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Abstract

A novel approach to stabilization and trajectory tracking for nonlinear systems with unknown parameters and uncertain
disturbances is developed. We take a drastic departure from the classical adaptive control approach consisting of a
parameterized feedback law and an identi,er, which tries to minimize a tracking (or prediction) error. Instead, we propose
a simple nonlinear PI structure that generates a stable error equation with a perturbation function that exhibits at least
one root. Trajectories are forced to converge to this root by suitably adjusting the nonlinear PI gains. We consider the
two basic problems of: (i) matched uncertainties, when the uncertain terms are in the image of the input matrix, and (ii)
unknown control directions, when the control signal is multiplied by a gain of unknown sign. We show that, without
knowing the system parameters, and with only basic information on the uncertainties we can achieve global asymptotic
stability and global tracking, without injecting high gains into the loop. Interestingly, we prove that we can take as our
nonlinear PI structure an activation function reminiscent of that used in neural networks. Although most of the results
are derived assuming full state measurement, we also present an observer-based solution for a chain of integrators with
unknown control direction. The procedure is shown to provide simple solutions to the classical problems of neural network
function approximation, as well as eccentricity control and friction compensation of mechanical systems.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

It is well known that (linear) PI controllers, if suitably tuned, provide satisfactory solutions to many practical
applications without requiring a detailed description of the system dynamics. In the presence of strong nonlinear
e?ects, however, their performance is below par, and it is necessary to “re-tune” the controller appealing to
gain scheduling or adaptive procedures. The design of these tuning procedures is complicated when only
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a very coarse description of the uncertain nonlinearities is available—some prototypical examples being the
presence of friction and eccentricity in mechanical systems, and the lack of knowledge about the reaction
functions in chemical and biological processes. In the adaptive control approach it is assumed that we can
,t a model—e.g., an experimental data-,tting curve or a neural network—to the uncertain function. Then, a
parameter identi,er, which tries to minimize a tracking (or prediction) error, is implemented. To handle the
curse of dimensionality, the parameterization has to be nonlinear, see e.g., [10,24]. Functional approximation
with nonlinearly parameterized models is, of course, a fundamentally diJcult problem to which an enormous
amount of research has been devoted. 1 Several interesting applications have been reported in the control
community, with a central contribution being the observation that convexity can be exploited to ensure a
“good gradient descent” in some regions of the state space [6], see also [7,1]. Unfortunately, to the best of
our knowledge, to cope with the remaining regions all provably stable schemes rely on one way or another
on relay actions or min–max calculations—hence, the stabilization mechanism is of high gain nature, see, e.g.
[22,15] and the references therein. Two additional drawbacks of adaptive methods are that they usually lead
to highly complex designs, and signi,cant prior knowledge is required for a successful operation. (See also
[25] for an alternative treatment of this class of problems.)
For some particular system structures it is possible—but not necessarily very practical—to crank up the

gain and try to “dominate” the uncertainties. High-gain designs appear in the nonlinear control literature in
many forms, including relay actions, min–max calculations, and recursive “domination” via high-order non-
linear terms. 2 The deleterious e?ects of injecting high gain in the control loop, even though well known by
practitioners, are unfortunately not fully appreciated by the theoretical control community.
In this paper, pursuing the line of research started in [3], we adopt a radically di?erent perspective to the

problem, abandoning its parametric formulation. Namely, instead of trying to ,t a parameterized function to
the uncertainty (or dominate it), we aim at the—less ambitious but equally e?ective—objective of generating
a stable error equation with a perturbation term that can be driven to zero. More precisely, choosing the
functions that de,ne our nonlinear PI controller, we “shape” the perturbation function so as to exhibit at least
one root, towards which we force the trajectories to converge. We show in the paper that these tasks can
be achieved for a broad class of control problems with very little prior knowledge on the uncertainties. To
illustrate this point we consider the two basic problems of: (i) matched uncertainties, when the uncertain terms
are added to the input channels; and (ii) unknown control directions, when the control signal is multiplied by
a gain of unknown sign. In the former case we show that, with only a coarse knowledge on the uncertainties
we can achieve global asymptotic stability and global tracking, without injecting high gains into the loop. For
the unknown control directions problem, our design yields an alternative to the well-known Nussbaum gain
stabilizers [16] that—in contrast with the latter and due to the presence of the proportional term in the PI—is
shown to be robustly stable vis-Ma-vis (fast) unmodeled dynamics and measurement noise. (See also [12].)
Although most of the results are derived assuming full state measurement, we also present an observer-based
solution for a chain of integrators with unknown control direction.
Even though some of the examples we consider can be stabilized applying existing control-plus-estimation

or high-gain designs, it is our contention that the schemes proposed in this paper will, in general, ex-
hibit a better performance and be easier to commission. These claims are substantiated by the following
facts:

• In contrast with adaptive control, where the search takes place in a high-dimensional (and=or topologically
complex) parameter space, the “root search” described here happens in a one-dimensional space.

1 Actually, as clearly illustrated in the tutorial paper [19], even for linear systems with linearly parameterized models, many fundamental
issues remain open.

2 The latter includes, of course, the widely popular backstepping method [14] that has proven itself very versatile. See also [13].
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• Prior knowledge can be naturally incorporated in the choice of the nonlinear PI structure to improve the
convergence rate.

• The mechanism of stabilization is the generation of attractive sets, instead of the more fragile requirement
of convergence to speci,c equilibrium points.

• Our controller, being a simple nonlinear PI, has only a few parameters to tune; the role of these parameters
on the (local) behavior of the system can usually be predicted—a property upon which hinges the practical
success of fuzzy controllers.

