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Abstract

The sub-optimal Hankel norm approximation problem is solved for a well-posed linear system with generating operators
(A; B; C) and transfer function G satisfying some mild assumptions. In the special case of the sub-optimal Nehari problem,
an explicit parameterization of all solutions is obtained in terms of the system parameters A, B, C and G(0).
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The standard way to obtain explicit formulae for solutions to the sub-optimal Hankel norm approximation
problem for a rational transfer function G is to use a minimal realization G(s)=C(sI−A)−1B and then obtain
formulae in terms of the generators (A; B; C) (see [2]). These formulae typically involve the controllability
and observability Gramians LB, LC or solutions of various Lyapunov equations. Such an approach has been
extended to certain classes of in9nite-dimensional linear systems (see [12,13]), but the limiting factor to
extending these results to the general case of well-posed linear systems is the di?culty in manipulating with
the unbounded operators B and C. For example, in [12,13], explicit solutions to the sub-optimal Hankel
norm approximation problem for exponentially stable smooth Pritchard–Salamon systems and exponentially
stable analytic systems, respectively, were obtained via the solution to the appropriate J -spectral factorization
problem using the smoothing properties of these classes. However, it was not possible to extend this technique
to more general well-posed linear systems. In general, it is not clear that the candidate spectral factor is even
well-posed (see [14]).
In this paper, we suggest translating the problem to the analogous one for reciprocal systems which we

now de9ne. The reciprocal system of the well-posed linear system 
 with generating operators A; B; C and
transfer function G, such that 0∈ �(A) (here �(A) denotes the resolvent set of A), is the well-posed linear
system with the bounded generating operators A−1; A−1B;−CA−1; G(0) and transfer function

G−(s) = G(0)− CA−1(sI − A−1)−1A−1B:
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For the theory of well-posed linear systems, we refer the reader to [15] or [16,17]. The key to our approach
is the relationship between the transfer function G of the original well-posed linear system and the transfer
function G− of its reciprocal system. Note that A−1, A−1B, CA−1 are all bounded operators and for all nonzero
s∈ �(A) there holds

G(s) = G(0) + C[(sI − A)−1 + A−1]B (1)

= G(0)− CA−1
(
1
s
− A−1

)−1

A−1B (2)

= G−

(
1
s

)
: (3)

Let H∞(L(U; Y )) denote the space of L(U; Y )-valued functions of a complex variable de9ned in the open
right half-plane which are bounded and analytic in the open right half-plane. Then from (3), it is clear that
G ∈H∞(L(U; Y )) iI G− ∈H∞(L(U; Y )). In addition, the reciprocal system has the same controllability and
observability Gramians, which we prove in the following lemma.

Lemma 1.1. Let A; B; C be generating operators of a regular linear system with transfer function G. Suppose
that 0∈ �(A) and G− is the transfer function of its reciprocal system with generating operators A−1, A−1B,
−CA−1 and feedthrough operator G(0). Then the following hold:

(1) C is an in<nite-time admissible observation operator for A i= −CA−1 is an in<nite-time admissible
observation operator for A−1. If either C or −CA−1 is in<nite-time admissible (for the semigroups
generated by A or A−1, respectively), then the observability Gramians are identical.

(2) B is an in<nite-time admissible control operator for A i= A−1B is an in<nite-time admissible control
operator for A−1. If either B or A−1B is in<nite-time admissible (for the semigroups generated by A
or A−1, respectively), then the controllability Gramians are identical.

(3) G ∈H∞(L(U; Y )) i= G− ∈H∞(L(U; Y )).

Proof.

(1) From [7] (see also [6]), we know that C is an in9nite-time admissible observation operator iI the
Lyapunov equation

〈Az1; LCz2〉+ 〈LCz1; Az2〉=−〈Cz1; Cz2〉; (4)

for all z1 and z2 in D(A), has a nonnegative de9nite solution LC = L∗C¿ 0. Eq. (4) is clearly equivalent
to the Lyapunov equation

〈x1; LCA−1x2〉+ 〈LCA−1x1; x2〉=−〈CA−1x1; CA−1x2〉 (5)

for all x1 and x2 in X , which establishes the equivalence. Moreover, the observability Gramians are the
smallest positive solution and so the Gramians are identical.

