric definition of homogeneity, in the spirit

of (Rosier, 1993; Kawski, 1995; M’Closkey, 1997).
Given r € (Rso)", we introduce the 1-parameter family of dilations d) (A > 0)

Oy : Ry = Ry :x—=0x(z) = (AN ay,..., A ™xp). (3)
The orbits O, = {0x(z) : A > 0} of this 1-parameter family of dilations are called

homogeneous rays.
A time-varying vectorfield X € X (R{) is homogeneous of order T € R if

(00 X =A"TX VA. (4)
A homogeneous norm is a smooth function p : Rf — Ry that satisfies
On)p=A""p VA (5)

Remark 2. Equation (4) is equivalent to
X (t,06z) = N0, X (¢, ) VA t, .
Equation (5) is equivalent to
p(0xz) = Ap(x) VA, z.

We thus recover the characterization of homogeneity as in (e.g. Peuteman et al.,
1999; Moreau and Aeyels, n.d.).

2.4. Stability and boundedness.

Definition 1 (local uniform asymptotic stability). A differential equation & = X (¢, x)
on Ry with flow z(t, o, 0) is locally uniformly asymptotically stable if
S-1 Vea > 0, de; > 0 such that Vig, Vo, if p(zo) < ¢ then p(x(t,to,x0)) < co
Vt > to in the domain of z(-,tg, )3,
S-2 Je; > 0 such that Veo > 0, 3T > 0 such that Vi, Vzo, if p(zo) < ¢; then
p(x(t, to,x0)) < c2 Yt > to + T in the domain of z(-, %o, o).

Definition 2 (boundedness). A differential equation ¢ = X (¢, ) on R} with flow

z(t,to, o) is bounded if

B-1 Ve; > 0, Jeo > 0 such that Vig, Vo, if p(zo) < ¢1 then p(z(t, to,z0)) < ¢
Vt > to in the domain of z(-, g, zo),

2That is, of class C'®.

3We include the restriction “in the domain of z(-, ¢y, 20)” because z(-, 9, zo) may approach the
origin in finite time and thus may not be forward complete. Similar remarks hold for conditions
S-2, B-1 and B-2 introduced further in the paper.



B-2 dca > 0 such that Ve; > 0, 3T > 0 such that Vig, Vo, if p(zg) < ¢ then
p(x(t, to,x0)) < c2 YVt >t + T in the domain of z(-, o, o).

Remark 3. The notions of local uniform asymptotic stability and boundedness are
defined in terms of a homogeneous norm p. This is merely a matter of convenience:
replacing the homogeneous norm p by the Euclidean norm would result in equivalent
definitions.

Remark 4. The notion of local uniform asymptotic stability introduced in Def-
inition 1 differs from the classical notion of local uniform asymptotic stability of
an equilibrium point at the origin, in that the origin itself is excluded from the
state-space.

Remark 5. Condition B-1 (resp. B-2) of Definition 2 corresponds to the notion of
uniform boundedness (resp. uniform ultimate boundedness) from (Yoshizawa, 1966;
Peuteman et al., 1999) for differential equation on R™.

3. DUALITY TRANSFORMATION

Associated to a 1-parameter family of dilations §) and a homogeneous norm p,
we introduce the smooth map

SRy = Ry 1z S(x) = 0p(0)-2 (7). (6)

Clearly S leaves homogeneous rays invariant, and on homogeneous rays, S is com-
pletely characterized by

p(S(2)) = p(z)~". (7)
Indeed,
p(S(x)) = p(0p(a)-2(x)) (definition of S)
= p(z) 2 p(x) (homogeneity of p)
= p(a).

The map S may be interpreted as a reflection with respect to the homogeneous
unit ball {p(z) = 1} along homogeneous rays.

It follows that S o S is the identity map on Ry, and thus, in particular, S is a
smooth diffeomorphism. Furthermore

Lemma 1. S and the 1-parameter family of dilations 0y are related by
(5>\OS:SO(5)\—1 V. (8)

Proof. Both the left and the right hand side of (8) leave homogeneous rays invariant,
and on homogeneous rays we have:

p(6x 0 S)(x)) = Ap(S(x)) (homogeneity of p)
= Ap(z)~! (equation (7))
=(A"tp(x)
= p(6y-12)7" (homogeneity of p)

= p((So8y-1)(x)  (equation (7)).



