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Abstract

Two conjectures on admissible control operators by George Weiss are disproved in this paper. One conjecture says that an
operator B de5ned on an in5nite-dimensional Hilbert space U is an admissible control operator if for every element u∈U
the vector Bu de5nes an admissible control operator. The other conjecture says that B is an admissible control operator if a
certain resolvent estimate is satis5ed. The examples given in this paper show that even for analytic semigroups the conjectures
do not hold. In the last section we construct a semigroup example showing that the 5rst estimate in the Hille–Yosida theorem
is not su:cient to conclude boundedness of the semigroup.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well-known that homogeneous linear partial
di-erential equations can be written as abstract di-er-
ential equations on a Banach or Hilbert space. For in-
stance, the di-usion equation in a metal bar of length
one,
@
@t
w(t; 	) =

@2

@	2
w(t; 	); t¿ 0; 	∈ (0; 1); (1)

with boundary conditions
@
@	
w(t; 0) =

@
@	
w(t; 1) = 0 (2)
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can be written as the abstract di-erential equation

ẋ(t) = Ax(t); (3)

where x(t) denotes the temperature pro5le at time
t, i.e., w(t; ·). This temperature pro5le is assumed to
be an element of L2(0; 1). Furthermore, A is a linear
operator from its domain D(A) to L2(0; 1) de5ned as

Ah=
d2h
d	2

;

on

D(A) =
{
h∈L2(0; 1) | d

2h
d	2

∈L2(0; 1)

with
dh
d	

(0) =
dh
d	

(1) = 0
}
:

A homogeneous linear partial di-erential equation
(p.d.e.) has for every initial condition a unique (weak)
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solution which depends continuously on the initial
condition if and only if the operator A appearing in
the corresponding abstract di-erential equation gen-
erates a C0-semigroup, which we denote by T (·).
For the partial di-erential equation (1) with bound-
ary conditions (2) this is the case. Furthermore,
T (t)w(0; ·) = x(t) in L2(0; 1) for all t¿ 0. For more
detail, see [2, Chapter 2].
The Hille–Yosida theorem gives necessary and

su:cient conditions for an operator A to generate a
C0-semigroup. Hence, this theorem can be used to
determine whether the p.d.e. has a unique solution
which depends continuously on the initial condi-
tion. For inhomogeneous partial di-erential equations
Weiss conjectured similar results 10 years ago. Be-
fore we formulate these conjectures we show how
an inhomogeneous p.d.e. can be reformulated as
an inhomogeneous di-erential equation in a Hilbert
space.
Consider the p.d.e. (1) with inhomogeneous bound-

ary conditions

@
@	
w(t; 0) = u(t);

@
@	
w(t; 1) = 0: (4)

Introducing again x(t) as the temperature pro5le at
time t, we can rewrite (1) and (4) as (see [13])

ẋ(t) = Ax(t) + Bu(t); x(0) = x0; t¿ 0; (5)

where A is the same as in (3) and B is given as

B= �; (6)

where � is the delta distribution at 	 = 0. Hence, we
see that B does not lie in L2(0; 1), and thus does not
de5ne an operator from C to L2(0; 1). Since L2(0; 1) is
the space in which we want that the state x(t) takes its
values, it is not directly clear if every input function u
is such that the solution x of (5) lies in L2(0; 1). As in
the Hille–Yosida theorem, we would like to conclude
this from properties of the operators A and B.
We consider the abstract di-erential equation

ẋ(t) = Ax(t) + Bu(t); x(0) = x0; t¿ 0 (7)

on a Hilbert space H with x0 ∈H and with u in some
space of functions taking values in a Hilbert space U .
We denote this class of inputs by U. We wonder if
for any input u∈U and any initial condition x0 there
exists a unique solution x with values in H satisfying

(weakly) Eq. (7). Choosing u= 0, we see that A has
to generate a C0-semigroup T (·) on H . The answer to
the earlier question depends on the class U of input
functions. If u is very smooth, then it is more likely
that (7) has a solution than if u is merely L1. Through-
out this paper we take U to be L2loc(0;∞;U ). This
choice of input functions is motivated by the fact that
this is the space which is normally used in control
theory.
Weiss [17] showed that if the solution of (7)

takes its values in H for any u∈L2loc(0;∞;U ), then
B∈L(U;D(A∗)′), where D(A∗) is the domain of the
adjoint of A, and ′ denotes the dual space. D(A∗)′ can
also be seen as the completion of H with respect to
the norm