The remaining of the paper is organized as follows. In Section 2 we present some practical examples that
motivate our study, and give the precise de,nition of nonlinear PI used in the paper. The rationale of the
design procedure is explained with a simple example in Section 3. Taking o? from this example we compare
in Section 4 the nonlinear PI approach with standard parameter adaptive control. The application of nonlinear
PI to the problems with matched uncertainty and unknown control directions is presented in Sections 5 and
6, respectively. We wrap up the paper with some concluding remarks and open problems.
Caveat emptor: Unless otherwise stated, the functions that appear throughout the paper are assumed to be

suJciently smooth to ensure global existence of solutions of the di?erential equations.

2. Motivating examples

In this section we present four motivating examples that have been studied in the literature, and for which
our tools provide simple robust solutions.

2.1. Eccentricity compensation

In a recent interesting paper [4] the following eccentricity compensation problem was solved using an
ingenious adaptive control technique.

Problem EC: Given the two-dimensional rotational system

Oy = a cos(by + c) + u; (1)

where the angular position y and velocity ẏ are measurable, and a; b; c are unknown positive parameters.
Design a controller that ensures ẏ(t) will asymptotically track any arbitrary bounded reference ẏ ∗(t) with
known bounded ,rst derivative. 3

2.2. Friction compensation

Friction is an ubiquitous phenomenon in mechanical systems that is diJcult to model and often requires to
be compensated [23]. A basic (normalized) problem formulation, that covers the various models reported in
[23], is as follows.

Problem FC: Given the two-dimensional mechanical system

Oy =−F(ẏ; t) + u; (2)

3 In fact, the result we present applies to the more general case where the system is described by the equation Oy =  (y) + u, with
 (·) any bounded and (possibly) periodic function.
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where position y and speed ẏ are measurable, and the friction force F is an unknown continuous function
satisfying, for all t¿ 0, the bound

|F(ẏ(t); t)|6M (1 + |ẏ(t)|)
with M a known positive parameter. Design a controller that ensures y(t) will asymptotically track any
arbitrary bounded reference y∗(t) with known bounded ,rst- and second-order derivatives.

2.3. Neural network function approximation

Many papers in neural network control have been devoted to the solution of the following basic tracking
problem.

Problem NN: Given the n-dimensional system

ẋ1 = x2;

ẋ2 = x3;

...
...

ẋn =
n∑

i=1

aixi +
N∑
i=1

�i

1 + �ie−�ixi
+ u; (3)

where N is a known positive integer, and all parameters (ai; i=1; : : : ; n), (�i ¿ 0; �i ¿ 0; �i ¿ 0; i=1; : : : ; N )
are unknown. Design a state-feedback controller that ensures x(t) will asymptotically track some desired
bounded reference x∗(t).

2.4. Chain of integrators with unknown control direction

Global stabilization of a chain of integrators with unknown sign of the high frequency gain using only
partial state feedback is a basic control problem whose solution—using standard model reference adaptive
control techniques—is extremely involved.

Problem CI: Given the n-dimensional linear time-invariant system

ẋ1 = x2;

ẋ2 = x3;

...
...

ẋn = bu; (4)

where x1 and xn are measurable, and b is an unknown parameter. Design a controller that drives x(t) to zero
for all initial conditions x(0)∈Rn.

We will show in this paper that all these problems can be solved with nonlinear PI controllers, which are
de,ned as follows.

De�nition 1. Given a set of measurable signals y∈Rny ; references y∗ ∈Rny ; and a scalar manipulated variable
u∈R; de,ne three mappings:
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�P :Rny × Rny → Rq;

wI :Rny × Rny × Rq → Rq;

� :Rq × Rny × Rny → R;

The triple 4 {�P; wI; �} de,nes a nonlinear PI controller via the qth order dynamical system

u= �(�P(y; y∗) + �I; y; y∗);

�̇I = wI(y; y∗; �I): (5)

Remark 1. The classical linear PI scheme for single-input single-output systems is recovered from our de,-
nition setting ny = q= 1; and choosing the linear functions

�P = kP(y − y∗);

wI = kI(y − y∗);

� =−�P − �I;

where the constants kP and kI are the proportional and integral tuning gains. Remark that; according to the
above de,nition; it is possible to include a “leakage” factor in the integral action.

3. Rationale of the controller design

To illustrate the rationale of the proposed design procedure we will consider the problem of regulation to
zero of the simplest scalar system

ẏ = �(y) + u; (6)

where �(y) is an unknown continuous function that ranges in the interval 06�(y)¡ 1. (A word of caution is
in order: although the derivations below will seem to be contrived, and tailored to this particular problem, we
will show in the next sections that the same philosophy applies, mutatis mutandis, to other cases—including
all the motivating examples of Section 2.)
First, we select some desired dynamics that we would like to impose to our system, in this case we choose

ẏ =−�y, with �¿ 0. De,ning the signal 5

z = �P(y) + �I (7)

and closing the loop with our nonlinear PI (5), we can write the system dynamics in perturbed form as

ẏ =−�y + [�(y) + �(z; y) + �y]: (8)

4 For ease of exposition we will omit the arguments of the functions whenever these are clear from the context.
5 As discussed in [3], viewing nonlinear PI controllers from an immersion and invariance (I& I) viewpoint, this signal describes the

behavior of the o?-the-manifold dynamics. In spite of its nice geometric context, and for the sake of brevity, we will not pursue the I&
I perspective here.
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Our control objective is then to drive the term in brackets asymptotically to zero. Towards this end, we pose
the following:
“Root searching” problem: Find functions {�P; wI; �} that ensure

(i) for each y, there exists (at least one) Szy solution of the algebraic equation 6

�(y) + �( Szy; y) + �y = 0;

(ii) z(t) converges asymptotically towards Szy.

