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Abstract

In this paper, we give a numerically reliable algorithm to compute the zeros of a periodic descriptor system. The
algorithm is a variant of the staircase algorithm applied to the system pencil of an equivalent lifted time-invariant state-space
system and extracts a low-order pencil which contains the zeros (both 6nite and in6nite) as well as the Kronecker structure
of the periodic descriptor system. The proposed algorithm is e9cient in terms of complexity by exploiting the structure
of the pencil and is exclusively based on orthogonal transformations, which ensures some form of numerical stability.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Zeros of transfer functions play an important role in the analysis and design of multi-variable linear systems:
besides characterizing when the system is minimum phase or not, the zeros provide information on several
structural properties of a system. Also reachability/stabilizability and observability/detectability is de6ned in
terms of the zeros of particular systems without outputs or inputs, and even the poles can be seen as zeros of
a system without inputs and outputs. For periodic systems there was no reliable numerical algorithm available
for computing zeros until recently [29] a stable and e9cient algorithm was presented for periodic systems in
standard state space form. In the present paper, we pursue the same idea and present a more general method
which handles the periodic descriptor case as well. Such a tool is very important since it provides a way to
evaluate the transfer-function matrix of a general periodic system [25] and 6lls a gap in the set of stable and
e9cient algorithms for periodic systems of the most general class [28].
We consider here periodic time-varying descriptor systems of the form

Ekx(k + 1) = Akx(k) + Bku(k); y(k) = Ckx(k) + Dku(k); (1)

where the matrices Ek ∈R�k+1×nk+1 , Ak ∈R�k+1×nk , Bk ∈R�k+1×m, Ck ∈Rp×nk , Dk ∈Rp×m are periodic with
period K¿ 1, and the dimensions ful6ll the condition

∑K
k=1 �k =

∑K
k=1 nk . For the computation of zeros, it
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is important to consider the more general case of time-varying dimensions. Since the transmission zeros of
a standard system are de6ned in terms of a minimal realization, a similar de6nition is appropriate also for
the zeros of a periodic system (see for example [15]). However, the minimal realization theory of standard
periodic systems (i.e., Ek = Ink+1) revealed (see for example [6,9]) that minimal order (i.e., reachable and
observable) state-space realizations of periodic systems have, in general, time-varying state dimensions. It
follows immediately that the minimal realization of a periodic descriptor system computed, for example,
via a forward–backward decomposition [22], leads in general to rectangular descriptor matrices Ek as well.
Note that standard periodic systems with time-varying dimensions have been already considered earlier in
[13,9]. But only recently, numerically reliable algorithms for systems with time-varying dimensions have been
developed. Notable examples are the recent algorithms for the computation of a minimal realization [23] and
the evaluation of the transfer-function matrix of a periodic system [25]. Finally, the development of general
algorithms able to address the case of time-varying dimensions, is one of the requirements formulated for a
satisfactory numerical algorithm for periodic systems [28].
The de6nition of zeros of a periodic descriptor system can be introduced starting from the stacked forms

of time-invariant lifted reformulations [18,8,13]. These zeros have a nice interpretation in terms of periodic
blocking property of exponentially periodic input signals [2,5]. The computation of zeros using lifted refor-
mulations leads to large order standard or descriptor system representations with sparse and highly structured
matrices. While the direct application of the numerically stable methods of [7,17] to these representations
is certainly possible, the computational complexity for large-order systems is very high. Assuming constant
dimensions �i = ni = n, such an algorithm has a complexity of O((Kn)3), instead of an expected complexity
of O(Kn3) for a satisfactory algorithm [28]. In the case that Ek is square and invertible, we can always
multiply the 6rst equation of (1) by E−1

k from the left to reduce it to a standard periodic system. One can
then also use the lifting approach proposed by Meyer and Burrus [16] as basis for computing zeros. However,
using this second lifting to compute zeros involves now forming products of up to K matrices. Apart from
being computationally expensive, the explicit computation of this lifted reformulation can also lead to severe
numerical di9culties. In passing, we note that alternative approaches like those based on the manipulation
of polynomial matrices (e.g., to compute zeros via the Smith-form of the lifted system pencil) are out of
discussion because of their well-known lack of numerical stability [21].
Although the lifting techniques are useful for their theoretical insight, their sparsity and structure may not be

