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Abstract

Two conjectures on admissible control operators by George Weiss are disproved in this paper. One conjecture says that an
operator B defined on an infinite-dimensional Hilbert space U is an admissible control operator if for every element u € U
the vector Bu defines an admissible control operator. The other conjecture says that B is an admissible control operator if a
certain resolvent estimate is satisfied. The examples given in this paper show that even for analytic semigroups the conjectures
do not hold. In the last section we construct a semigroup example showing that the first estimate in the Hille—Yosida theorem

is not sufficient to conclude boundedness of the semigroup.
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1. Introduction

It is well-known that homogeneous linear partial
differential equations can be written as abstract differ-
ential equations on a Banach or Hilbert space. For in-
stance, the diffusion equation in a metal bar of length
one,

2
W(f )= @ w(t, &), t=0, £€(0,1), (1)

w1th boundary conditions

0

a—éw(t,O) 3 w(t 1)=0 2)

* Corresponding author.
E-mail addresses: h.jzwart@math.utwente.nl (H. Zwart),
birgit.jacob@math.uni-dortmund.de (B. Jacob),
olof.staffans@abo.fi (O. Staffans).

can be written as the abstract differential equation

X(1) = Ax(1), (3)
where x(¢) denotes the temperature profile at time
t, i.e., w(t,-). This temperature profile is assumed to
be an element of Z2(0, 1). Furthermore, 4 is a linear
operator from its domain D(4) to L>(0, 1) defined as
Al d?h

=@
on

D(A)—{heL2(0 1)|d—@eL2(0,1)

with —5(0)— 5(1)_ }

A homogeneous linear partial differential equation
(p.d.e.) has for every initial condition a unique (weak)
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solution which depends continuously on the initial
condition if and only if the operator 4 appearing in
the corresponding abstract differential equation gen-
erates a Cp-semigroup, which we denote by T7'(-).
For the partial differential equation (1) with bound-
ary conditions (2) this is the case. Furthermore,
T(t)w(0,-) = x(¢) in L?(0,1) for all ¢ > 0. For more
detail, see [2, Chapter 2].

The Hille—Yosida theorem gives necessary and
sufficient conditions for an operator 4 to generate a
Co-semigroup. Hence, this theorem can be used to
determine whether the p.d.e. has a unique solution
which depends continuously on the initial condi-
tion. For inhomogeneous partial differential equations
Weiss conjectured similar results 10 years ago. Be-
fore we formulate these conjectures we show how
an inhomogeneous p.d.e. can be reformulated as
an inhomogeneous differential equation in a Hilbert
space.

Consider the p.d.e. (1) with inhomogeneous bound-
ary conditions

0 0
— w(t,0) = u(t —w(t,1)=0. 4
SEWLO) =ul).  Fewe) 4)
Introducing again x(¢) as the temperature profile at
time ¢, we can rewrite (1) and (4) as (see [13])

x(t) = Ax(t) + Bu(t), x(0)=xp, t =0, (5)

where 4 is the same as in (3) and B is given as
B =9, (6)

where ¢ is the delta distribution at ¢ = 0. Hence, we
see that B does not lie in L?(0,1), and thus does not
define an operator from C to L?(0, 1). Since L>(0, 1) is
the space in which we want that the state x(¢) takes its
values, it is not directly clear if every input function u
is such that the solution x of (5) lies in L*(0,1). As in
the Hille-Yosida theorem, we would like to conclude
this from properties of the operators 4 and B.
We consider the abstract differential equation

X(t) =Ax(t) + Bu(t), x(0)=x, t=0 (7)

on a Hilbert space H with xo € H and with « in some
space of functions taking values in a Hilbert space U.
We denote this class of inputs by %. We wonder if
for any input 4 € % and any initial condition x there
exists a unique solution x with values in H satisfying

(weakly) Eq. (7). Choosing u = 0, we see that 4 has
to generate a Cy-semigroup 7'(-) on H. The answer to
the earlier question depends on the class % of input
functions. If u is very smooth, then it is more likely
that (7) has a solution than if u is merely L'. Through-
out this paper we take % to be L} (0,00; U). This
choice of input functions is motivated by the fact that
this is the space which is normally used in control
theory.