‖x‖D(A∗)′ = ‖(�I − A)−1x‖H ;
where � is an arbitrary point in the resolvent set of
A. Note that this implies that B is a bounded operator
from U to H whenever A is a bounded operator on H
(usually A is unbounded).
Since the C0-semigroup T (·) can be extended to

D(A∗)′, we can consider (7) as an abstract di-erential
equation on this larger Hilbert space. As an operator
from U to D(A∗)′, the control operator B is bounded
and thus the solution (7) is given by

x(t) = T (t)x0 +
∫ t

0
T (t − �)Bu(�) d�: (8)

Since x0 is an element of H , it is clear that x(t) lies in
H if and only if the integral term lies in H for every
u. Operators B for which the integral term lies in H
for every u are called admissible.

De�nition 1.1. B∈L(U;D(A∗)′) is called an admis-
sible control operator for T (·) if, for some t ¿ 0,∫ t

0
T (t − �)Bu(�) d�∈H (9)

for all u∈L2(0; t;U ). B∈L(U;D(A∗)′) is a weakly
admissible control operator for T (·), if for every
v∈U , Bv is an admissible control operator for T (·),
i.e., (9) holds for all u of the form u(�) = vw(�),
where v∈U and w∈L2(0; t;C).

Using the semigroup property of T (·), it is not hard
to see that (9) is satis5ed for every t ¿ 0 if it is satis5ed
for some t ¿ 0.
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It follows from the closed graph theorem that if B is
an admissible control operator for T (·) then, for each
t ¿ 0, there exists a constant Mt ¿ 0 such that

∥∥∥∥
∫ t

0
T (t − �)Bu(�) d�

∥∥∥∥
H
6Mt‖u‖L2(0; t;U );

u∈L2(0; t;U ): (10)

Thus, an inhomogeneous linear partial di-erential
equation of type (7) has for every initial condition
and every locally square integrable input a unique
(weak) solution which depends continuously on the
initial condition and the input if and only if the op-
erator A generates a C0-semigroup T (·) and B is an
admissible control operator for T (·).
For p.d.e.’s special techniques for solving the ad-

missibility problem are available, see for example [9].
If the operator A has a Riesz basis of eigenvectors and
U = C, then it has been proved that admissibility of
B is equivalent to the fact that a certain measure is a
Carleson measure, see [7,16]. All these results apply
only to speci5c cases.
Weiss [18] conjectured the following simple condi-

tion for the admissibility of B.

Conjecture 1.2. Let B∈L(U;D(A∗)′). Then B is an
admissible control operator for T (·) if and only if B
is a weakly admissible control operator for T (·).

Clearly, admissibility implies weak admissibil-
ity. For left-invertible C0-semigroups Weiss [18]
showed that also the converse is true, i.e., the con-
jecture holds for such semigroups. This implication
has also been proved for normal analytic semi-
groups, see [6]. Here we show that this implication
no longer holds for compact analytic semigroups,
see Example 2.3. It is a little bit surprising that the
conjecture does not hold for analytic semigroups,
since they satisfy T (t)B∈L(U;H) for all t ¿ 0. Re-
cently, Le Merdy [11] showed that Conjecture 1.2
holds for an analytic semigroup if and only if A1=2 is
admissible.
Let ! denote the growth bound of T (·). Taking

u(t)=e−stu0 with u0 ∈U and Re(s)¿max{0; !+1},
and using (10) we see that admissibility implies ‖(sI−
A)−1B‖6M=

√
Re(s). In Weiss [18] the following

conjecture appeared.