Let us now study the z dynamics, which is described by

ż = wI(y) +
@�P
@y

[�(y) + �(z; y)]:

In view of the requirement (ii) we would like to enforce the “root” of the disturbance term, Szy, as an
equilibrium of the z dynamics. Towards this end, we ,x the integral parameter of our nonlinear PI as

wI =
@�P
@y

�y;

which yields

ż =
@�P
@y

[�(y) + �(z; y) + �y]: (9)

To complete the description of the nonlinear PI we must de,ne the functions �P(y) and �(z; y) to try to
enforce conditions (i) and (ii) to the trajectories of the closed-loop system (8) and (9). For, consider the z
dynamics (9) as a system, parameterized in y, of the form ż = fy(z), where

fy(z),
@�P
@y

[�(y) + �(z; y) + �y]:

We will prove now that the problem will be solved if we can ensure that, uniformly in y, there exists M ¿ 0
such that

zfy(z)¡ 0 (10)

for all |z|¿M . 7 Indeed, since for all values of y, the function fy(z) changes sign as z ranges in (−∞;+∞),
it has at least one ,nite zero crossing. The function fy(z) will thus behave as depicted in Fig. 1, where the
particular form of the graph in the gray area will depend on y and the uncertain function �(y), but will not
be relevant for our analysis. It is easy to show that a function �(z; y) that ensures (10) is given by 8

� =−�y − 1
1 + e−z=y :

For frozen y the ,rst and the last roots of fy(z)—namely, Szym and SzyM , respectively—are stable equilibria
of the one-dimensional z dynamics (9), hence [ Szym; SzyM ] is a globally attractive interval. Of course, this

6 We use the sub-index (·)y to underscore the fact that the root will, in general, depend on y.
7 It is important to stress that (10) is required only for large z. As will become clear later, this feature will distinguish our nonlinear

PI from standard relay-based controllers.
8 This function is not de,ned for y = 0. See Remark 3 for an alternative, globally de,ned, function.
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zzyM

zym

   f  (z)y    

Fig. 1. The function fy(z).

simple reasoning cannot be extrapolated when y changes, and a more careful analysis is needed to verify
stability. As a ,rst step, notice that

d
dt

z2 = 2zfy(z)

which, in view of (10), is negative for all |z|¿M , hence z is bounded—independently of the behavior of y.
Now, consider the function V (y; z) = �P(y) − z, whose derivative is of the form 9 V̇ = −�(@�P=@y)y. This
simple calculation motivates the choice

�P = 1
2y

2: (11)

In this way, we have V (y; z) = 1
2y

2 − z, with V̇ =−�y26 0. Since, we have shown above that z is bounded,
then V (y; z) is bounded from below and we can conclude that y is square integrable and bounded. To establish
convergence of y(t) to zero it suJces to prove that y is uniformly continuous—for instance, showing that
ẏ is also bounded. Recalling that �(y) is bounded (by assumption), this follows from (8) and the fact that
�(y; z) + �y is also bounded.
We have thus established the following proposition.

Proposition 1. Consider the scalar system (6) with �(y) such that; for all y; 06�(y)¡ 1; in closed loop
with the nonlinear PI controller (5) with the parameters

� =−�y − 1
1 + e−(�P+�I)=y

;

�P = 1
2y

2;

wI = �y2:

Then; for all �¿ 0 and all initial conditions (y(0); �I(0)); limt→∞ y(t) = 0 with all signals bounded.

9 From (5) we see that V = �I(y). Hence, the form of V̇ is independent of the plant dynamics, and it stems only from our choice of
wI, i.e. (7).
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Remark 2. The above nonlinear PI control law is discontinuous in y. If �(0) 
=0; and without the knowledge
of �(0); it is clear that any controller that ensures stability for the whole class of admissible � should be
discontinuous. This obstruction appears in our construction because there does not exist function �; continuous
in y; such that condition (10) holds. Indeed; as y changes sign and � remains with the same sign; the only
way to enforce the inequality zy[�(y) + �(z; y) + �y]¡ 0 is that � goes through a jump. (Selecting another
function �P will not help because @�P=@y should have the same sign as y to ensure V̇ 6 0.) If �(0) = 0
smooth stabilization is possible provided further information on � is available; for instance; if a bound on its
derivative at zero is known.

Remark 3. To implement the controller of Proposition 1 it is necessary to de,ne the function � as

�(t) =




−�y(t)−
(
1 + e

−(�P(t)+�I(t))
y(t)+�

)−1

if {y(t)¿− �; ∃t0 ¡t s:t: y(t0)6− �;

and y( )¡�; ∀ ∈ [t0; t];

−�y(t)−
(
1 + e

−(�P(t)+�I(t))
y(t)−�

)−1

if y(t)6 �; ∃t0 ¡t s:t: y(t0)¿ �

and y( )¿− � ∀ ∈ [t0; t];

with � a small positive number that de,nes the regulation error tolerance; e.g.; determined by the noise level.
This will generate a sliding regime in the set {(y; z) | y∈ [− �; �]; z ∈ [0;∞)}; which turns out to be globally
attractive. Convergence to this set; as usual in systems with discontinuous right-hand sides; happens in ,nite
time.