suited for numerical computations. This is why, in parallel to the theoretical developments, numerical methods
have been developed that try to exploit this structure. The purpose of this paper is to propose a numerical
approach to compute the zeros of the periodic system (1) which meets the requirements of generality, speed
and accuracy for a good numerical algorithm for periodic systems as formulated in [28]. This goal is mainly
achieved by exploiting the sparse structure of the associated lifted system pencil by performing locally row
compressions to extract a low-order pencil (of the order of maxi {ni}) which contains the zeros (both 6nite
and in6nite) as well as the Kronecker structure of the periodic system. For the low-order pencil, standard
methods can be employed to determine the zeros and the Kronecker structure (e.g., [17]). The new algo-
rithm belongs to the family of fast, structure exploiting algorithms and relies exclusively on using orthogonal
transformations. This is why, for the overall zeros computation a certain form of numerical stability can be
ensured. The proposed algorithm solves the zeros computation problem for descriptor periodic systems in its
most general setting, being a generalization of the algorithm developed by the authors for standard periodic
systems [29].

2. Zeros and poles of periodic systems

To de6ne the zeros and poles of periodic system (1), we de6ne 6rst the transfer-function matrix (TFM)
corresponding to the associated stacked lifted representation [13], which is a time-invariant descriptor system
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representation of the form

LSk x
S
k (h+ 1) = FS

k x
S
k (h) + GS

k u
S
k (h); yS

k (h) = H S
k x

S
k (h) + J Sk u

S
k (h); (2)

where GS
k = diag(Bk; Bk+1; : : : ; Bk+K−1), H S

k = diag (Ck; Ck+1; : : : ; Ck+K−1), J Sk = diag (Dk; Dk+1; : : : ; Dk+K−1),
and

FS
k − zLSk =




Ak −Ek O · · · O

O
. . .

. . .
. . .

...

...
. . .

. . . −Ek+K−3 O

O
. . . Ak+K−2 −Ek+K−2

−zEk+K−1 O · · · O Ak+K−1



: (3)

Assuming the square pencil (3) is regular (i.e. det(FS
k − zLSk ) is not identically 0), the TFM of the stacked

lifted system is

W S
k (z) = H S

k (zL
S
k − FS

k )
−1GS

k + J Sk (4)

and the associated system pencil is de6ned as

SSk (z) =

[
FS
k − zLSk GS

k

H S
k J Sk

]
; (5)

which both depend on the sampling time k. Obviously, W S
k+K (z) = W S

k (z) and the TFMs at two successive
values of k are related by the following relation [11]:

W S
k+1(z) =

[
0 Ip(K−1)

zIp 0

]
W S

k (z)

[
0 z−1Im

Im(K−1) 0

]
:

It follows from this relation that poles and zeros of the TFMs for diJerent sampling times, can only diJer at
z = 0 and ∞.
This lifting technique uses the input–output behavior of the system over time intervals of length K , rather

then 1. For a given sampling time k, the corresponding mK-dimensional input vector, pK-dimensional output
vector and (

∑K
k=1 nk)-dimensional state vector are

uSk (h) = [uT(k + hK) · · · uT(k + hK + K − 1)]T; yS
k (h) = [yT(k + hK) · · ·yT(k + hK + K − 1)]T;

xSk (h) = [xT(k + hK) · · · xT(k + hK + K − 1)]T:

In order to de6ne poles and zeros of periodic system (1), we need minimality of the system and of realization
(2). This is equivalent to the notion of reachability and observability at 6nite and in6nite eigenvalues of pencil
(5), as introduced in [30]. If we assume that system (1) is minimal in that sense (this implies time-varying
state dimensions and rectangular descriptor matrices) then we have the following de6nitions of poles, zeros
and minimal indices of transfer function (4) based on system matrix (5) of the stacked lifted system with
TFM (4).

De�nition 1. The transmission zeros of the transfer function W S
k (z) of the minimal periodic system (1) are

the invariant zeros of the associated stacked system pencil (5).
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De�nition 2. The left and right minimal indices of the transfer function W S
k (z) of the minimal periodic system

(1) are those of the associated stacked system pencil (5).

De�nition 3. The poles of the transfer function W S
k (z) of the minimal periodic system (1) are the zeros of

the associated stacked pole pencil FS
k − zLSk de6ned in (3).