Conjecture 1.3. Let B∈L(U;D(A∗)′). Then the fol-
lowing statements are equivalent:

(1) B is an admissible control operator for T (·).
(2) There exist constants K;!¿ 0 such that

‖(sI − A)−1B‖6 K√
Re(s)

; s∈C; Re(s)¿!:

(11)

It is known [6] that this conjecture is also true for
left-invertible semigroups, as well as for normal ana-
lytic ones. Furthermore, from the recent work of Le
Merdy [11] we know that Conjecture 1.3 holds if and
only if it holds for B=A1=2. Since Weiss [18] showed
that Conjecture 1.3 implies Conjecture 1.2, we have
disproved Conjecture 1.3 as well. We also show that
our example from Section 2 satis5es the stronger nec-
essary condition for admissibility given in Sta-ans
[15, Section 4.2], namely,

‖(sI − A)−nB‖6M
1

n1=4Re(s)n−1=2 ;

n∈N; s∈C; Re(s)¿!: (12)

A necessary and su:cient condition for admissibil-
ity was obtained by Grabowski and Callier [5]. They
showed that B is an admissible control operator for
T (·) if and only if there exist positive M and ! such∥∥∥∥∥
n−1∑
k=0

e−s(·)(·)k
k!

B∗(sI − A∗)−(n−k)x0

∥∥∥∥∥
L2(0;∞;U )

6
M

Re(s)n
‖x0‖ (13)

for all n∈N, x0 ∈H , and all s with Re(s)¿!. How-
ever, this condition is very hard to check. We remark
that since this condition was obtained via the Hille–
Yosida theorem, it is su:cient to check (13) for real
s only.
If we study the limit behavior of solutions of (7), a

stronger concept than admissibility is needed, called
in=nite-time admissibility.

De�nition 1.4. B∈L(U;D(A∗)′) is called an in=nite-
time admissible control operator for T (·), if there
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exists a constant M ¿ 0 such that∥∥∥∥
∫ ∞

0
T (�)Bu(�) d�

∥∥∥∥
H
6M‖u‖L2(0;∞;U );

u∈L2(0;∞;U ):

B∈L(U;D(A∗)′) is aweakly in=nite-time admissible
control operator for T (·) if, for every v∈U , Bv is an
in5nite-time admissible operator for T (·).

Of course, every in5nite-time admissible control
operator for T (·) is an admissible control operator for
T (·), and if T (·) is exponentially stable, then admis-
sibility and in5nite-time admissibility are equivalent
notions (as shown in [17]). In Section 3 we give an ex-
ample showing that in general admissibility together
with weak in5nite-time admissibility does not imply
in5nite-time admissibility. In this example A and B
are bounded and even compact so that T (·) is a uni-
formly continuous (semi)group. Moreover, in this ex-
ample T (·) is analytic, bounded and strongly stable.
The same example shows that in general the condition

‖(sI − A)−1B‖6 K√
Re(s)

; s∈C; Re(s)¿ 0;

for some K ¿ 0, does not imply the in5nite-time ad-
missibility of B. In Jacob et al. [8] it has been shown
that weak in5nite-time admissibility does not imply
in5nite-time admissibility even if the semigroup is a
contraction semigroup.
In the last section we convert our counterexample

into an example which demonstrates that for an in-
5nitesimal generator A the estimate

‖(sI − A)−1‖6 M
Re(s)

; s∈C; Re(s)¿ 0;

does not imply the boundedness of the C0-semigroup
T (·). Note that this estimate is the 5rst estimate in the
Hille–Yosida theorem. Although it is known that this
estimate is not su:cient to conclude that A is the in-
5nitesimal generator of a C0-semigroup on the Hilbert
space H , one could hope that if A is the in5nitesi-
mal generator of a C0-semigroup, then this would be
su:cient to conclude the uniform boundedness of the
semigroup.
Note that if A is the in5nitesimal generator of a

C0-semigroup which satis5es for some �∈ [0; 1)

‖(sI − A)−1‖6 M
Re(s)�

for all s with Re(s)¿ 0, then the semigroup is expo-
nentially stable (see [15, Lemma 3.11.7]).