We now introduce three F (R )-linear maps from X (R%) onto X' (R ): X ~— X5,
X~ X7 and X — XP defined by

X% =5,X, 9)
XT(t,x) = =X (~t,z), (10)
XP = (x%T. (11)

The two operations S and 7' commute and we may thus write
XD = (x5)T = (xT)S = x5,
Furthermore
X9 = XTT = xPP = x, (12)

The differential equation # = X P () is called the dual differential equation associ-
ated to z = X (z).
The trajectories of X, X°, X7 and X7 are related:

Lemma 2. The following four statements are equivalent:

(i) t — &(t) is a solution of © = X (t,x).

(i) t = (S0 &)(t) is a solution of & = X5(t, ).

(iii) t — £(—t) is a solution of & = XT(t,x).

(iv) t = (S o&)(—t) is a solution of & = XP(t,z).
Proof. “(i)=(ii)” is a property of the push-forward. “(i)=(iii)” follows from direct
verification. These two properties together imply “(i)=(iv)” since X? = X5T.
The inverse implications follow from X% = XTT = XPP = X O

The flows of X and X, respectively denoted by z and z”, are thus related by:
x(tl,to,wo) =TI < CED(—t(), —tl, S(Cﬂl)) = S(CE()) (13)

Duality Theorem 1 (stability and boundedness). The following two statements
are equivalent:

(i) © = X(t,z) is locally uniformly asymptotically stable.

(ii) & = XP(t,z) is bounded.

Schematically Theorem 1 may be represented as follows:

local uniform asymptotic stability 25 boundedness

We emphasize that, although the duality transformation is based on a family of
dilations and a homogeneous norm, the Duality Theorem 1 applies to general dif-
ferential equations on Rf, not necessarily homogeneous.

Proof. Assume that & = XP(t,z) does not satisfy condition B-1 of Definition 2;
that is,
Je; > 0 such that Ves > 0, Jitg,t1, 29,21 with
t1 >to, plzo) <eci, plx1) > e and 2P (t1,t0,20) = 1. (14)
With the notation
c1 = 1/6, to = —1t, xo = S(T1),

62:1/51, tlz—zg, $1:S(fg),



expression (14) may be rewritten as

3¢z > 0 such that Ve, >0, Tty 1,To, 71 with
—to > ~ti, p(S(@1)) <1/, p(S(T0)) > 1/a
and I'D(—fg, —El, S(fl)) = S(To) (15)

Since
—to>—ti & t1 >t
p(S(@1)) <1/e2 & p(T1) 20 (equation (7))
p(S(To)) > 1/61 & p(To) < ¢ (equation (7))
CED(—fo, —fl,S(fl)) = S(fo) i= x(fl,fo,fo) =7 (equation (13))

expression (15) is equivalent to

3¢z > 0 such that Ve, >0, Tty 1,To, 71 with
El Z fg, p(fl) Z EQ, p(fo) < El and 1‘(21,%0,50) = fl; (16)
which is equivalent to: & = X (¢, ) does not satisfy condition S-1 of Definition 1.
We have thus proven that & = X (¢, z) satisfies condition S-1iff # = X P (¢, z) sat-

isfies condition B-1. Mutatis mutandis, it may be proven that & = X (¢, ) satisfies
condition S-2 iff & = X P(t, ) satisfies condition B-2. This is left to the reader. O

Duality Theorem 2 (homogeneity). The following two statements are equivalent:

(i) X is homogeneous of order 7.
(ii) XP is homogeneous of order —T.

Schematically Theorem 2 may be represented as follows:

homogeneity of order 7 LN homogeneity of order —7

Proof. We first prove “(i)=(ii)”. Clearly X P is homogeneous of order —7 iff X is
homogeneous of order —7. Tt therefore suffices to prove that (dy).(X°) = A7X5.
We have:

(63)+(X5) = (00)x S X (definition of X)
= (dr09).X (chain rule for push-forward)
=(Sody-1).X (Lemma 1)
= S.(0x-1)X (chain rule for push-forward)
=5A"X (homogeneity of X)
=\NS58.X (linearity of push-forward)
=\"X5 (definition of X9),

which thus proves “(i)=-(ii)”. The inverse implication “(ii)=-(i)” follows from
XPP = X. =

Remark 6. The proof of Theorem 2 is simple and straightforward, because of
the geometric characterization of homogeneity and duality via push-forward. This
motivates the geometric approach taken in the present paper.



4. LOCAL UNIFORM ASYMPTOTIC STABILITY AND BOUNDEDNESS OF
TIME-VARYING HOMOGENEOUS DIFFERENTIAL EQUATIONS

We first recall a stability and boundedness result for positive order homogeneous
differential equations. Based on the duality introduced above, we then derive the
dual result for negative order homogeneous differential equations.

Consider a time-varying vectorfield X € X' (R}) that satisfies the following addi-
tional hypotheses:

H-1 X is periodic in ¢ with period 7' > 0 independent of x,
H-2 X is continuously differentiable in (¢, ).