Let us now introduce another lifting, which requires the matrices Ek to be invertible. This is the lifted
system introduced in [16] and corresponds to the time-lifted system discussed in [3]. This lifting uses again
the input–output behavior of the system over time intervals of length K , rather than 1. For a given sampling
time k, the corresponding mK-dimensional input and pK-dimensional output vectors are the same as for the
stacked system but an nk -dimensional state vector is de6ned as

xLk (h) := x(k + hK):

To de6ne the lifted system we denote the nj × ni transition matrix of system (1) as �(j; i)=E−1
j−1Aj−1E−1

j−2

Aj−2 · · ·E−1
i Ai, where �(i; i) := Ini . Then, the lifted system has the form

xLk (h+ 1) = FL
k x

L
k (h) + GL

k u
S
k (h); yS

k (h) = HL
k x

L
k (h) + LLk u

S
k (h); (6)

where

FL
k = �(k + K; k);

GL
k = [�(k + K; k + 1)E−1

k Bk �(k + K; k + 2)E−1
k+1Bk+1 · · ·E−1

k+K−1Bk+K−1];

HL
k =




Ck

Ck+1�(k + 1; k)

...

Ck+K−1�(k + K − 1; k)



; J Lk =




Dk 0 · · · 0

Jk;2;1 Dk+1 · · · 0

...
...

. . .
...

Jk;K;1 Jk;K;2 · · · Dk+K−1




with

Jk; i; j = Ck+i−1�(k + i − 1; k + j)E−1
k+j−1Bk+j−1

for i = 2; : : : ; K , j = 1; 2; : : : ; K − 1, and i¿ j.
System (6) is called the standard lifted system at time k of the given K-periodic system (1). The associated

TFM W L
k (z) is

W L
k (z) = HL

k (zInk − FL
k )

−1GL
k + J Lk (7)

and depends again on the sampling time k. Let us now de6ne the zeros and poles of periodic system (1)
which we assume to be minimal, i.e. completely reachable and completely observable. It follows from [2]
that lifted system (6) is minimal too and the converse is also true. Consider the system and pole pencils of
the standard lifted system

SLk (z) =

[
FL
k − zInk GL

k

HL
k J Lk

]
; [FL

k − zInk ]: (8)

De�nition 4. The transmission zeros of the transfer function W L
k (z) of minimal periodic system (1) with all

Ek invertible, are the invariant zeros of associated standard lifted system pencil (8).
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De�nition 5. The left and right minimal indices of the transfer function W L
k (z) of the minimal periodic

system (1) with all Ek invertible, are the left and right minimal indices of associated standard lifted system
pencil (8).

De�nition 6. The poles of the transfer function W L
k (z) of minimal periodic system (1) with all Ek invertible,

are the zeros of the associated standard lifted pole pencil FL
k − zInk , or equivalently, the eigenvalues of the

monodromy matrix FL
k .

These de6nitions completely rely on the Kronecker structure of pencils (8). However, since these pencils
involve forming matrix products, they are certainly not suited for reliable computations.
The relation of these pencils with those of the stacked lifted system is explained by the following lemma,

which is easily proven by standard elimination.

Lemma 1. If all Ek are invertible, then there exist invertible matrices Tl and Tr and matrices X and Y such
that 

 INk O O
O FL

k − zInk GL
k

O HL
k LLk


=

[
Tl O
X I

][
FS
k − zLSk GS

k

H S
k LSk

] [
Tr Y
O I

]

and hence also[
INk O

O FL
k − zInk

]
= Tl[FS

k − zLSk ]Tr ;

where Nk := nk+1 + · · ·+ nk+K−1.

By taking a Schur complement, it is now easy to see that W S
k (z)=W L

k (z), that is, the TFMs of the stacked
and standard lifted systems are the same. Moreover, both system pencils are essentially equivalent since the
transformations of the above lemma only eliminated the non-dynamical part of the systems matrix SSk (z) [30].
We have the following immediate results.

Lemma 2. The zeros and left and right minimal indices of the system pencils (5) and (8) are identical. The
zeros of the pole pencils FS

k − zLSk and FL
k − zInk are identical.

It follows from this discussion that De6nitions 1–3 introduced for general matrices Ek based on the stacked
lifted, coincide with De6nitions 4–6 when the matrices Ek are invertible. But De6nitions 1–3 clearly apply as
well to the case where any of the matrices Ek is singular or even rectangular. These are also the de6nitions
which we will use in the next section.