2. Weak admissibility does not imply admissibility

Throughout this paper H is a separable Hilbert
space. All our examples are based on the fact that
it is possible to 5nd a normalized basis {’n}n∈N in
H which is not Hilbertian. By a basis we mean a
sequence {’n}n∈N such that for every x∈H there ex-
ists a unique sequence of scalar coe:cients {fn}n∈N,
such that

x =
∞∑
n=1

fn’n := lim
N→∞

N∑
n=1

fn’n: (14)

This basis is normalized if ‖’n‖ = 1 for all n∈N.
Such bases are studied in great detail in Singer [14].
A basis {’n}n∈N is Hilbertian if there is a constant
C such that for all N ∈N and all scalar sequences
{fn}Nn=1 we have∥∥∥∥∥

N∑
n=1

fn’n

∥∥∥∥∥
2

6C
N∑
n=1

|fn|2:

The semigroups that we construct and their generators
will be diagonal operators with respect to some basis.
Such operators have been studied by several people.
The following result is well-known, and a proof can
be found in e.g. [1, Lemma 3.2.5].

Lemma 2.1. Let {’n}n∈N be a basis of H , and let
{qn}n∈N be a sequence of scalars. For each N ∈N
and scalar sequence {fn}Nn=1, de=ne

Q
N∑
n=1

fn’n =
N∑
n=1

qnfn’n:

If the total variation of the sequence {qn}n∈N is =nite,
i.e., if

Var(q) :=
∞∑
n=1

|qn+1 − qn|¡∞;

then Q can be extended to a bounded linear operator
on H , and

‖Q‖6K
(
Var(q) + lim sup

n→∞
|qn|
)
;

where K is a constant independent of the sequence q.
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In order to calculate the total variation, the fol-
lowing observation is useful. If f is a continuous
function which is non-decreasing or non-increasing
on the interval (a; b), and if the sequence {qn}n∈N ⊂
(a; b) is non-decreasing or non-increasing, then
Var(f(q))6 |f(a)− f(b)|.
Another ingredient in our counterexamples are

Carleson measures. Let C+ denote the open right
half-plane, i.e., C+ := {s∈C |Re(s)¿ 0}. A posi-
tive measure ( in C+ is a Carleson measure if there
exists a constant m such that

((Q)6mh

for all squares Q= {s= sr + isi ∈C+ | 0¡sr ¡h; y0
¡si ¡y0 + h}.
These measures play an important role in the theory

of complex interpolation problems, see Garnett [4].
We use one of these results for the Hardy spaces Hp.
The Hardy space Hp, p¿ 1, is de5ned as the space
of all functions which are holomorphic on C+ and for
which

sup
r¿0

∫ ∞

−∞
|f(r + i!)|p d!¡∞: (15)

Hp is a Banach space with its norm given by the pth
root of the expression in (15). The following result
relates Hp with Carleson measures. For the proof we
refer to Garnett [4, Theorem II.3.9].

Lemma 2.2. If ( is a Carleson measure, then∫
|f|pd(6A‖f‖pHp ; f∈Hp: (16)

More information on Carleson measures can be
found in [4].
We are now in a position to present the example

showing that weak admissibility of B for T (·) does
not imply admissibility.

Example 2.3. As in all our examples, we let H be
a separable Hilbert space, and let {’n}n∈N be a
normalized basis for H which is not Hilbertian. Ex-
amples of such bases can be found in Singer [14,
p. 428]. We let {.n}n∈N ⊂ (1;∞) be a monotoni-
cally increasing sequence with limn→∞ .n =∞ such
that

∑∞
n=1 .n�.n is a Carleson measure. We may

choose .n := 2n, see [4, p. 288], but other choices
are also possible.
First we construct a C0-semigroup on H . For all

t¿ 0 and x∈H of the form x=
∑N

n=1 fn’n we de5ne

T (t)
N∑
n=1

fn’n :=
N∑
n=1

e−.ntfn’n:

Since the sequence {.n}n is monotonically increas-
ing and since limn→∞.n =∞, we get by Lemma 2.1
that T (t) has a linear bounded extension to H . Thus
T (t)∈L(H), and

‖T (t)‖6Ke−t ; t¿ 0: (17)

Clearly, T (0)= I and T (t)T (s)=T (t+ s) for t; s¿ 0.
We will show that T (·) is strongly continuous. For
each x∈H , there exists a sequence {fn}n∈N of scalars
such that (14) holds. Choose /¿ 0 and choose N such
that ‖x − xN‖H ¡/, where xN :=

∑N
n=1 fn’n. Next,

choose t0¿ 0 such that
∑N

n=1 |e−.nt0 − 1| |fn|6 /.
Then we have for t ∈ (0; t0) that

‖T (t)x − x‖6 ‖T (t)x − T (t)xN‖
+ ‖T (t)xN − xN‖+ ‖xN − x‖

6K/+
N∑
n=1

|e−.nt0 − 1| |fn|+ /

6 [K + 2]/:

Thus T (·) is a C0-semigroup onH . This C0-semigroup
was also used by Le Merdy [10] to show that there
exists a uniformly bounded, compact C0-semigroup
which is not equivalent to a contraction semigroup.
Let A denote the in5nitesimal generator of T (·). It is
easy to see that

A’n =−.n’n; n∈N:
We show that T (·) is analytic. Since T (·) is uniformly
bounded, it is su:cient (see [12, Theorem 2.5.2]) to
show that

‖(sI − A)−1‖6 M
|Ims| ; s∈C+: (18)

Let s= sr + isi ∈C+. Clearly, (sI − A)−1’n = (1=s+
.n)’n, for n∈N. In order to prove (18), we 5rst esti-
mate the variation of the sequence �n := 1=s+.n. For
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each n∈N we have

|�n+1 − �n| =
∣∣∣∣ 1
s+ .n+1

− 1
s+ .n

∣∣∣∣
=
∣∣∣∣
∫ −.n

−.n+1

d
dx

1
s− x

dx
∣∣∣∣

=
∣∣∣∣
∫ −.n

−.n+1

1
(s− x)2

dx
∣∣∣∣

6
∫ −.n

−.n+1

1
|s− x|2 dx:

Thus

Var(�)6
∫ −1

−∞

1
|s− x|2 dx

=
∫ −1

−∞

1
|si|2 + |x − sr|2 dx

6
∫ 0

−∞

1
|si|2|x|2 dx =

0
2|si| :

Using Lemma 2.1 we get the following estimate for
‖(sI − A)−1‖:
‖(sI − A)−1‖6K

(
Var (�) + | lim

n→∞ �n|
)
6

K0
2|Im s| ;

whereK ¿ 0 is independent of s. Thus T (·) is analytic.
Next we construct an operator B which is weakly

admissible but not admissible. We choose U = ‘2(N)
and for each 5nite sequence {2n}Nn=1, we de5ne

B{2n}Nn=1 :=
N∑
n=1

√
.n2n’n:

Since D(A∗)′ is the completion of H with respect to
the norm

‖x‖D(A∗)′ = ‖A−1x‖H ;
it is easy to see that B can be extended to an operator
in L(U;D(A∗)′).
Next we prove that B is only weakly admissible.

(1) B is not an admissible control operator for T (·).

Proof. Since T (·) is exponentially stable, it is enough
to show that B is not an in5nite-time admissible control
operator for T (·).

Choose an arbitrary 5nite scalar sequence {2n}Nn=1
and de5ne

uN (t) :=
N∑
n=1

√
.n2nene−.nt ; t¿ 0;

where {en}n∈N is the standard basis of ‘2(N), i.e.,
(en)k = 1 if k = n and (en)k = 0 otherwise. Clearly,

‖uN‖2L2(0;∞;‘2(N)) =
N∑
n=1

.n|2n|2
∫ ∞

0
e−2.nt dt

=
1
2

N∑
n=1

|2n|2: (19)

Furthermore, using the fact that Ben =
√
.n’n and

T (t)’n = e−.nt’n, we see that∫ ∞

0
T (4)BuN (4) d4=

∫ ∞

0

N∑
n=1

.n2ne−2.n4’n d4

=
1
2

N∑
n=1

2n’n: (20)

If B was in5nite-time admissible, then there would
exist a constant M ¿ 0 such that∥∥∥∥
∫ ∞

0
T (4)Bu(4) d4

∥∥∥∥
H
6M‖u‖L2(0;∞;‘2(N));

u∈L2(0;∞; ‘2(N)): (21)

Combining this estimate with equalities (19) and (20)
we get∥∥∥∥∥

N∑
n=1

2n’n

∥∥∥∥∥
2

= 4
∥∥∥∥
∫ ∞

0
T (4)BuN (4) d4

∥∥∥∥
2

6 4M 2‖uN‖2L2(0;∞;‘2(N))

= 2M 2
N∑
n=1

|2n|2:

However, this inequality says that the basis {’n}n∈N
is Hilbertian, contrary to our assumption. Thus, B is
not an admissible control operator for T (·).