Remark 4. Repeating the arguments of the proof of Proposition 1 it is easy to see that; with the same �P(y)
and wI; but scaling and shifting the activation function in � as

� =−�y − �m − �M − �m

1 + e−(�P+�I)=y
;

ensures global regulation for all �m6�(y)6�M .

Remark 5. It is clear from the proof that we have great freedom in the choice of the structure of the nonlinear
PI. 10 In particular, the only requirements on the function � are that it is bounded and (10) holds, uniformly
in y. Also, �P can be any function such that @�P=@yy¿ �y2, for some �¿ 0. These degrees of freedom
can be used to tailor the root searching in speci,c applications where additional information on �(y) is
available.

4. Comparison with adaptive control

To put our approach in perspective it is interesting to see how this simple example can be tackled with
the classical parameter adaptive viewpoint. (We refer the reader to the lucid exposition of [19] for a uni-
fying overview of the ,eld, exhaustively covering the issues of parameterizations of linear systems and un-
derscoring the importance of implicit tuning, a new class of tuning algorithms to which our nonlinear PI
belongs.)

10 We have decided to illustrate the proposition with this activation function to make some connection with the neural networks literature.



R. Ortega et al. / Systems & Control Letters 47 (2002) 259–278 267

First, we assume a parameterization for the uncertainty, say �(y) =  (y; !), where the function  (y; !) is
known, but the constant parameters !∈Rr are unknown. As pointed out in the Introduction, see also [10], to
have a good function ,t without a large number of parameters—that would stymie the convergence rate—the
parameterization should be nonlinear. Then, we propose a certainty equivalent controller

u=−�y −  (y; !̂);

#̇= f(y; #);

!̂= h(y; #);

where f(y; #); h(y; #) are continuous functions to be de,ned, and !̂ plays the role of an estimate for !. In the
indirect approach a bona ,de parameter estimator that would, hopefully, drive !̂ towards !, is built with some
,lters and approximation considerations for the calculation of a gradient descent (in the parameter space). On
the other hand, in the direct approach we try to ,nd instead a Lyapunov function candidate whose derivative
we want to make nonpositive. The authors are not aware of an (smooth) adaptive solution to this problem,
either direct or indirect, for the general class of functions �(y) studied in Proposition 1. Simple solutions are,
however, known for the (severely) restricted class of linearly parameterized functions, i.e.,  (y; !) =  0(y)!,
with  0(y) known.
To pursue our comparison let us review the direct adaptive control solution, noting that similar conclusions

can be drawn for indirect schemes. Consider the Lyapunov function candidate

U (y; !̂) = 1
2 [y

2 + ‖!̂− !‖2];

where ‖ · ‖ is the Euclidean norm. It is easy to see that picking ˙̂!=− 0(y)y yields, U̇ =−�y2. The proof of
global stability and convergence can be completed with some signal chasing, similar to the one used in the
proof of Proposition 1 above.
The following remarks are in order.

• The direct adaptive control procedure hinges upon the exact cancellation of the uncertain terms in the
Lyapunov function derivative. 11 Leaving aside the fact that this operation is possible only under the critical
assumption of linear parameterization, this is a very fragile operation which is the source of many robustness
problems of adaptive schemes [16,9].

• In nonlinear PI a cascade connection between the plant dynamics (8) and the z dynamics (9) is established.
Although the latter plays a role similar to the term induced by the parameter error of adaptive control, in
nonlinear PI we do not aim at its cancellation (or domination). Instead, we exploit the particular features
of the nonlinear PI structure to drive it to zero.

• Following the classi,cation of adaptive algorithms of [19], nonlinear PI is an identi,er-based controller
with implicit tuning. The former quali,er stems from the fact that y → 0 without requiring z → 0, while
the implicit quali,er results from the simultaneous reduction of the tuning error, in this case y, and the
design error, which is the disturbance term

�(y)− [1 + e−(1=2y2+�I)=y]−1:

5. Matched uncertainty

In this section we extend the basic result of Section 3 of regulation of a ,rst-order system with bounded
uncertainty to tracking, high-dimensional systems (with unknown parameters) and unbounded uncertainty.

11 Invoking high-gain arguments it is possible in some cases to dominate, instead of cancelling, this term.
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We also show how it is possible to address in a simple uni,ed way the problems 2.1–2.3 described in
Section 2.

5.1. Bounded uncertainty

Proposition 2 (Tracking). Consider the @rst-order system (6) with �(y) such that; for all y; �m¡�(y)¡�M;
in closed loop with the nonlinear PI controller (5) with the parameters

� = ẏ ∗ − �ỹ − �m − �M − �m

1 + e−(�P+�I)=ỹ
;

�P = 1
2 ỹ

2;

wI = �ỹ 2;

with ỹ , y − y∗ the output tracking error. Then; for all initial conditions (y(0); �I(0)); and all bounded
references y∗(t); we have that limt→∞ ỹ(t) = 0; with all signals bounded.

Proof. Let z = �I + �P and consider the dynamics 12

˙̃y =−�ỹ +
[
�− �m − �M − �m

1 + e−z=ỹ

]
;

ż = ỹ
[
�− �m − �M − �m

1 + e−z=ỹ

]
:

Since condition (10) is satis,ed we have, as before, that z is bounded. Mimicking again the proof of Proposition
1 we consider V (ỹ; z)= 1

2 ỹ
2−z, with V̇=−�ỹ 2. Given that z is bounded, V (ỹ; z) is bounded from below and

we can conclude that ỹ is square integrable and bounded. Convergence of ỹ(t) to zero follows immediately
from boundedness of ˙̃y.

The extension of Proposition 1 to n-th order systems with unknown parameters and measurable state, studied
for instance in [1,22,8], is readily obtained as follows.