3. Computational approach

In this section, we propose an e9cient computational approach to determine the zeros of the stacked lifted
system (2) at k =1. The zeros for other time moments k =2; : : : ; K can be computed in a similar manner by
just permuting the order of the underlying matrices. To simplify the notation for the case k = 1, we drop the
index used for the sampling time in the lifted system matrices. Before starting our developments, we discuss
shortly possible approaches relying on existing algorithms for standard systems.
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For a standard periodic system, a straightforward approach to compute the zeros of the pK × mK TFM
W L(z) is to apply the algorithm of [7] to system matrix (8) and to extract additional information on zeros and
Kronecker structure using the results of [20]. However, because the construction of the standard lifted system
involves matrix multiplications, this approach is certainly not recommended for numerical computation. To
avoid matrix multiplications, we can employ the general approach of [17] to the stacked lifted system and
compute the system zeros as the invariant zeros of system matrix (5). This approach is numerically reliable
because it exclusively uses orthogonal transformations. But since it ignores the structure of the problem, the
computational complexity of this approach is too high. To compute the zeros, the computational complexity
is, in the worst case, of the order of O((N + Kp)(N + Km)N ) operations, where N =

∑K
i=1 ni. For example,

in the case of a periodic system with constant dimensions �i = ni = n, the computational complexity is
O(K3(n+ p)(n+m)n) instead of a complexity of O(K(n+ p)(n+m)n) which—as reported in [28]—would
be more satisfactory for periodic systems. In what follows, we show that such a computational complexity
can indeed be achieved by exploiting the problem structure.
A fast numerical algorithm to compute eigenvalues of products of square matrices (introduced in [22]) can

be used to compute the poles of periodic systems with constant dimensions by deMating the (K − 1)n simple
eigenvalues at in6nity of the pencil FS − zLS by applying (K − 1) orthogonal transformations on low-order
submatrices of this pencil. This approach is an orthogonal version of the technique employed by Luenberger
[14] and is equivalent to the “swapping” technique described in [1]. The extension of this algorithm to
the time-varying case is relatively straightforward and is a particular case of the approach proposed in this
paper. In what follows, we show how this idea can be applied to deMate a part of system pencil (5) which
corresponds to

∑K
i=2 �i simple eigenvalues at in6nity. Since the multiplicity of eigenvalues by de6nition

exceeds the multiplicity of in6nite zeros by one [30], this deMation will not aJect the computation of both
6nite and in6nite zeros.
Instead of SS(z) in (5), we consider an equivalent pencil S(z) with permuted block rows and columns

S(z) = S − $T =




S1 −T1 O · · · O

O S2 −T2 · · · O

...
. . .

. . .
. . .

...

O SK−1 −TK−1

−zTK O · · · O SK



; (9)

where for i = 1; : : : ; K

Si :=

[
Ai Bi

Ci Di

]
; Ti :=

[
Ei O

O O

]
:

Consider the (�2 + �3 + 2p)th-order orthogonal transformation matrix U1 compressing the rows of the

(�2 +�3 +2p)× (n2 +m) matrix
[
−T1
S2

]
to

[R1
O

]
, where R1 is an r1× (n2 +m) matrix of full row rank r1 with

n26 r16min(�2 + �3 + p; n2 + m) (the lower bound follows from the minimality of the system). Applying
U1 to the 6rst two blocks rows of S(z) we obtain for the nonzero elements

U1

[
S1 −T1 O

O S2 −T2

]
=

[
S̃1 R1 −T̃ 1

Ŝ2 O −T̂ 2

]
;
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which de6nes the new matrices Ŝ2 and T̂ 2. These matrices clearly have (3 + p rows, where

(3 := �3 + �2 + p− r1:

Then construct the ((i+1 + �i+2 + 2p)th order orthogonal transformations Ui for i = 2; : : : ; K − 1 such that

Ui

[
Ŝ i −T̂ i O

O Si+1 −Ti+1

]
=

[
S̃ i Ri −T̃ i

Ŝ i+1 O −T̂ i+1

]
;

where Ri are matrices of full row rank ri. This recursively de6nes the new matrices Ŝ i+1 and T̂ i+1 which
have (i+2 + p rows, where

(i+2 := �i+2 + (i+1 + p− ri:

Applying the transformations Ui successively to the ith and (i + 1)th block rows of the transformed pencil
S(z), we 6nally obtain the reduced pencil



S̃1 R1 −T̃ 1 O O

S̃2 O R2
. . . O

...
...