Weiss [17] showed that if the solution of (7)
takes its values in H for any u EL%OC(O, o0; U), then
Be X(U,D(A*)), where D(A*) is the domain of the
adjoint of 4, and ’ denotes the dual space. D(4*)' can
also be seen as the completion of A with respect to
the norm

Xl D=y = [I(A1 — 4)~ x|,

where A is an arbitrary point in the resolvent set of
A. Note that this implies that B is a bounded operator
from U to H whenever 4 is a bounded operator on H
(usually 4 is unbounded).

Since the Cy-semigroup 7'(-) can be extended to
D(A*)', we can consider (7) as an abstract differential
equation on this larger Hilbert space. As an operator
from U to D(A4*), the control operator B is bounded
and thus the solution (7) is given by

x(t) = T(t)vo + /0 T(t — p)Bup) dp. ®8)

Since x is an element of H, it is clear that x(7) lies in
H if and only if the integral term lies in H for every
u. Operators B for which the integral term lies in H
for every u are called admissible.

Definition 1.1. B #(U,D(4*)") is called an admis-
sible control operator for 7'(-) if, for some ¢ > 0,

/0 T(t — p)Bu(p)dp € H )

for all u € L*(0,t; U). B€ L(U,D(A*)) is a weakly
admissible control operator for T(-), if for every
ve U, Bv is an admissible control operator for 7°(-),
i.e., (9) holds for all u of the form u(p) = vw(p),
where v € U and w € L2(0,¢; C).

Using the semigroup property of 7°(-), it is not hard
to see that (9) is satisfied for every ¢ > 0 if it is satisfied
for some ¢ > 0.
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It follows from the closed graph theorem that if B is
an admissible control operator for 7'(-) then, for each
t > 0, there exists a constant M; > 0 such that

< Millull 20,10)s
H

”A T(t — p)Bu(p) dp

ucL*(0,t;U). (10)

Thus, an inhomogeneous linear partial differential
equation of type (7) has for every initial condition
and every locally square integrable input a unique
(weak) solution which depends continuously on the
initial condition and the input if and only if the op-
erator 4 generates a Cy-semigroup 7(-) and B is an
admissible control operator for 7'(-).

For p.d.e.’s special techniques for solving the ad-
missibility problem are available, see for example [9].
If the operator 4 has a Riesz basis of eigenvectors and
U = C, then it has been proved that admissibility of
B is equivalent to the fact that a certain measure is a
Carleson measure, see [7,16]. All these results apply
only to specific cases.

Weiss [18] conjectured the following simple condi-
tion for the admissibility of B.

Conjecture 1.2. Let Be £ (U,D(A4*)"). Then B is an
admissible control operator for 7'(-) if and only if B
is a weakly admissible control operator for 7°(-).

Clearly, admissibility implies weak admissibil-
ity. For left-invertible Cp-semigroups Weiss [18]
showed that also the converse is true, i.e., the con-
jecture holds for such semigroups. This implication
has also been proved for normal analytic semi-
groups, see [6]. Here we show that this implication
no longer holds for compact analytic semigroups,
see Example 2.3. It is a little bit surprising that the
conjecture does not hold for analytic semigroups,
since they satisfy T'(¢)B € £(U,H) for all ¢t > 0. Re-
cently, Le Merdy [11] showed that Conjecture 1.2
holds for an analytic semigroup if and only if 4/ is
admissible.

Let @ denote the growth bound of T'(-). Taking
u(t)=e""uy with ug € U and Re(s) > max{0,w+1},
and using (10) we see that admissibility implies ||(s/ —
A)7'B|| < M/\/Re(s). In Weiss [18] the following
conjecture appeared.

Conjecture 1.3. Let B € Z(U,D(A4*)"). Then the fol-
lowing statements are equivalent:

(1) B is an admissible control operator for 7°(-).
(2) There exist constants K, ® > 0 such that

I(sT —4)7'B|| <

]f( 3 seC, Re(s) > w.
v/Re(s
(11)

It is known [6] that this conjecture is also true for
left-invertible semigroups, as well as for normal ana-
lytic ones. Furthermore, from the recent work of Le
Merdy [11] we know that Conjecture 1.3 holds if and
only if it holds for B=A'. Since Weiss [18] showed
that Conjecture 1.3 implies Conjecture 1.2, we have
disproved Conjecture 1.3 as well. We also show that
our example from Section 2 satisfies the stronger nec-
essary condition for admissibility given in Staffans
[15, Section 4.2], namely,