Proposition 3 (High-order systems with unknown parameters). Consider the n-dimensional single-input lin-
ear time-invariant system with matched uncertainty

ẋ = Ax + B[u+ �(x)]

with the following assumptions:

(i) There exists a (linear) output map y = CTx such that CTB 
=0 and we know CTB and a bound on
|CTA|. Moreover; |y(t)| bounded implies x(t) bounded.

(ii) The additive uncertainty �(x) satis@es; uniformly in x; the bound |�(x)|6�M .

12 Notice that we have recovered again the structure of the motivation example, where the ỹ dynamics consists of a stable part plus
a perturbation, and the z dynamics has an equilibrium at the “roots” of the disturbance term. This situation will be repeated in all the
cases considered in the paper.
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Then, the system in closed loop with a nonlinear PI controller with parameters

� =
1

CTB
(1 + ‖x‖)

(
−y +M − 2M

1 + e−(�P+�I)=y

)
;

�P = 1
2y

2;

wI = y2(1 + ‖x‖);
where M¿ |CTA| + |CTB|�M , is such that, for all initial conditions (x(0); �I(0)), limt→∞ x(t) = 0 with all
signals bounded.

Proof. Let z = �I + �P and write the closed-loop system as

ẏ=−(1 + ‖x‖)y + (1 + ‖x‖)
(
M − 2M

1 + e−z=y +
CTAx + CTB�(x)

1 + ‖x‖
)

;

ż = y(1 + ‖x‖)
(
M − 2M

1 + e−z=y +
CTAx + CTB�(x)

1 + ‖x‖
)

:

Given that

06M +
CTAx + CTB�(x)

1 + ‖x‖ 6 2M

and proceeding as in the proof of Proposition 1; we have that d|z|2=dt6 0 for suJciently large |z|; hence z
is bounded.
Mimicking again the proof of Proposition 1 we consider V (y; z)= 1

2y
2− z, with V̇ =−�(1+‖x‖)y2. Since,

we have shown above that z is bounded, then V (y; z) is bounded from below and we can conclude that y is
square integrable and bounded. Given that y is bounded, we also have that the state x is square integrable
and furthermore, in view of assumption (i), bounded. Convergence of y(t); x(t) to zero follows immediately
from boundedness of ẏ; ẋ, respectively.

Remark 6. The assumption CTB 
=0 can be replaced by

CTB= CTAB= CTA2B= · · ·= CTAi−1B= 0;

and CTAiB 
=0 and for some i known; CTx; CTAx; CTA(i−1)x are measurable; and if we have a bound on |CTAi|.
In this case; we can repeat the proof of Proposition 3 taking instead of y; CT(I + �1A+ · · ·+ �i−1A(i−1))x; for
some suitably chosen coeJcients �i.

Remark 7. With some simple calculations it is possible to extend the result of Proposition 3 to force the
output y(t) to track signals generated by ẋ∗ = A∗x∗ + Br; y∗ = CT

∗ x∗; for arbitrary known bounded r(t).

5.2. Unbounded uncertainty

The technique developed in Section 3 can still be applied if the uncertainty is unbounded, but we know M
and N such that

|�(y)|6M (1 + |y|+ |y|N ) (12)

holds, uniformly in y.
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Proposition 4 (Unbounded uncertainty). Consider the scalar system (6); where �(y) veri@es (12); in closed
loop with a nonlinear PI controller with parameters

� =M (1 + |y|+ |y|N )
(
−y + 1− 2

1 + e−(�P+�I)=y

)
;

�P = 1
2y

2;

wI =−y2M (1 + |y|+ |y|N ):
Then; for all initial conditions (y(0); �I(0)); limt→∞ y(t) = 0 with all signals bounded.

Proof. The closed-loop dynamics is given by

ẏ=−M (1 + |y|+ |y|N )y +M (1 + |y|+ |y|N )
(
1− 2

1 + e−z=y +
�(y)

M (1 + |y|+ |y|N )
)

;

ż = yM (1 + |y|+ |y|N )
(
1− 2

1 + e−z=y +
�(y)

M (1 + |y|+ |y|N )
)

;

where we have used; again; the new coordinate z = �I + �P(y); and the de,nitions of �P and wI.
Given that condition (10) is satis,ed and using the bound (12), the proof can be completed following

verbatim the steps of the proof of the previous proposition.

Remark 8. Using the construction of Proposition 4 we can extend the results of Proposition 2 (tracking) and
Proposition 3 (high order systems) to handle possibly unbounded functions � that satisfy (12). These results
are omitted for brevity.

5.3. Examples

We will illustrate now how the techniques developed above apply to the solution of some of the motivating
problems of Section 2.

Problem EC: In this case the uncertain term is bounded, and the system is second order, hence Proposition
3 applies. Note however, that only velocity tracking is required, and this can be achieved by means of a
nonlinear PI controller with parameters

� = Oy ∗ − (1 + ‖x‖)
(
˙̃y +M − 2M

1 + e−(�P+�I)=y

)
;

�P = ˙̃y;

wI = ˙̃y(1 + ‖x‖);
where ˙̃y= ẏ− ẏ ∗, ‖x‖= ‖(y; ẏ)‖, M¿ a, and ẏ ∗ is the velocity reference to be tracked. Finally, it is clear
that we do not to assume any particular form for the disturbance �(·), as the proposed controller will achieve
asymptotic tracking for all bounded functions. This is in contrast with the result of [4], which requires the
exact knowledge of the form (but not of the parameters) of the nonlinearity �(·).