(2) B is a weakly admissible control operator for
T (·) i.e., for every v∈ ‘2(N), Bv is an in5nite-time
admissible control operator for T (·).
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Proof. Letv= {2n}n∈N ∈ ‘2(N),andletvN := {2n}Nn=1.
For u∈L2(0;∞) we get∥∥∥∥
∫ ∞

0
T (4)BvNu(4) d4

∥∥∥∥
H

=

∥∥∥∥∥
∫ ∞

0

N∑
n=1

e−.n42n
√
.n’nu(4) d4

∥∥∥∥∥
H

=

∥∥∥∥∥
N∑
n=1

2n
√
.n

∫ ∞

0
e−.n4u(4) d4’n

∥∥∥∥∥
H

=

∥∥∥∥∥
N∑
n=1

2n
√
.nû(.n)’n

∥∥∥∥∥
H

6
N∑
n=1

|2n√.nû(.n)|

6

(
N∑
n=1

|2n|2
)1=2( N∑

n=1

|√.nû(.n)|2
)1=2

6M2‖vN‖ ‖û‖H 2 ; (22)

where we have used Lemma 2.2 and the fact that the
Laplace transform of any L2(0;∞) function lies inH 2.
Since ‖û‖2H2

= 20‖u‖2L2(0;∞), we have shown that BvN
is an admissible control operator for T (·).
For N → ∞, we have that BvN → Bv in D(A∗)′,

and hence∫ ∞

0
T (4)BvNu(4) d4→

∫ ∞

0
T (4)Bvu(4) d4

in D(A∗)′: (23)

On the other hand, (22) shows that the sequence∫∞
0 T (4)BvNu(4) d4 is bounded in H , which implies
convergences (23) also holds in the weak topology
of H . By the weak compactness of the unit ball in H ,∫∞
0 T (4)Bvu(4) d4∈H and∥∥∥∥
∫ ∞

0
T (4)Bvu(4) d4

∥∥∥∥
H
6M3‖v‖ ‖u‖L2(0;∞): (24)

Thus, Bv is an admissible control operator for
T (·).

If B is weakly admissible, then it is not hard to
show that Bv satis5es the sequence of estimates (12),
withM=Mv, see [15, Section 4.2]. Using the uniform

boundedness theorem, we conclude that every weakly
admissible B satis5es (12). Hence the previous exam-
ple shows that this condition is not su:cient for ad-
missibility. Yet we will show that the input operator
from Example 2.3 satis5es a sequence of estimates,
which is stronger than (12), and thus showing that this
stronger sequence of estimates is not su:cient either.
Here we explicitly use the fact that .n = 2n.

Let s be an element of C+, and let v= {vk}∞k=1 ∈ ‘2
(N) have norm one. We have the following estimate:

‖(sI − A)−nBv‖2 =
∣∣∣∣∣
∞∑
k=1

√
2k

(s+ 2k)n
vk’k

∣∣∣∣∣
2

6

( ∞∑
k=1

√
2k

(Re(s) + 2k)n
|vk |
)2

6
∞∑
k=1

2k

(Re(s) + 2k)2n
;

where we have used the Cauchy–Schwarz inequal-
ity. In order to estimate this last expression, we in-
troduce the monotonically decreasing sequence ak :=
1=(Re(s) + k)2n. Then for N¿ 2K we have
N∑
k=1

ak ¿ a1 + a2 + (a3 + a4) + · · ·

+(a2K−1+1 + · · ·+ a2K )

¿ a2 + 2a4 + · · ·+ 2K−1a2K =
1
2

K∑
k=1

2ka2k ;

and so
∞∑
k=1

2k

(Re(s) + 2k)2n
6 2

∞∑
k=1

1
(Re(s) + k)2n

:

Using this in our estimate of ‖(sI−A)−nBv‖, we obtain
that

‖(sI − A)−nBv‖26 2
∞∑
k=1

1
(Re(s) + k)2n

6 2
∫ ∞

0

1
(Re(s) + t)2n

dt

6
2

2n− 1
1

(Re(s))2n−1 :
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3. Admissibility and weak in�nite-time
admissibility does not imply in�nite-time
admissibility