...
. . . −T̃ K−2

S̃K−1 − zT̃ K−1 O O · · · RK−1

ŜK − zT̂ K O O · · · O



; (10)

which is orthogonally similar to S(z) and hence also to the original system pencil SS(z) in (5). Since the
matrices Ri have full row rank, the subpencil

ŜK − zT̂ K (11)

will contain all 6nite zeros of the original pencil. The Kronecker structure and the in6nite zeros of SS(z) are
essentially those of the subpencil[

S̃K−1 − zT̃ K−1 RK−1

ŜK − zT̂ K O

]
: (12)

The number of rows of this reduced pencil equals

(K+1 :=
K∑
i=1

(ni + p)−
K−2∑
i=1

ri =
K−2∑
i=1

(ni+1 + p− ri) + nK + n1 + 2p:

Generically, all submatrices of the pencil have maximal ranks ri = ni+1 +min(p;m). If p6m then (K+1 =
nK+n1+2p, while if p¿m it follows that (K+1=nK+n1+2p+(K−2)(p−m). It is therefore recommended
to then work on the transposed of pencil (9).
To compute the 6nite zeros and Kronecker structure of the periodic system, we can now apply to resulting

reduced-order pencils (11) and (12) a general algorithm to compute the eigenvalues and the Kronecker
structure of a system matrix of a particular descriptor system [17].
The proposed algorithm to compute zeros can be applied to compute the poles as well by de6ning

Si := Ai; Ti := Ei:

In a similar way, with

Si := [Ai Bi]; Ti := [Ei O]
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or

Si :=

[
Ai

Ci

]
; Ti :=

[
Ei

O

]

the zeros algorithm can be used to compute the input decoupling and output decoupling zeros, respectively
[12]. It is also obvious that it applies as well to systems in standard form, i.e. where Ek = Ink+1 .

4. Algorithmic aspects

The reduction of S(z) can be done by computing successively K−1 rank revealing QR decompositions (with
column pivoting) of ((i + �i+1 + 2p)× (ni + m) matrices and applying the transformation to two sub-blocks
of dimensions ((i + �i+1 + 2p) × (ni−1 + m) and ((i + �i+1 + 2p) × ni+1. Assuming constant dimensions
�i = ni = n, p6m and generic ranks (i.e., (i = ni), the reduction step has a computational complexity of
O((K − 1)(n + p)(n + m)n). Since the last step, the computation of zeros of the reduced pencil, has a
complexity of O((n + p)(n + m)n), it follows that the overall computational complexity of the proposed
approach corresponds to what is expected for a satisfactory algorithm for periodic systems. In fact, when this
approach is employed to compute the poles, it is even more e9cient than the standard algorithm based on
the periodic real Schur form [4]. This is why, the proposed algorithm belong to the family of fast algorithms
[22], being more e9cient than an algorithm based on eigenvalue computation (if this is applicable, as for
example, in the case when all Dk are invertible).

Since the main reduction consists of successive QR-decompositions, it can be shown [10] that the matrices
of the computed reduced pencil TS − $ TT satisfy

‖UXV − TX ‖26 *Mf(N )‖X ‖2; X = S; T;

where U and V are the matrices of accumulated left and right orthogonal transformations, *M is the relative
machine precision, and f(N ) is a quantity of order of N . The subsequent zeros computation step is performed
using the algorithm of [17] and is also based exclusively on orthogonal transformations. This second step is
numerically stable as well. Overall, we have thus guaranteed that the computed zeros are exact for a slightly
perturbed system pencil. It follows that the proposed algorithm to compute zeros is numerically backward
stable.
Since the structure of the perturbed pencil is not preserved in the reduction, we cannot say however that the

computed zeros are exact for a slightly perturbed original system (i.e., the algorithm is not strongly stable).
In spite of this weaker type of stability, the proposed algorithm is the 6rst numerically reliable procedure
able to compute zeros of a periodic system with an acceptable computational eJort. First results to develop a
strongly stable algorithm to compute the 6nite zeros of a periodic system are reported in [26].

5. Numerical experiments

We give two examples that illustrate the capabilities of the proposed approach. The computations have been
performed using MATLAB-based implementations relying, among others, on the generalized zeros computation
tools available in the DESCRIPTOR TOOLBOX [24]. 1

1 http://www.robotic.dlr.de/control/num/desctool.html.

http://www.robotic.dlr.de/control/num/desctool.html.
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Example 1. This example analyzes the minimality of periodic descriptor systems by computing appropriate
types of zeros. Consider the 2-periodic single-input single-output system described by the following matrices:

E1 =

[
1 0

0 ,

]
; A1 =

[
0

1

]
; B1 =

[
1

0

]
; C1 = 1; D1 = 0;

E2 = 2; A2 = [0 1]; B2 = 2; C2 = [1 0]; D2 = 0;

where the state-space dimensions are n1 =1, n2 =2. We computed 6rst the zeros at time k=1. For ,=2, this
system has no input or output decoupling zeros, thus is minimal (i.e., reachable and observable). The system
has a pole at -=0:25 and a zero at �=∞. However, for ,=0, the descriptor periodic system is non-minimal,
having an input/output decoupling zero (i.e., unreachable/unobservable pole) at ∞. At time k =2, the system
is minimal. For ,= 2 the system has the poles -1 = 0:25, -2 =∞ and the zeros �1 = 0, �2 =∞. For ,= 0
the system has a pole in -= 0 and a zero at � =∞.