Problem FC: This problem is conceptually similar to the Problem EC. The only di?erence is that the nonlin-
earity, representing the friction force, is linearly bounded, i.e., |F(ẏ; t)|6M (1 + |ẏ|). Hence, a combination
of the results in Proposition 3 and Proposition 2 has to be used. The details are omitted for brevity.
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Problem NN: This problem can be treated as the problem FC, provided that the whole term
n∑

i=1

aixi +
N∑
i=1

�i

1 + �ie−�ixi

is regarded as an unknown perturbation. Note ,nally that, because of the simple structure of the system it is
a trivial task to ,nd an output map satisfying the hypothesis of Proposition 3.

6. Unknown control directions

The problem of stabilizing systems with unknown control directions, i.e., the high-frequency gain in the
case of linear systems, has been extensively studied in the adaptive control literature, see [16,12] and the
references therein. A major breakthrough in this problem was the introduction of the so-called Nussbaum
gains, which similarly to our “root-searching” functions, continuously change sign until they latch to the right
sign of the high-frequency gain. Although of signi,cant theoretical interest, the poor robustness of this kind
of schemes, elegantly revealed in [9], makes them practically inadmissible. In this section we show how our
framework provides alternative, robust, solutions to this class of problems.
As before, we start with the simplest representative problem of stabilization of a scalar system, ,rst for

regulation and then for tracking. Finally, we present a partial state-feedback stabilizer for a chain of integrators.

6.1. State feedback

Proposition 5 (Regulation). Consider the scalar system

ẏ = ay + bu; (13)

where a and b are unknown parameters; in closed loop with a nonlinear PI controller with parameters

� = (�I + �P) cos(�I + �P)y;

�P = 1
2y

2;

wI = �y2; (14)

with �¿ 0. Then; for all initial conditions (y(0); �I(0)); we have that limt→∞ y(t) = 0 with all signals
bounded.

Proof. Replacing (14) in (13); and de,ning; as usual; z = �I + �P; we obtain the closed-loop dynamics

ẏ =−�y + [a+ bz cos(z) + �]y;

ż = y2[a+ bz cos(z) + �]:

(We have added and subtracted �y in the ,rst equation to underscore the perturbed dynamics structure.)
Notice that ż = y2fy(z), with fy a function that has an in,nite number of roots, which de,ne bounded

intervals that are invariant to the z dynamics, ensuring that z is bounded. 13 See Fig. 2. The proof can be
completed following verbatim the steps of the proof of the previous proposition considering the function
V (y; z) = 1

2y
2 − z whose derivative yields V̇ = −�y2 and chasing the signals to prove uniform continuity

of y.

13 This property holds true independently of the behavior of the “time-scaling” factor y2.
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Fig. 2. Plot of the function a + � + bz cos(z).

Proposition 6 (Tracking). Consider the scalar system ẏ= bu; with b an unknown parameter; in closed loop
with the nonlinear PI controller

� =−(�I + �P) cos(�I + �P)
(
ỹ − 1

�
ẏ ∗

)
;

�P =
1
2
ỹ 2 − 1

�
ẏ ∗ỹ

wI =
1
�
Oy ∗ỹ +

(
ỹ − 1

�
ẏ ∗

)
ẏ ∗ + �

(
ỹ − 1

�
ẏ ∗

)2
; (15)

with �¿ 0. Then; for all initial conditions (y(0); �I(0)); and all bounded references y∗(t) with bounded @rst-
and second-order derivative; we have that limt→∞ ỹ(t) = 0; with all signals bounded.

Proof. The closed-loop dynamics is now

˙̃y =−�ỹ +
(
ỹ − 1

�
ẏ ∗

)
[− bz cos(z) + �]; (16)

ż =
(
ỹ − 1

�
ẏ ∗

)2
[− bz cos(z) + �]: (17)

Arguing as in the proof of Proposition 5 we have that z is bounded. However; the presence of the term 1
� ẏ ∗

in the “time-scaling” factor of the z dynamics; which cannot be removed because of the lack of knowledge
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of b; hampers the application of the usual Lyapunov function; and some additional arguments are needed to
complete the proof.
De,ne s= ỹ − 1

� ẏ ∗, and write the ỹ dynamics in terms of s as

ṡ=−bz cos(z)s− ẏ ∗ −
1
�
Oy ∗: (18)

Consider the function W (s; z) = 1
2 s

2 − z, whose derivative yields

Ẇ = −�s2 − s
(
ẏ ∗ +

1
�
Oy ∗

)

6−�
2
s2 +M;

where M¿ (1=2�)(ẏ ∗+
1
� Oy ∗)

2. Now, from the boundedness of z, we have that there exists a positive constant
c1, such that W 6 1

2 s
2+c1. We then get the di?erential inequality Ẇ 6−W+M+c1, from which we conclude

that W , and consequently s and ỹ, are bounded.
We will now establish the convergence result. First, introducing the time scaling d =dt= s2, and looking at

the z dynamics in the  -time scale we see that the trajectories of (17) will converge to a constant z∞ such
that −bz∞ cos(z∞) + � = 0 if and only if limt→∞

∫ t
0 s

2( ) d =∞. Hence, if s is not square integrable we
conclude from (16), and boundedness of ỹ; ẏ ∗, that ỹ(t) → 0. On the other hand, if s is square integrable—and
recalling that the term in square brackets in (16) is bounded—we can invoke Theorem 4.9 of [5] to conclude
that ỹ(t), being the output of a strictly proper exponentially stable linear system with square integrable input,
converges to zero. This completes the proof.