_ 1
(st —A)~"B] SM Resy 2
neN, seC, Re(s)> . (12)

A necessary and sufficient condition for admissibil-
ity was obtained by Grabowski and Callier [5]. They
showed that B is an admissible control operator for
T(-) if and only if there exist positive M and » such

1l oSOy
S

k!
k=0 L2(0,00;U)
M
< 13
reGy 1l (13)

forall ne N, xo € H, and all s with Re(s) > . How-
ever, this condition is very hard to check. We remark
that since this condition was obtained via the Hille—
Yosida theorem, it is sufficient to check (13) for real
s only.

If we study the limit behavior of solutions of (7), a
stronger concept than admissibility is needed, called
infinite-time admissibility.

Definition 1.4. B € Z(U,D(4*))iscalled an infinite-
time admissible control operator for T(-), if there
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exists a constant M > 0 such that

A T(0)Bu(p) dp

< MJul|12(0,00:0)s

H
u €L2(O, oo; U).

Be P(U,D(A*))is a weakly infinite-time admissible
control operator for T(-) if, for every v € U, Bv is an
infinite-time admissible operator for 7(-).

Of course, every infinite-time admissible control
operator for 7'(-) is an admissible control operator for
T(-), and if T(-) is exponentially stable, then admis-
sibility and infinite-time admissibility are equivalent
notions (as shown in [17]). In Section 3 we give an ex-
ample showing that in general admissibility together
with weak infinite-time admissibility does not imply
infinite-time admissibility. In this example 4 and B
are bounded and even compact so that 7(-) is a uni-
formly continuous (semi)group. Moreover, in this ex-
ample 7'(-) is analytic, bounded and strongly stable.
The same example shows that in general the condition

K
/Re(s)

for some K > 0, does not imply the infinite-time ad-
missibility of B. In Jacob et al. [8] it has been shown
that weak infinite-time admissibility does not imply
infinite-time admissibility even if the semigroup is a
contraction semigroup.

In the last section we convert our counterexample
into an example which demonstrates that for an in-
finitesimal generator 4 the estimate

(sI —4)7'B| <

seC, Re(s) >0,

(s — A7 < s€C, Re(s) >0,

M
Re(s)’
does not imply the boundedness of the Cy-semigroup
T(-). Note that this estimate is the first estimate in the
Hille—Yosida theorem. Although it is known that this
estimate is not sufficient to conclude that A4 is the in-
finitesimal generator of a Cy-semigroup on the Hilbert
space H, one could hope that if 4 is the infinitesi-
mal generator of a Cy-semigroup, then this would be
sufficient to conclude the uniform boundedness of the
semigroup.

Note that if 4 is the infinitesimal generator of a
Co-semigroup which satisfies for some y € [0, 1)

—1
||(SI 7A) H < Re(s)"'"

for all s with Re(s) > 0, then the semigroup is expo-
nentially stable (see [15, Lemma 3.11.7]).

2. Weak admissibility does not imply admissibility

Throughout this paper H is a separable Hilbert
space. All our examples are based on the fact that
it is possible to find a normalized basis {@,},cn in
H which is not Hilbertian. By a basis we mean a
sequence {@, nen such that for every x € H there ex-
ists a unique sequence of scalar coefficients { f, }ren,
such that

e’} N
X=2_;fnqon = Nhjgoz_;fnq)n- (14)
This basis is normalized if ||@,|| =1 for all n€N.
Such bases are studied in great detail in Singer [14].
A basis {@,}uen is Hilbertian if there is a constant

C such that for all N € N and all scalar sequences
{/a}Y_, we have

N 2 N
T PO
n=1 n=1

The semigroups that we construct and their generators
will be diagonal operators with respect to some basis.
Such operators have been studied by several people.
The following result is well-known, and a proof can
be found in e.g. [1, Lemma 3.2.5].