(2) This is dual to part (1) above.
(3) This follows from (3).

The idea is then to translate the sub-optimal Hankel norm approximation problem for the well-posed linear
system with transfer function G into one for the system with transfer function G−, the latter having bounded
generating operators. We now elaborate on this. But 9rst we will recall the de9nition of the (frequency domain)
Hankel operator corresponding to a symbol G ∈L∞(iR;Cp×m) and the de9nition of its singular values.
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Let H2(Ck) denote the set of all analytic functions f :C+
0 → Ck such that

‖f‖2 := sup
�¿0

(
1
2�

∫ ∞

−∞
‖f(�+ i!)‖2 d!

)1=2

¡∞:

For G ∈L∞(iR;Cp×m) we de9ne the Hankel operator with symbol G, denoted by HG, acting from H2(Cm)
to H2(Cp), as follows:

HGf =�(MGf−) for f∈H2(Cm);

where MG is the multiplication map on L2(iR;Cm) induced by G, � is the orthogonal projection operator
from L2(iR;Cp) onto H2(Cp) and f−(s) := f(−s).

Now, we recall the notion of singular values of a bounded linear operator from a Hilbert space H1 to
a Hilbert space H2. For k∈{1; 2; : : :} the kth singular value of an operator H∈L(H1;H2) (denoted by
�k(H)) is de9ned to be the distance with respect to the norm in L(H1;H2) of H from the set of operators in
L(H1;H2) of rank at most k−1. Thus �1(H)=‖H‖, and �1(H)¿ �2(H)¿ �3(H)¿ · · ·¿ 0. If H is compact,
then H∗H is compact and nonnegative, and so the spectrum of H∗H is a pure point spectrum with countably
many nonnegative eigenvalues. The square roots of these eigenvalues are then the singular values of H.

If G ∈L∞(iR;Cp×m), we sometimes denote the singular values of HG, �k(HG), simply by �k(G). The
�k(G)’s are then referred to as the Hankel singular values of G. The following theorem (see for instance [9,
Corollary 4.10, p. 46]) gives a necessary and su?cient condition on G for the corresponding Hankel operator
HG to be compact.

Theorem 1.2 (Hartman). G ∈L∞(iR;Cp×m) determines a compact Hankel operator HG i= G−(·)∈H∞
(Cp×m)+C0(iR;Cp×m), where C0(iR;Cp×m) denotes the space of continuous p× m complex matrix-valued
functions de<ned on iR, with a unique limit at ±i∞.

Let H∞; ‘(Cp×m) denote the set of all p × m matrix-valued functions K of a complex variable de9ned in
the open right half-plane such that K =Gf+F , where F is an element in H∞(Cp×m) and Gf is the transfer
function of a 9nite-dimensional system with order at most ‘, with all its poles in the open right half-plane.
The set H∞; ‘(Cp×m) is a subset of L∞(iR;Cp×m).
Clearly, K(−·)∈H∞; ‘(Cp×m) iI Kr(−·)∈H∞; ‘(Cp×m), where K and Kr are related by

Kr(s) = K
(
1
s

)
+ G(0) for all s∈C+

0 : (6)

Now suppose that G ∈H∞(Cp×m) and G(·)∈C0(iR;Cp×m), and de9ne

Gr(s) = G
(
1
s

)
− G(0) for all s∈C+

0 :

Consequently we have ‖G(i·)+K(i·)‖∞=‖Gr(i·)+Kr(i·)‖∞. Thus from the following theorem 1 of Adamjan
et al. [1], it follows that �k(G) = �k(Gr) for all k∈N.

Theorem 1.3. If G ∈L∞(iR;Cp×m), then

inf
K(−·)∈H∞;‘(Cp×m)

‖G(i·) + K(i·)‖∞ = �‘+1(G):

The sub-optimal Hankel norm approximation problem is the following:

1 The discrete-time matrix case was proved in [8] and the continuous-time matrix case was proved in [5].
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Let G(i·)∈L∞(R;Cp×m). If �‘+1¡�¡�‘, then 9nd K(−·)∈H∞; ‘(Cp×m) such that ‖G(i·)+K(i·)‖∞6 �.
First we will solve the sub-optimal Hankel norm approximation problem for well-posed linear systems. The

sub-optimal Nehari problem is a special case in which ‘=0 and �¿�1. In this special case, using the results
from [3], we can give a parameterization of all solutions, and we do this in the last section of this paper.