The following lemma allows to de,ne a class of functions that could be used instead of z cos(z) in the PI
function � in Propositions 5 and 6.

Lemma 1. Consider the scalar non-autonomous system ż = �(z) + m(t) with initial condition z(0) = z0 ∈R.
Assume there exists two in@nite sub-sequences S+ , {z+k } → ∞ and S− , {z−k } → −∞ such that; for
all k;

sup
t

m(t) + �(z+k )¡ 0;

inf
t

m(t) + �(z−k )¿ 0:

Then; z is bounded.

Proof. Given any initial condition z0 there exists an element of S+; say z+j ; such that z+j ¿ 0 and z+j ¿ z0.
Since m(t) + �(z+j )¡ 0 for all t; we have that z+j ¿ z(t) for all t ¿ 0. A similar argument; using an element
of the sequence S−; can be used to prove that z(t) is also bounded from below; completing the proof.

Remark 9. The elegance and simplicity of Proposition 5 can hardly be overestimated. It should be contrasted
with the complexity of the analysis of Nussbaum gain controllers [16] for the same problem. Moreover; the
proposed controller will also stabilize plants of the form ẏ= ay+�(y)+ bu; with �(0)= 0 and bounded and
di?erentiable �. Unfortunately; except for the case a = 0; given in Proposition 6; we have not been able to
extend this result to tracking. See [2] for an application of this construction to adaptive calibration for visual
servoing.
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6.2. Observer-based design

For the sake of brevity we omit the presentation of the case of n-th order systems with full state feedback,
and give directly the following output feedback result.

Proposition 7 (Partial state feedback). Given the n-dimensional stabilizable and detectable single-input single-
output linear time-invariant system

ẋ = Ax + Bbu;

y = CTx;

with the following assumptions:

(i) A∈Rn×n; B; C ∈Rn; and b∈R are unknown; but BTB∈R is known;
(ii) the only signals available for measurement are y; BTx and BTAx;
(iii) there exist known matrix F ∈Rn×n and vectors L; K ∈Rn; such that the 2n× 2n matrix[

A BKT

LCT F

]

is strictly Hurwitz. 14

Under these conditions, an observer-based nonlinear PI controller with parameters

� = (�I + �P) cos(�I + �P)KT#;

�P = xTBKT#;

wI =−#TKBT(Ax + BKT#)− xTBKT(F#+ Ly); (19)

and # generated as

#̇= F#+ Ly; (20)

drives x(t) to zero preserving all signals bounded for all initial conditions (�I(0); #(0); x(0).

Proof. Replacing (19) in the system dynamics we obtain the perturbed closed-loop system[
ẋ

#̇

]
=

[
A BKT

LCT F

][
x

#

]
+

[
BKT#[bz cos(z)− 1]

0

]
: (21)

Evaluating the time derivative of z; and using (19); we get

ż = #TKBTBKT#[bz cos(z)− 1]; (22)

from which we conclude that z is bounded.
To complete the proof we proceed similarly to the convergence proof of Proposition 6. Namely, we consider

,rst the case when BKT# is not square integrable, which is necessary and suJcient for convergence to zero
of the disturbance term /t , bz cos(z)− 1. Now, from (21), boundedness of z, and condition (iii), a simple
Lyapunov argument allows to establish the existence of a matrix P=PT ¿ 0 such that the Lyapunov function

14 This is tantamount to saying that the triple {A; B; C} is dynamic output feedback stabilizable.
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V (x; #) = 1
2 col(x; #)

TP col(x; #) satis,es the bound

V̇ 6− �(1− /t)V

for some �¿ 0. Given that there is no ,nite escape time and /t → 0, we conclude that x(t) will converge to
zero.
On the other hand, if BKT# is square integrable, we also conclude x(t) → 0 from (21), condition (iii),

boundedness of z and Theorem 4.9 of [5].

Remark 10. Proposition 7 directly provides the solution to Problem CI. Indeed; in the case of a chain of
integrators we have

A=




0 1 · · · 0

0 0 · · · 0

...
... · · · ...

0 0 · · · 1

0 0 · · · 0



; B=




0

0

...

0

1



; C =




1

0
...

0

0



:

Hence; BTx=xn and CTx=x1; while BTA=0. Finally; as A and B are fully known; assumption (iii) is trivially
veri,ed.

6.3. Robustness

It is interesting to compare the nonlinear PI derived in Proposition 5 with the well-known Nussbaum gain
controller [16], which (in its basic form) is given by

u= !̂
2
cos(!̂)y;

˙̂!= �y2:

Comparing with (5) and (14) we see that they di?er on the presence of a proportional term �P(y) in our

controller, and the use of a quadratic term !̂
2
in the Nussbaum scheme, instead of a linear term in the nonlinear

PI. Although the latter di?erence is not essential, the proportional adaptation term e?ectively enhances the
robustness of the nonlinear PI.
To illustrate this point let us consider the e?ect of unmodeled dynamics and place controller (5) and (14)

in closed loop with an arbitrary nth-order linear system ẋ=Ax+Bu; y=CTx. After some simple calculations
we obtain the closed-loop dynamics

ẋ = Ax + Bz cos(z);

ż = xTCT[�x + Ax + Bz cos(z)]: (23)

Of course, we still have the key property that the function V (y; z)= 1
2y

2− z, has a derivative V̇ =−�y26 0.
Hence, as before, the central issue is when will z remain bounded.
If we assume that the plant is relative degree one and minimum phase, then it admits a representation of

the form

1̇= F1+ Gy;

ẏ = HT1+ ay + bu;
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Fig. 3. Block diagram of system (23).

where F is a strict Hurwitz matrix and a; b; H and G are arbitrary. The z dynamics then becomes

ż = y2[a+ bz cos(z) + �] + yHT1:

Using the stability of F , and doing some simple bounding, we can prove that

ż6 sup
t¿0

|y(t)|2[|a+ bz cos(z) + �|+ 4] + /t ;

where 4¿ 0 depends on the plant parameters, and /t is an exponentially decaying term that depends on initial
conditions. From the expression above we can conclude that z is bounded, hence establishing the robustness
of nonlinear PI vis-Ma-vis relative degree one minimum phase unmodeled dynamics.
The robustifying e?ect of the proportional term can also be highlighted adopting a passive systems viewpoint.