Lemma 2.1. Let {@,}.en be a basis of H, and let
{qntnen be a sequence of scalars. For each N € N
and scalar sequence { f,}"_,, define

n=1>°

N N
QZ f'n(Pn = Z an'n(Prr
n=1 n=1

If the total variation of the sequence {q, }nen s finite,

ie,if

Var(Q) = Z |qn+1 - qn| < 00,

n=1

then Q can be extended to a bounded linear operator
on H, and

1ol <& (Var<q> + lim sup |qn> ,

n—oo

where K is a constant independent of the sequence q.
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In order to calculate the total variation, the fol-
lowing observation is useful. If f is a continuous
function which is non-decreasing or non-increasing
on the interval (a,b), and if the sequence {g, },en C
(a,b) is non-decreasing or non-increasing, then
Var(/(¢)) < |/(a) — f(b)].

Another ingredient in our counterexamples are
Carleson measures. Let C, denote the open right
half-plane, i.e., C; := {s€C|Re(s) > 0}. A posi-
tive measure ¢ in C, is a Carleson measure if there
exists a constant m such that

a(Q) < mh

for all squares Q= {s=s, +1i5;, €C; |0 <5, < h, 3o
<si<yo+h}.

These measures play an important role in the theory
of complex interpolation problems, see Garnett [4].
We use one of these results for the Hardy spaces H?”.
The Hardy space H?, p > 1, is defined as the space
of all functions which are holomorphic on C and for
which

oo
sup / | f(r +iw)|? do < . (15)
r>0 — 00

H? is a Banach space with its norm given by the pth
root of the expression in (15). The following result
relates H? with Carleson measures. For the proof we
refer to Garnett [4, Theorem 11.3.9].

Lemma 2.2. If ¢ is a Carleson measure, then

/ f17de < AlfIL,.  feEH. (16)

More information on Carleson measures can be
found in [4].

We are now in a position to present the example
showing that weak admissibility of B for 7(-) does
not imply admissibility.

Example 2.3. As in all our examples, we let H be
a separable Hilbert space, and let {¢,},en be a
normalized basis for H which is not Hilbertian. Ex-
amples of such bases can be found in Singer [14,
p. 428]. We let {pt,}nen C (1,00) be a monotoni-
cally increasing sequence with lim,_, . &, = 0o such
that >, u,0,, is a Carleson measure. We may

choose p, := 2", see [4, p. 288], but other choices
are also possible.

First we construct a Cy-semigroup on H. For all
t = 0andx € H of the formx:Zi,V:1 fn@, we define

N N
T fapn:=>_ " fupn.
n=1 n=1

Since the sequence {u,}, is monotonically increas-
ing and since lim,_, i, = 00, we get by Lemma 2.1
that 7(¢z) has a linear bounded extension to H. Thus
T(t)e X(H), and

1T <Ke !, t=0. (17)

Clearly, T(0)=17 and T(t)T(s)=T(¢t+s) for t,s = 0.
We will show that T'(-) is strongly continuous. For
each x € H, there exists a sequence { /', }»en of scalars
such that (14) holds. Choose ¢ > 0 and choose N such
that ||x — xy ||y < & where xy = Z;V:I fn@a. Next,
choose #) > 0 such that Zivzl le=Hlo — 1| | fa] <e.
Then we have for t € (0, 1) that

IT(0)x = x|l < | T(0)x = T(0)xn|

(T xy — x| + [l — x|
N

<Ko+ Y le0 — 1| f,] +e
n=1

< [K +2e

Thus 7'(-) is a Cy-semigroup on H . This Cy-semigroup
was also used by Le Merdy [10] to show that there
exists a uniformly bounded, compact Cy-semigroup
which is not equivalent to a contraction semigroup.
Let A denote the infinitesimal generator of T'(-). It is
easy to see that

Ay =~ @p, ne N.

We show that 7'(+) is analytic. Since 7'(-) is uniformly
bounded, it is sufficient (see [12, Theorem 2.5.2]) to
show that

(s — )71 < seC,. (18)

M
[Tms|’
Lets=s, +is; € C,. Clearly, (sI —A4) ', =(1/s +
Un )@y, for n € N. In order to prove (18), we first esti-
mate the variation of the sequence y, := 1/s+ y,. For
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each n € N we have

| = 1 1
I e S+
“HEed 1
= / — dx‘
i dx s —x
—Hn 1
= ——dx
/;.un+l (S 7x)2
—Hn 1
S
N
Thus
Var(y) < / T dx
— o0 |S - x|