2. The sub-optimal Hankel norm approximation problem

In this section, we will solve the sub-optimal Hankel norm approximation problem for well-posed linear
systems, by 9rst translating the problem to its reciprocal system with bounded generating operators, albeit a
nonexponentially stable semigroup. Subsequently we use a result from [11] in order to obtain explicit formulae
for solutions to the sub-optimal Hankel norm approximation problem for such systems. We remark that the
sub-optimal Nehari problem, which is a special case in which ‘ = 0, will be treated separately in the next
section, and we get stronger results for this special case.
In [11], the following theorem was proved:

Theorem 2.1. Suppose that the triple (A; B; C) satis<es the following assumptions:

A1. A is the in<nitesimal generator of a strongly continuous semigroup on the Hilbert space X ,
B∈L(Cm; X ) and C ∈L(X;Cp).

A2. The impulse response h(·) = CT (·)B∈L2([0;∞);Cp×m) is such that G(·)∈C0(iR;Cp×m), where
G(s) := C(sI − A)−1B.

A3. For every �¿ 0, A − �I is the in<nitesimal generator of an exponentially stable, strongly con-
tinuous semigroup.

Let �‘+1¡�¡�‘ and Q(−·)∈H∞(Cp×m) with ‖Q(i·)‖∞6 1. For every �¿ 0 denote

K(s) = R1(s)R2(s)−1;

where[
R1(s)

R2(s)

]
= &(s)−1

[
Q(s− �)

Im

]

and

&(s) =

[
Ip 0

0 �Im

]
+



− 1
�2
CL�B

1
�
B∗


 [N�

� ]
∗(sI + A∗ − �I)−1[C∗ L�CB]:

In the above, L�B and L
�
C denote the controllability Gramian and the observability Gramian, respectively, of

the exponentially stable system (A− �I; B; C) and N�
� := [I − (1=�2)L�BL

�
C]

−1.
Then there exists a (¿ 0 such that for every �∈ (0; (), K(−·)∈H∞; ‘(Cp×m) and ‖G(i·) +K(i·)‖∞6 �.

We remark that in the above Theorem 2.1, from Theorem 1.2 and assumption A2, it follows that the Hankel
operator HG is compact.
Using Theorem 2.1, we will solve the sub-optimal Hankel norm approximation problem for the well-posed

linear system 
 on a Hilbert space X with generating operators A; B; C and transfer function G under the
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following assumptions:

H1. The input and output spaces are 9nite-dimensional; U = Cm and Y = Cp.
H2. 0∈ �(A) and �(A) ∩ C+

0 is empty.
H3. B is an in9nite-time admissible control operator for {T (t)}t¿0.
H4. C is an in9nite-time admissible observation operator for {T (t)}t¿0.
H5. G(·)∈H∞(Cp×m) and G(·)∈C0(iR;Cp×m).

First of all, we will show that if assumptions H1–H5 are satis9ed by the original well-posed linear system

, then assumptions A1–A3 are satis9ed by the system with the generating operators A−1; A−1B;−CA−1.
Furthermore, from (3) and Theorem 1.2, the Hankel operator HG of the original transfer function and the
Hankel operator HGr of the new system are both compact. Also, as discussed in the introduction, it follows
from Theorem 1.3 that the Hankel singular values of G and Gr are equal. Applying Theorem 2.1, we give
solutions to the sub-optimal Hankel norm approximation problem for the transfer function Gr and hence also
to the original transfer function G. But 9rst we will prove the following elementary result.

Lemma 2.2. If A; B; C and G satisfy H1–H5, then the triple (A−1; A−1B;−CA−1) satis<es A1–A3.