In the previous section we have shown that weak
admissibility does not imply admissibility. From (24)
we see that the input operator in our example is weakly
in5nite-time admissible. Hence, we already proved
that weak in5nite-time admissibility does not imply
admissibility, and thus not in5nite-time admissibil-
ity either. However, if B is admissible, would weak
in5nite-time admissibility imply in5nite-time admis-
sibility? In the next example we show that this does
not hold either. Note that in this example the oper-
ators A and B are compact elements of L(H) and
L(‘2(N); H), respectively, and that T (·) is bounded
and strongly stable. In particular, B is an admissible
control operator for A. Furthermore, note that the op-
erator A in this example is the inverse of the operator
A in the previous example.

Example 3.1. Let {�n}n∈N ⊂ (0; 1) be a monoton-
ically decreasing sequence with limn→∞�n = 0, and
such that

∑∞
n=1 �n��n is a Carleson measure on the

right half-plane C+. We could for example choose
�n := 2−n, see Garnett [4, p. 288]. We take {’n}n∈N
to be the same as in Example 2.3.

We now de5ne A by

A’n =−�n’n; n∈N:
Since the sequence {�n}n is monotonically decreasing
it is easy to see that {�n}n∈N is of bounded variation.
Now by Lemma 2.1, we get that A has a bounded
linear extension to H , that is A∈L(H). Let T (·) be
the C0-semigroup generated by A, that is

T (t)’n = e−�nt’n; t¿ 0; n∈N:
The operators A and T (·) have some nice properties.

(1) T (·) is bounded and strongly stable.

Proof. By Lemma 2.1 we have for t¿ 0

‖T (t)‖6 2K;

and thus the C0-semigroup T (·) is bounded.
Next we show that T (·) is strongly stable. Let x =∑∞
n=1 fn’n ∈H and /¿ 0. Then there exists anN ∈N

such that xN :=
∑N

n=1 fn’n satis5es

‖x − xN‖H ¡/:

Thus, for su:ciently large t ¿ 0 we have

‖T (t)x‖6 ‖T (t)x − T (t)xN‖+ ‖T (t)xN‖

6 ‖T (t)‖ ‖x − xN‖+
∥∥∥∥∥

N∑
n=1

e−�ntfn’n

∥∥∥∥∥
6 2K/+

N∑
n=1

e−�nt |fn| ‖’n‖6 2K/+ /;

and so T (·) is strongly stable.

(2) The operator A is compact.

Proof. De5ne AN , N ∈N, by

AN’n =

{−�k’n; n6N;

0; n¿N:

Clearly, AN has rank N . Using Lemma 2.1, we get the
estimate

‖A− AN‖6 2K�N+1 → 0 as N → ∞;

which shows that A is compact.

Next we de5ne the control operator B. We again
choose U = ‘2(N), and for every 5nite sequence
{2n}Nn=1 we de5ne

B{2n}Nn=1 =
N∑
n=1

√
�n2n’n: (25)

(3) B can be extended to a bounded linear operator.

Proof. We have

‖B{2n}Nn=1‖=
∥∥∥∥∥

N∑
n=1

√
�n2n’n

∥∥∥∥∥6
N∑
n=1

√
�n|2n| ‖’n‖

=
N∑
n=1

√
�n|2n|6

√√√√( N∑
n=1

�n

)
N∑
n=1

|2n|2:

Thus we have that

‖B{2n}Nn=1‖26
(

N∑
n=1

�n

)
N∑
n=1

|2n|2

6C‖{2n}Nn=1‖2‘2(N);
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where C :=
∑∞

n=1 �n ¡∞, since
∑∞

n=1 �n��n is a Car-
leson measure with support in (0; 1). This shows that B
has a bounded linear extension, i.e., B∈L(‘2(N); H).
In particular, B is an admissible control operator for
T (·).