= —d
[m P —s2

0
1 b
< —  dx=——.
< mEEeean

Using Lemma 2.1 we get the following estimate for
I(sZ — 4)~":
Kn

(s] —A)7 | <K (Var(v)+ | lim vnI) S o
n— o0 2|Ims|

where K > 0 is independent of s. Thus 7'(-) is analytic.
Next we construct an operator B which is weakly
admissible but not admissible. We choose U = /*(N)

and for each finite sequence {v,}"_,, we define

N
B{vn}fq\,:l = Z vV HnVnPn-
n=1

Since D(A*)' is the completion of H with respect to
the norm
Ixllpeasy = 147 x|,

it is easy to see that B can be extended to an operator
in Z(U,D(4*)).
Next we prove that B is only weakly admissible.

(1) B is not an admissible control operator for 7°(-).
Proof. Since 7'(-) is exponentially stable, it is enough

to show that B is not an infinite-time admissible control
operator for 7°(-).

Choose an arbitrary finite scalar sequence {v,}"_,
and define

N
uy(t) = Z Vivpese M =0,
n=1

where {e,},en is the standard basis of /2(N), i.e.,
(en)r =1 if k =n and (e,); = 0 otherwise. Clearly,
N

oo
w0, = D_Halval? /O e dr

n=1

1 N
:EZ‘V”F' (19)

n=1

Furthermore, using the fact that Be, = /i, and
T(t)p, = e "' p,, we see that

[e'e] oo N
/ T(T)BMN(‘E) df = / Z Hn vne—Z,u,,‘c(pn df
0 0 =

| &
= EZV,,QD,,. (20)

n=1

If B was infinite-time admissible, then there would
exist a constant M > 0 such that

/OO T(7)Bu(t)dr
0

< M[ul| 20, 00:2())s

H
u e L*(0,00; /2(N)). (21)

Combining this estimate with equalities (19) and (20)
we get

N
> vn

n=1

2

2
74 3 CB T df

< 4M2||“N||il(o,oo;/2(N))

N
=2M>) " |l
n=1

However, this inequality says that the basis {@, }.en
is Hilbertian, contrary to our assumption. Thus, B is
not an admissible control operator for 7(-). [

(2) B is a weakly admissible control operator for
T(-) i.e., for every v € /*(N), Bv is an infinite-time
admissible control operator for 7'(-).
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Proof. Leto={v,}.en € Z2(N),andletoy := {v,}\ ;.
For u € L*(0,00) we get

H/OO T(t)Boyu(t)dr
0

H

oo N
= / Ze_“”rvn,//xn(pnu(r) dt
0 n=1

H

N oo

= Zv,,,/,u,,/ e Mu(t)dro,
n=1 0 H
N

= Zvn\/,unﬁ(,un)q)n
n=1 H
N

<3 Iva/Aii(a)|

n=1

N 12 N 1/2
< <Z |vn|2> (Z wﬁna(un)lz)
n=1

n=1
< M| low || [[4]] 72 (22)

where we have used Lemma 2.2 and the fact that the
Laplace transform of any (0, co) function lies in /2.
Since |[i||, = 271Hu||%2(0500), we have shown that Buy
is an admissible control operator for 7'(-).

For N — oo, we have that Buy — Bv in D(4*),
and hence

/OO T(t)Boyu(t)dt — /OO T(t)Bvu(t)dt
0 0

in D(4™Y. (23)

On the other hand, (22) shows that the sequence
fooo T(7)Buyu(t)drt is bounded in H, which implies
convergences (23) also holds in the weak topology
of H. By the weak compactness of the unit ball in A,
J,° T(t)Bou(t)dr € H and

’/ T(t)Bou(t)dt
0

Thus, Bv is an admissible control operator for
(). O

< Ms|v]| [ull20,00)-  (24)
H

If B is weakly admissible, then it is not hard to
show that Bu satisfies the sequence of estimates (12),
with M =M, see [15, Section 4.2]. Using the uniform

boundedness theorem, we conclude that every weakly
admissible B satisfies (12). Hence the previous exam-
ple shows that this condition is not sufficient for ad-
missibility. Yet we will show that the input operator
from Example 2.3 satisfies a sequence of estimates,
which is stronger than (12), and thus showing that this
stronger sequence of estimates is not sufficient either.
Here we explicitly use the fact that p, = 2".