Various time-invariant vectorfields may be associated to X: we introduce the time-
averaged vectorfield Xy

1 T
Xow R o Rt g o> Xaw(2) = T/ X(t,z) dt, (17)
0

and a collection of time-frozen vectorfields X, (o € R)
X, Ry 2 R* 1z X, (z) = X(0,2). (18)

In general, a stability or a boundedness analysis of the time-varying differential
equation

i = X(t,x) (19)

is highly nontrivial. Reducing the problem to the study of time-invariant differential
equations

i = Xay(2) (20)
or
T = X(r(m) (21)

may constitute an important simplification.
This has actually been proven to be possible for positive order homogeneous
differential equations:

Theorem 3. Consider X € X (RY) satisfying the hypotheses H-1 and H-2. Assume
that X is homogeneous of order T > 0. Then
1. the time-varying differential equation (19) is locally uniformly asymptoti-
cally stable if the time-averaged differential equation (20) is locally uniformly
asymptotically stable,
2. the time-varying differential equation (19) is bounded if each time-frozen dif-
ferential equation (21) is bounded.

Theorem 3 is essentially a paraphrased version of (Peuteman and Aeyels, 1999,
Theorem 1) and (Peuteman et al., 1999, Theorem 3). See also (Moreau and Aeyels,
n.d., Theorem 3). The proof of this result is based on the inherently slow character
of solutions of positive order homogeneous differential equations near the origin,
and the inherently fast character far away from the origin.

We now illustrate the strength of the duality principle introduced in this paper.
Starting from the result for positive order homogeneous differential equations The-
orem 3, a straightforward application of the Duality Theorems 1 and 2 immediately
yields the dual result for negative order homogeneous differential equations:

Corollary 1. Consider X € X(Ry) satisfying the hypotheses H-1 and H-2. As-
sume that X is homogeneous of order T < 0. Then
1. the time-varying differential equation (19) is locally uniformly asymptotically
stable if each time-frozen differential equation (21) is locally uniformly asymp-
totically stable.



2. the time-varying differential equation (19) is bounded if the time-averaged
differential equation (20) is bounded.

Proof. We first prove part 1. Assume that each time-frozen differential equation
=X, (z)

is locally uniformly asymptotically stable. Then, by Theorem 1 each differential
equation

& = (X,)P (z)

is bounded. From (9), (10) and (11) it is immediate to see that (X,)” = (XP)_,.
Hence each differential equation

&= (XP)_o(2)
is bounded. But X is homogeneous of order —7 > 0 by Theorem 2, and thus
i=XP(t,x)
is also bounded by Theorem 3. Finally, by Theorem 1, we conclude that
= X(t,x)

is locally uniformly asymptotically stable. The proof of part 2 is completely similar,
and therefore left to the reader. O

5. EXAMPLE

We study the stability and boundedness properties of the time-varying differen-
tial equation

& = ||z|lPAt)z, «€Rg (22)
with p a real parameter and where A(t) is given by
[ -1+ 2cos?t 1— 3sintcost
Alt) = —1—3sintcost -1+ 2sin’¢t |- (23)

First of all, we make the following observations:
O-1 If p = 0, then differential equation (22) is the restriction to R3 of the linear
differential equation
&= A(t)r, xR

This linear differential equation, and hence also (22), has been shown to be
unstable (Khalil, 1996, Example 3.22).
O-2 For each ¢ the matrix A(¢) has the characteristic polynomial
5%+ 1s + !
2 2’
and thus A(t) is Hurwitz for each ¢. Hence, each time-frozen differential equa-
tion
& = ||z|PA(o)e, @ €R]
is locally uniformly asymptotically stable and bounded.
0-3 The matrix A(t) is a periodic function of ¢ with corresponding averaged matrix

1
- 1
A v — |: 4 1 :| .
a’ _1 _Z
The characteristic polynomial of A, is

52+ls+—
2 16’



and thus A,, is Hurwitz. Hence, the averaged differential equation
& = |2|P Aasvz, o€ RS
is locally uniformly asymptotically stable and bounded.

Although (22) has been shown to be unstable for p = 0, we will now see that
(22) is both locally uniformly asymptotically stable and bounded for all nonzero
values of p. The analysis is based on Theorem 3 and Corollary 1.

5.1. Case 1: p > 0. In this case, the right hand side of (22) is homogeneous of
order p > 0 with respect to the standard dilation. We conclude from observations
0-2 and O-3 and from Theorem 3 that (22) is both locally uniformly asymptotically
stable and bounded.