For, let us represent system (23) by the block diagram of Fig. 3. It is easy to prove that, if z is bounded, the
feedback map u1 �→ y1 described by

ż = u1;

y1 = z cos(z)

is passive, with storage function z sin(z) + cos (z). On the other hand, it is well known that the forward path
is passive if the transfer function

H (s) = CT[(�I + A)(sI − A)−1 + I ]B

is positive real. Let us consider now the case when the plant is a simple integrator perturbed by a fast parasitic
,rst-order unmodeled dynamics, that is, Y (s) = (M=s(s+M))U (s), where M ¿ 0. Via simulations and some
analysis, it has been shown in [9] that the Nussbaum gain controller is unstable for M ¿ 1. In this case
H (s)=Ms+�=s(s+M), which is positive real for all �¡M . 15 If we remove the proportional term, as in the
Nussbaum gain controller, the zero disappears and we get H (s) = �M=s(s+M) which is clearly not positive
real. This provides an alternative explanation of the poor robustness properties of Nussbaum gain controllers
unveiled in [9].

15 This fact by itself is not conclusive for stability—because passivity of the feedback operator relies on boundedness of z. However,
using standard center manifold arguments, it is possible to show that the equilibria of closed-loop system, which are of the form (0; 0; Sz),
are stable. Moreover, this equilibrium manifold is locally attractive.
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Before closing this section let us point out that it is well known that open integration of a quadratic signal
may generate a parameter drift in the presence of (even zero mean) noise. Both schemes su?er from this
clear drawback, however, the presence of the proportional term (instead of a quadratic) in the nonlinear PI
makes it less sensitive to noise. Last, but not least, the stability analysis of Nussbaum gain controllers is far
more complicated than the simple derivation given above, indicating that we have a better understanding of
the stabilization mechanism of nonlinear PI.

7. Conclusions

We presented in this paper a radically new framework for stabilization of partially known systems. We con-
sidered, in particular, linear systems perturbed by coarsely known matched nonlinear uncertainties, a problem
that has been typically approached in the adaptive control literature postulating a nonlinearly parameterized
structure for the uncertainty, and implementing a parameter estimator that tries to match the data. Motivated
by the diJculties associated to the problem of estimation of nonlinearly parameterized systems, we propose
here to abandon the parameterization perspective, and generate instead a stable error equation with a pertur-
bation function that exhibits at least one root. By suitably adjusting the proportional and integral gains of a
nonlinear PI controller we, roughly speaking, make this root an attractive equilibrium. It is also shown that
this approach applies as well to systems with unknown control directions, for which we generate a new class
of controllers with proven robustness properties.
The approach proposed in this paper is relevant for the fundamental problem of output-feedback stabilization

of linear time-invariant systems with reduced prior knowledge. As thoroughly studied in [16], besides the
highly contrived model reference and pole placement adaptive control paradigms, there are two di?erent
methods to solve this problem: adaptive high-gain feedback, Va la Willems and Byrnes [26,11], or dense
(open-loop) searches in parameter space, as proposed by Martensson [18]. 16 While the ,rst approach is
clearly restricted to minimum phase systems and su?ers from high noise sensitivity, the convergence rate of
the second method has shown to be extremely poor for practical applications. For these reasons there exists
a widespread—though, not fully justi,ed—belief that the only schemes of practical interest are parameter
estimator–based.
In this respect, it is instructive to critically review some drawbacks of these schemes that are conspicuous

by their absence in our nonlinear PI approach. The parameter update laws used in direct adaptive control are
usually rationalized invoking a minimization problem that is recursively “solved” seeking along a gradient
descent direction. As the plant dynamics are coupled with the identi,er, good estimates of the gradient are
possible only under very particular circumstances, giving rise to the highly restrictive positive real condition,
that permeates all the basic research in robust adaptive control [16]. This ubiquitous assumption can be “swept
under the rug” adding leakages and (dynamic) normalizations to the parameter update laws. While the former
induces unpredictable complex behaviors to the closed loop [17], the latter forces the adaptation to slow down
reducing the controller alertness. Since tracking (slowly time varying) uncertain parameters is the raison
d’être of adaptive control, these ,xes are of little practical interest. A similar scenario appears in the indirect
approach, whose success hinges upon some kind of parameter convergence. The latter can only be achieved
with persistency of excitation—unavailable, and even undesirable, in many applications—or switching o? the
adaptation gains, as it implicitly happens in least-squares algorithms.
We hope that the preliminary results reported here open up a new avenue of research for the control

of unknown systems, placed between the two existing extremes to describe uncertainty: unstructured vs.

16 A third, practically appealing, alternative is the supervisory control of Morse [20,21], which is however formulated under di?erent
assumptions.
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parameterized, which are adopted in robust and adaptive control, respectively. Such a middle-point alternative
may lead to less conservative results for less contrived problems.
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