Let s be an element of C, and let v = {; }2°, € /*
(N) have norm one. We have the following estimate:

A, Uk Pk
k\n
P (s +2%)

< (; (Re(s) + 20)" |”"|>

[(sI —A)"Bo||* =

<2 (Re(s) + 26 )2

k=1

where we have used the Cauchy—Schwarz inequal-
ity. In order to estimate this last expression, we in-
troduce the monotonically decreasing sequence a; :=
1/(Re(s) + k)*". Then for N > 2X we have

N

Zak >a +a+(azs+ag)+---

k=1

+(Cl2K—1+1 +"'+a21()

K
_ 1
>a2+2a4+__.+2K laZKZEZ;Zkazk,

and so

> 2 = 1
———— <2 —_

kz:; (Re(s) + 2k)2n ; (Re(s) + k)

Using this in our estimate of ||(s/ —A4)~"Bv||, we obtain
that

> 1
I—A)"B|P <2y ————
(s — 4)~"Bo]| ;(Re@H P

o 1
<2 — 4t
/0 (Re(s) + 1)

2 1
< .
2n — 1 (Re(s))?—!
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3. Admissibility and weak infinite-time
admissibility does not imply infinite-time
admissibility

In the previous section we have shown that weak
admissibility does not imply admissibility. From (24)
we see that the input operator in our example is weakly
infinite-time admissible. Hence, we already proved
that weak infinite-time admissibility does not imply
admissibility, and thus not infinite-time admissibil-
ity either. However, if B is admissible, would weak
infinite-time admissibility imply infinite-time admis-
sibility? In the next example we show that this does
not hold either. Note that in this example the oper-
ators A and B are compact elements of ¥ (H) and
ZL(*(N), H), respectively, and that 7(-) is bounded
and strongly stable. In particular, B is an admissible
control operator for 4. Furthermore, note that the op-
erator 4 in this example is the inverse of the operator
A in the previous example.

Example 3.1. Let {4,},en C (0,1) be a monoton-
ically decreasing sequence with lim,_ 4, = 0, and
such that Z:il /nd;, is a Carleson measure on the
right half-plane C,. We could for example choose
Jn := 27", see Garnett [4, p. 288]. We take {®, }nen
to be the same as in Example 2.3.

We now define 4 by

Ap, = —2up,, neN.

Since the sequence {4, }, is monotonically decreasing
it is easy to see that {4,},en is of bounded variation.
Now by Lemma 2.1, we get that 4 has a bounded
linear extension to H, that is 4 € #(H). Let T(-) be
the Cy-semigroup generated by 4, that is

T(t)(/)n = eiint(pna t 2 07 n e N

The operators 4 and T'(-) have some nice properties.

(1) T(-) is bounded and strongly stable.

Proof. By Lemma 2.1 we have for ¢t > 0
1T < 2K,

and thus the Cy-semigroup 7'(-) is bounded.
Next we show that 7(-) is strongly stable. Let x =
>ou2y fnn € Hande > 0. Then there existsan N € N

such that xy := Zivzl f @, satisfies
lx —xnllm <e
Thus, for sufficiently large # > 0 we have

1T (x| < [|T(0)x — T(xn || + 1T (@]

N
<7 s =3l + || > e fun
n=1

N
< 2Ke + Z e Mt

n=1

Salllonll < 2Kz + e,
and so 7'(-) is strongly stable. [J

(2) The operator A is compact.

Proof. Define Ay, N € N, by
_)"k(pna n < N:
Anv g, =
0, n> N.

Clearly, Ay has rank N. Using Lemma 2.1, we get the
estimate

4 —Ay|| <2Kiyi1 — 0 as N — oo,

which shows that 4 is compact. [

Next we define the control operator B. We again
choose U = /%(N), and for every finite sequence
{v,}V_, we define

N

B =Y A v (25)

n=1

(3) B can be extended to a bounded linear operator.

Proof. We have

N
S Vimon

n=1

1BLva}nei | =

N
<D Vvl ol

n=1

N N N
= Vil < <Zzn> > vl
n=1 n=1

n=1

Thus we have that
N

N
HB{VH}Q;IHZ < (Z }~n> Z ‘vn|2
n=1

n=1

< Cl{vn fzvzl ||§2(N),
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where C := >~ 4, < oo,since Y~ 1,0;, is a Car-
leson measure with support in (0, 1). This shows that B
has a bounded linear extension, i.e., B € Z(/*(N),H).
In particular, B is an admissible control operator for
T(). O

(4) The operator B is compact. This is shown similar
as in Part (2), using estimates similar to those in Part
(3) instead of Lemma 2.1.