We now interpret this result in terms of differential equations on the complete
state-space R”. Notice that for p > 0, ||z||PA(t)x is defined in = 0. We may thus
consider the differential equation

& = |z||PA(t)z, © e R (24)

Compared with (22), differential equation (24) has only one extra solution: the null-
solution. This follows from standard uniqueness results for ordinary differential
equations. We may thus conclude that for p > 0, the origin of (24) is a locally
uniformly asymptotically stable equilibrium point and the solutions of (24) are
uniformly bounded and uniformly ultimately bounded (see Remark 5).

5.2. Case 2: p < 0. In this case, the right hand side of (22) is homogeneous of
order p < 0 with respect to the standard dilation. We conclude from observations
0-2 and O-3 and from Corollary 1 that (22) is both locally uniformly asymptotically
stable and bounded.

We now interpret this result in terms of differential equations on the complete
state-space R?. Notice that for —1 < p < 0, lim,_,0 ||z]|? A(t)z exists and equals 0.
We may then consider the differential equation

P H 2
i {nmu Aty itz € Ry (25)
0 ifz=0

The right hand side of (25) is continuous but not locally Lipschitz at the origin.
Hence (25) is not guaranteed to have the uniqueness property of solutions at the
origin. However, differential equation (25) cannot have solutions that leave the
origin in forward time, since this would contradict the stability properties of (22).
The unique forward solution of (25) starting in the origin is the null-solution*. We
may thus conclude that, for —1 < p < 0, the origin of (25) is a locally uniformly
asymptotically stable equilibrium point and the solutions of (25) are uniformly
bounded and uniformly ultimately bounded (see Remark 5).

6. GENERALIZATION

In Section 3 we have developed a duality theory based on the smooth map

SRy = Ry 1z S(x) = 0p(0)-2 (7).

Here we consider more generally

Su R = Ry : 2= S, (x) = 0pz)n-1(7) (26)
with p a real parameter. As will become apparent from the forthcoming analysis,
the case u < 0 is very similar to the case described before in Section 3 (duality),

4Compared with (22), differential equation (25) has an extra equilibrium solution at the origin,
and in addition, every solution of (22) that approaches the origin in finite time corresponds to a
solution of (25) that reaches the origin in finite time and stays there afterwards.



whereas p > 0 gives rise to fundamentally different results. As an application of the
results to follow, we mention that a stability or boundedness analysis of a nonzero
order homogeneous differential equation may be transformed into a stability or
boundedness analysis of a homogeneous differential equation of arbitrary prescribed
nonzero order with respect to the same dilation. In other words, with regard to
stability and boundedness results, the class of homogeneous differential equations of
order, let’s say, one is representative for the class of all nonzero order homogeneous
differential equations. See Theorems 4 and 5.

Details of the analysis are left to the reader. S, leaves homogeneous rays invari-
ant, and on homogeneous rays, S, is characterized by

p(S(z)) = p(x)". (27)
It follows readily that
1.

SM ° Suz = Sltz ° Sltl = Smuz (28)

2. For p#0, 5,081/, =S1/,05, =5 is the identity map on Ry, and thus in
particular S, is a smooth diffeomorphism for u # 0.

3. Sy corresponds to the projection on the homogeneous unit ball {p(z) = 1}
along homogeneous rays.

Assume from now on that p # 0. We introduce F(RY )-linear maps from X (Rf)
onto X (R ): X = XPu defined by

. (S X ifpu>0
= {((S,L)*X)T if 4 <0 29

where the operator T is defined by (10). Clearly
(XP1)Prz = (X Pra)Pos = X Do (30)
and thus
(XP)Prw = (XPrw)Pr = X, (31)
Theorem 4 (stability and boundedness). If u > 0 the following two statements

are equivalent:
(i) © = X(t,z) is locally uniformly asymptotically stable (resp. bounded).
(ii) & = XPu(t,z) is locally uniformly asymptotically stable (resp. bounded).
If u < 0 the following two statements are equivalent:
(i) © = X(t,z) is locally uniformly asymptotically stable (resp. bounded).
(ii) & = XPr(t, ) is bounded (resp. locally uniformly asymptotically stable).

Theorem 5 (homogeneity). Let u # 0. The following two statements are equiva-
lent:

(i) X is homogeneous of order 7.
(ii) XPr is homogeneous of order x.

7. CONCLUSION

We have introduced a duality transformation between positive and negative order
homogeneous vectorfields. We have then illustrated the strength of this duality
concept: starting from a known stability and boundedness result for positive order
homogeneous differential equations, we were able to obtain, without much effort,
the dual result for negative order homogeneous differential equations.
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