Proof. A1 is obvious.
A2: Owing to the in9nite-time input admissibility of −CA−1 for the reciprocal system, it is clear that for

all x∈X , −CA−1eA
−1
x∈L2([0;∞);Cp). Consequently, −CA−1eA

−1
A−1B∈L2([0;∞);Cp×m). Furthermore, the

continuity of G− on the imaginary axis follows from Eq. (3), and H5.
A3: It follows from H2 and the spectral mapping theorem for the resolvent (see [4, 1.13.(i), p. 243])

that �(A−1) ∩ C+
0 is empty. Furthermore, since A−1 is bounded, it satis9es the spectrum determined growth

assumption (see for instance [4, Corollary 2.4, p. 252]). Thus it is clear that the growth bound of the semigroup
generated by A−1 is nonpositive, and so A−1 − �I is the in9nitesimal generator of an exponentially stable,
strongly continuous semigroup.

We end this section with our main result.

Theorem 2.3. Suppose that the well-posed linear system 
 satis<es H1–H5. Let �‘+1¡�¡�‘ and Q(−·)∈
H∞(Cp×m) with ‖Q(i·)‖∞6 1. For every �¿ 0, denote

Kr(s) = R1(s)R2(s)−1;

where[
R1(s)

R2(s)

]
= &(s)−1

[
Q(s− �)

Im

]

and

&(s) =

[
Ip 0

0 �Im

]
+

[− 1
�2CA

−1L�B
1
� (A

−1B)∗

]
[N�

� ]
∗[sI + (A−1)∗ − �I ]−1[(CA−1)∗ L�CA

−1B]:

Here L�B and L
�
C denote the controllability Gramian and the observability Gramian, respectively, of the expo-

nentially stable system with the generating operators A−1−�I; A−1B;−CA−1, and N�
� := [I−(1=�2)L[�]B L

[�]
C ]−1.
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Then there exists a (¿ 0 such that for every �∈ (0; (), Kr(−·)∈H∞; ‘(Cp×m). Furthermore, de<ning

K(s) = Kr

(
1
s

)
− G(0); (7)

we have K(−·)∈H∞; ‘(Cp×m) and ‖G(i·) + K(i·)‖∞6 �.

Proof. From Lemma 2.2 it follows that the triple (A−1; A−1B;−CA−1) satis9es assumptions A1–A3. If Gr=
−CA−1(sI − A−1)−1A−1B, we have

�‘(Gr) = �‘(G)¿�¿�‘+1(G) = �‘+1(Gr):

Consequently, using Theorem 2.1, we have that Kr(−·)∈H∞; ‘(Cp×m) and ‖Gr(i·) +Kr(i·)‖∞6 �. Finally
it is clear that K de9ned by (7) is such that K(−·)∈H∞; ‘(Cp×m) and

‖G(i·) + K(i·)‖∞ = ‖Gr(i·) + Kr(i·)‖∞6 �:

3. The sub-optimal Nehari problem

Finally, in this section we solve the sub-optimal Nehari problem for the well-posed linear system on a
Hilbert space X with generating operators A; B; C and transfer function G under the following assumptions:

N1. The input and output spaces are 9nite-dimensional; U = Cm and Y = Cp.
N2. 0∈ �(A).
N3. B is an in9nite-time admissible control operator for {T (t)}t¿0.
N4. C is an in9nite-time admissible observation operator for {T (t)}t¿0.
N5. G(·)∈H∞(Cp×m).

The sub-optimal Nehari problem is the following:
If �¿�1 (=‖HG‖, the norm of Hankel operator HG), then 9nd K(−·)∈H∞(Cp×m) such that ‖G(i·) +

K(i·)‖∞6 �. K is then called a solution of the sub-optimal Nehari problem.
The sub-optimal Nehari problem can be thought of as a special case of the sub-optimal Hankel norm

approximation problem with ‘ = 0. So in principle, the results of the previous section apply to this case.
However, we can improve on these results considerably. This is because Theorem 2.1 in the previous section
can be now replaced (in the special case of the Nehari problem) by a more powerful result from [3], which
will enable us to even obtain a parameterization of all solutions to the sub-optimal Nehari problem. Also,
we 9nd that with this alternate approach we can solve the problem under weaker assumptions than those
demanded in the previous section (notice the diIerences in N2 versus H2, and N5 versus H5). However, the
broad approach in both sections remains the same: instead of looking at the original system, we translate the
problem to the reciprocal system, solve it, and 9nally retrieve solutions to the original problem.
Suppose that �¿�1(G) = �1(Gr). If K(−·)∈H∞(Cp×m) satis9es ‖G(i·) + K(i·)‖∞¡�, then Kr(−·)∈