(5) B is not an infinite-time admissible control op-
erator for 7'(-). This is shown in the same way as in
Example 2.3.

(6) Similarly, as in Example 2.3, we can show that
for every v € U, Bu is an infinite-time admissible con-
trol operator for 7(-). Furthermore, as in (22) and (24)
we have that

o0
H/ T(t)Bvu(t)dr|| < Mal|v]|||ull 20, 00)- (26)
0

(7) There exists a constant K > 0 such that

(sI —A4)~'B|| < s€C, Re (s) > 0.

K
Re(s)’
Proof. Substituting u(t) = ¢™** in (26), where
Re(s) > 0 gives that
Mol
v/Re(s)

Since this holds for all v € H we have proved the as-
sertion. [

|l(sI —A4)~'Bu|| <

4. A semigroup example

A direct consequence of the Hille-Yosida theorem
is that a Cy-semigroup T¢(-) is uniformly bounded if
and only if there exists a constant M such that its
generator 4, satisfies

I(sf —A4)7"|| < forallneN and s€C,.

M
Re(s)"
If T,(-) is a Cp-semigroup on the Hilbert space H,, then
its growth bound is negative if and only if (s/ —A4,)~"
is uniformly bounded in the open right half-plane. Mo-
tivated by this result, one wonders if the first inequality
of the Hille—Yosida theorem is sufficient to determine
the exact growth of the semigroup. More precisely,

suppose that the infinitesimal generator 4, satisfies

M
|(s] —4.)7'|| < =——— forallseCy, (27)

Re(s)

does this imply that 7,(-) is uniformly bounded?
Using the example of the previous section we
show that this is in general not true, by constructing

a Cy-semigroup for which the infinitesimal generator
A, satisfies (27) but

Tim [|7,(0)] = . (28)

We remark that estimate (27) implies that ||7(¢)||
< M(1 + t), but we do not know how sharp this
estimate is.

Furthermore, we would like to remark that if there
exists a y € [0, 1) such that the infinitesimal generator
A, satisfies

(T —4) 71| < for all s € Cy,

Re(s)?
then the Cy-semigroup is exponentially stable, see [15,
Lemma 3.11.7].

Consider the operators 4 and B of Example 3.1, and
let T(-) denote the bounded semigroup generated by
A. With these operators we define the semigroup 7,(+)
on H @ L*(0,00; /*(N)) as

Te(t)<x>: T(t)x+/0tT(t—T)Bf(7:)dr ’
/ Fto)
t=0.

B is a bounded operator, and hence B is an admis-
sible control operator for 7(-). According to Engel
[3], this implies that T,(-) is a Cy-semigroup on H &
L*(0,00; £%(N)). Since B is not infinite-time admis-
sible we know that T,(-) cannot be a bounded semi-
group. However, we will show that its infinitesimal
generator satisfies (27).

By taking the Laplace transform of the semigroup,
we see that the resolvent is given by

(M—Aa*<x>
f

<(s] —A) " 'x 4 (s] A)le(s)>
- ST )s) '

Since the left shift is a contraction semigroup we
know that L?(0,00;/?(N))-norm of f(¢+ -)(s) is
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bounded by || /|| x 1/Re(s). Furthermore, since T'(-)
is a bounded semigroup, a similar estimate holds for
(s — A)~!'. Thus, we have that for s € C,

2

(s —A4.)7"

2 ’ 2 1 20 7 2
< +2|[(s] —4A)" B
Re(s)szH [l (s ) 111/ ()l

1 2
. 2
= 71 9)
Since f € L2(0,00;7%(N)) we have that

I/ <IIf1l/v/2Re(s) forall s€Cy. (30)

In Example 3.1 we proved the existence of a constant
K > 0 such that

|(sT —A)"'B|| < K/\/Re(s) forallscC,. (31)

Combining (29)—(31) gives that 4, satisfies esti-
mate (27). Since the corresponding semigroup is
unbounded, we have shown that estimate (27) is
not sufficient to conclude the boundedness of a
Cy-semigroup.

_|_
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