(4) The operator B is compact. This is shown similar
as in Part (2), using estimates similar to those in Part
(3) instead of Lemma 2.1.
(5) B is not an in5nite-time admissible control op-

erator for T (·). This is shown in the same way as in
Example 2.3.
(6) Similarly, as in Example 2.3, we can show that

for every v∈U , Bv is an in5nite-time admissible con-
trol operator for T (·). Furthermore, as in (22) and (24)
we have that∥∥∥∥
∫ ∞

0
T (4)Bvu(4) d4

∥∥∥∥6M2‖v‖‖u‖L2(0;∞): (26)

(7) There exists a constant K ¿ 0 such that

‖(sI − A)−1B‖6 K√
Re(s)

; s∈C; Re (s)¿ 0:

Proof. Substituting u(4) = e−s4 in (26), where
Re(s)¿ 0 gives that

‖(sI − A)−1Bv‖6 M2‖v‖√
Re(s)

:

Since this holds for all v∈H we have proved the as-
sertion.

4. A semigroup example

A direct consequence of the Hille–Yosida theorem
is that a C0-semigroup Te(·) is uniformly bounded if
and only if there exists a constant M such that its
generator Ae satis5es

‖(sI − Ae)−n‖6 M
Re(s)n

for all n∈N and s∈C+:

If Te(·) is aC0-semigroup on the Hilbert spaceHe, then
its growth bound is negative if and only if (sI−Ae)−1

is uniformly bounded in the open right half-plane. Mo-
tivated by this result, one wonders if the 5rst inequality
of the Hille–Yosida theorem is su:cient to determine
the exact growth of the semigroup. More precisely,

suppose that the in5nitesimal generator Ae satis5es

‖(sI − Ae)−1‖6 M
Re(s)

for all s∈C+; (27)

does this imply that Te(·) is uniformly bounded?
Using the example of the previous section we

show that this is in general not true, by constructing
a C0-semigroup for which the in5nitesimal generator
Ae satis5es (27) but

lim
t→∞ ‖Te(t)‖=∞: (28)

We remark that estimate (27) implies that ‖T (t)‖
6M (1 + t), but we do not know how sharp this
estimate is.
Furthermore, we would like to remark that if there

exists a �∈ [0; 1) such that the in5nitesimal generator
Ae satis5es

‖(sI − Ae)−1‖6 M
Re(s)�

for all s∈C+;

then the C0-semigroup is exponentially stable, see [15,
Lemma 3.11.7].
Consider the operators A and B of Example 3.1, and

let T (·) denote the bounded semigroup generated by
A. With these operators we de5ne the semigroup Te(·)
on H ⊕ L2(0;∞; ‘2(N)) as

Te(t)

(
x

f

)
=


 T (t)x +

∫ t

0
T (t − 4)Bf(4) d4

f(t + ·)


 ;

t¿ 0:

B is a bounded operator, and hence B is an admis-
sible control operator for T (·). According to Engel
[3], this implies that Te(·) is a C0-semigroup on H ⊕
L2(0;∞; ‘2(N)). Since B is not in5nite-time admis-
sible we know that Te(·) cannot be a bounded semi-
group. However, we will show that its in5nitesimal
generator satis5es (27).
By taking the Laplace transform of the semigroup,

we see that the resolvent is given by

(sI − Ae)−1

(
x

f

)

=

(
(sI − A)−1x + (sI − A)−1Bf̂(s)

[f(t + ·)(s)

)
:

Since the left shift is a contraction semigroup we
know that L2(0;∞; ‘2(N))-norm of [f(t + ·)(s) is
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bounded by ‖f‖ × 1=Re(s). Furthermore, since T (·)
is a bounded semigroup, a similar estimate holds for
(sI − A)−1. Thus, we have that for s∈C+∥∥∥∥∥(sI − Ae)−1

(
x

f

)∥∥∥∥∥
2

6
2M 2

Re(s)2
‖x‖2 + 2‖(sI − A)−1B‖2‖f̂(s)‖2

+
1

Re(s)2
‖f‖2: (29)

Since f∈L2(0;∞; ‘2(N)) we have that

‖f̂(s)‖6 ‖f‖=
√
2Re(s) for all s∈C+: (30)

In Example 3.1 we proved the existence of a constant
K ¿ 0 such that

‖(sI − A)−1B‖6K=
√
Re(s) for all s∈C+: (31)

Combining (29)–(31) gives that Ae satis5es esti-
mate (27). Since the corresponding semigroup is
unbounded, we have shown that estimate (27) is
not su:cient to conclude the boundedness of a
C0-semigroup.
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