H∞(Cp×m) satis9es ‖Gr(i·) + Kr(i·)‖∞¡�, where

Kr(s) := K
(
1
s

)
+ G(0):

Conversely, if Kr(−·)∈H∞(Cp×m) satis9es ‖Gr(i·) + Kr(i·)‖∞¡�, then K(−·)∈H∞(Cp×m) satis9es
‖G(i·) + K(i·)‖∞¡�, where

K(s) := Kr

(
1
s

)
− G(0):
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So instead of solving the suboptimal Nehari problem for G, we solve the suboptimal Nehari problem for the
reciprocal system with the bounded generating operators A−1, A−1B, −CA−1 and feedthrough operator 0. This
system satis9es all the conditions in the following result from [3], which we now recall.

Theorem 3.1. Suppose that the triple (A; B; C) satis<es the following assumptions:

B1. A is the in<nitesimal generator of a strongly continuous semigroup on the Hilbert space X ,
B∈L(Cm; X ) and C ∈L(X;Cp).

B2. G(i·) = C(·iI − A)−1B∈L∞(R;Cp×m).
B3. B is an in<nite-time admissible control operator for {T (t)}t¿0.
B4. C is an in<nite-time admissible observation operator for {T (t)}t¿0.

Let �¿�1 and let & be given by

&(s) =

[
Ip 0

0 �Im

]
+



− 1
�2
CLB

1
�
B∗


N ∗

� [sI + A∗]−1[C∗ LCB]:

where LB and LC denote the controllability Gramian and the observability Gramian, respectively, of the
system with generating operators A; B; C, and N� := [I − (1=�2)LBLC]−1. Then K(−·)∈H∞(Cp×m) satis<es
‖G(i·) + K(i·)‖∞6 � i= K(s) = R1(s)R2(s)−1, where[

R1(s)

R2(s)

]
= &(s)−1

[
Q(s)

Im

]

for some Q(−·)∈H∞(Cp×m) with ‖Q(i·)‖∞6 1.

Indeed, under assumptions N1–N5, the reciprocal system has its transfer function in H∞(Cp×m) and the
operators A−1B and −CA−1 are in9nite-time admissible with the same Gramians LB and LC as the original
system. So in light of what has been said above, upon applying Theorem 3.1 to the triple (A−1; A−1B;−CA−1),
we obtain the following result:

Theorem 3.2. Suppose that the well-posed linear system 
 satis<es N1–N5. Let �¿�1 and Q(−·)∈H∞
(Cp×m) with ‖Q(i·)‖∞6 1. Let & be given by

&(s) =

[
Ip 0

0 �Im

]
+



− 1
�2
CA−1LB

1
�
(A−1B)∗


N ∗

� [sI + (A−1)∗]−1[(CA−1)∗ LCA−1B];

where LB and LC denote the controllability Gramian and the observability Gramian, respectively, of the
system 
, and N� := [I − (1=�2)LBLC]−1. Then K(−·)∈H∞(Cp×m) satis<es ‖G(i·) + K(i·)‖∞6 � i=

K(s) = Kr

(
1
s

)
− G(0);

where Kr(s) = R1(s)R2(s)−1, and[
R1(s)

R2(s)

]
= &(s)−1

[
Q(s)

Im

]
;

for some Q(−·)∈H∞(Cp×m) with ‖Q(i·)‖∞6 1.
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While it is tempting to try to write & and K in terms of its reciprocal, we know that this will not (in
general) be well-de9ned (see [14]). So we leave the explicit solution as it stands.
It is known (see [10,14]) that a given transfer function G ∈H∞(Cp×m) always has a realization as a

well-posed linear system satisfying assumptions N1–N5. Unfortunately, N2 may not always be satis9ed. So
an interesting open problem is to 9nd natural su?cient conditions on G for this to hold.
The assumption that 0∈ �(A) is not central and can be replaced by the assumption that i!∈ �(A) for

some real !. Then one de9nes the !-reciprocal system with generating operators A−1
! , A−1

! B, −CA−1
! and

feedthrough operator G(i!), where A! = A− i!I . Its transfer function G!
− satis9es

G!
−

(
1
s

)
= G(s+ i!):
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