Example 2. This example illustrates the use of the proposed approach to periodic systems with relatively
large periods. Consider a discrete-time periodic system originating from a continuous-time periodic model of
a spacecraft pointing and attitude system described in [19]. This system has state, input and output dimensions
n= 4, m= 1, p= 2, respectively. The continuous-time linearized state-space model of the spacecraft system
is described by the matrices

A=




0 0 0:05318064 0

0 0 0 0:05318064

−0:001352134 0 0 −0:07099273

0 −0:0007557182 0:03781555 0


 ;

B(t) =




0

0

0:1389735× 10−6sin(!0t)

−0:3701336× 10−7cos(!0t)


 ; C =

[
1 0 0 0

0 1 0 0

]
; D =

[
0

0

]
;

where !0=0:00103448 rad=s is the orbital frequency. Notice that A is a constant matrix with all its eigenvalues
on the imaginary axis. The matrix B(t) is however a time-dependent periodic matrix with the period 21=!0.
The discretized system for diJerent sampling periods K has been used in [27] to design periodic output
feedback controller for this system. For a given K , the corresponding sampling period is T = 21=(!0K).
The matrices of the discrete-time periodic system can be computed explicitly as Ek = I , Ak = exp(AT ),
Bk=

∫ kT
(k−1)T e

A[kT−2]B(2) d2. To show the applicability of our algorithm to periodic systems with large periods,
we computed the zeros of the TFM for K=120. Note that the corresponding TFM is a 240×120 rational matrix.
For reference purposes we give the matrices of the discretized periodic model which results for K = 120

and T = 50:61468 s

Ak =




0:9506860 0:0429866 0:4827320 −2:5564383

−0:0409684 0:9721628 1:3617328 0:5081454

−0:0122736 0:0363280 −0:8671394 −0:6014295

−0:0346225 −0:0072209 0:3203622 −0:8456626


 ;
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Table 1
Computational times for zeros determination

K 40 80 120 240

Tfast (s) 0.05 0.06 0.11 0.17
Tlifted (s) 0.33 2.31 7.74 61.46

Bk = 10−5




0:2220925

−0:1300536

0:1877217

−0:0271167


 cos 3k + 10−5



0:5035620

0:4241087

0:1218290

0:3583826


 sin 3k ;

where 3k = 21(k − 1)=K .
The periodic system for K = 120 has a zero at � =∞ and has poles at

-1 = 0:7626 + 0:6469i; -2 = 0:7626− 0:6469i;

-3 = 0:9942 + 0:1077i; -4 = 0:9942− 0:1077i:

Note that the order of the stacked lifted system is 480. Although the direct application of the zeros algorithm
of [17] to this system is still feasible, it is certainly too expensive to solve this problem.
In Table 1, computational times are given to determine the zeros of the associated TFM for diJerent values

of K . The values for Tfast represent computational times for the proposed fast method, while the values for
Tlifted are the times when applying the algorithm of [17] directly to the stacked lifted system. The computations
have been done on a 866 MHz PC running MATLAB 6.1 under Windows ME. For the computation of zeros
of both reduced pencil (12) and lifted pencil (9), the szero function of the DESCRIPTOR TOOLBOX [24] has
been used. This function relies on the robust Fortran implementation of the algorithm of [17] available in the
SLICOT library. 2

It is easy to see that the computational time for the fast method varies almost linearly with K , and this
con6rms our claim for a computational complexity of O(Kn3) of the proposed approach. In contrast, when
applying the algorithm of [17] to the stacked lifted system, the resulting times clearly indicates a computational
complexity of O(K3n3).

6. Conclusion

In this paper, we presented a numerically backward stable algorithm to compute the generalized eigenstruc-
ture of a stacked system matrix of a periodic system. This algorithm can be applied to 6nd the zeros, poles
and decoupling zeros of the system matrix and the left and right null space structures of the corresponding
lifted transfer function. The algorithm works for matrices of varying dimension and exploits the block cyclic
structure of the pencil to yield a complexity which is linear in the period K and cubic in the maximum
dimension of the blocks.
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