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Abstract

An irregular problem models the evolution of a system where several elements are irregularly distributed in a domain.
The evolution modifies this distribution in a way that cannot be foreseen and the behavior of each element depends upon the
elements close to it according to a problem dependent relation. Starting from a hierarchical representation of the domain, we
define a parallelization methodology that includes a load balancing strategy that preserves this locality property and a strategy
to collect information distributed onto the processing nodes. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Several complex systems are modeled through
time dependent partial differential equations (PDEs),
solved through adaptive iterative algorithms that com-
pute some properties, i.e. speed, position, illumination
etc., for each element in a domain of interest. The
iterations either simulate the system evolution in an
interval of time or improve the accuracy of the results.
The properties of an element ei depend upon those of
other elements, the neighbors of ei . A problem depen-
dent neighborhood relation determines the neighbors
of ei , but the probability that ej is a neighbor of ei

is inversely related to the distance between ei and
ej . This property is denoted as locality. A problem is
irregular if the elements are irregularly distributed in
the domain and their number and/or their distribution
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change in a way that cannot be anticipated. A parallel
application to solve an irregular problem can achieve
a satisfactory speed up only if the mapping of the
elements onto the processing nodes, p-nodes, of the
architecture balances the computational load and it
preserves locality, i.e. it maps onto the same p-node
elements close to each other. Furthermore, since the
computational load of each element is a function of
the distribution, the mapping has to be updated as
the distribution changes. Among the methods that are
important examples of irregular problems, we recall
Barnes–Hut [2], adaptive multigrid [5] and hierarchi-
cal radiosity [7].

This paper defines a methodology to solve an ir-
regular problem through a distributed memory archi-
tecture where the p-nodes are connected by a sparse
network. Starting from the methodology, a package
will be defined to support the development of par-
allel applications. Alternative approach to irregular
problems have been described in [9,10]. Each of the
next three sections introduces one of the component
of the proposed methodology, namely, a hierarchical
representation of the distribution, the load balanc-
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ing strategy that maps the element onto the p-nodes
and updates the mapping at run time and the strat-
egy to collect the properties of elements mapped
onto another p-node. The two strategies exploit the
hierarchical representation to deduce the current map-
ping of the elements. The experimental results of the
methodology in the case of the adaptive multigrid
method (AMM) are discussed in Section 5. Those of
the Barnes–Hut method have been presented in [1].

2. A hierarchical representation of the element
distribution

All the strategies of our methodology exploits a hi-
erarchical representation of the distribution of the ele-
ments, the H-Tree. Each node N of the H-Tree, hnode,
represents a subspace of the domain, space(N), and it
describes the elements in space(N). As discussed in
the following, the detail of the information increases
with the depth of N in the H-Tree. If the elements in
space(N) do not satisfy a problem dependent condi-
tion, space(N) is partitioned into equal subspaces by
halving each of its dimensions. The distribution of the
elements in the subspaces are represented by the sons
of N. If space(N) is not decomposed, N is a leaf of
the H-Tree. Because of the irregular distribution, the
depths of two distinct sub-trees rooted in the same hn-
odes may be very different. During the computation,
the domain decomposition and the H-Tree are updated
according to the evolution of the system. As soon as
space(N) is partitioned, the corresponding hnodes are
inserted, while these hnodes are pruned if space(N)
is no longer partitioned. In any real applications, the
number of elements and that of hnodes is so large that
the H-Tree cannot be replicated in each p-node. Hence,
the H-Tree is partitioned into np+1 subsets, where np
is the number of p-nodes. One subset of the H-Tree,
the replicated H-tree, is replicated in all the p-nodes.
Each of the other subsets is stored in one p-node only
and it defines the private H-Trees of the p-node.

3. Initial mapping and run time reallocation

To take locality into account while balancing the
computational load, we define a mapping of the spaces
onto the p-nodes by ordering the spaces in the hierar-

chical representation and by partitioning the resulting
sequence. The spaces are ordered through a space fill-
ing curve [8] built on the hierarchical representation
of the element distribution, starting from the lowest
level spaces, i.e. from the first partition of the prob-
lem domain. The spaces at the same level are visited
in the order stated by the characteristic figure of the
adopted curve. If a space S has been partitioned, then
all its subspaces are visited in a recursive way, before
the next space at the same level of S. Because of the
properties of a space filling curve, this space is always
a neighbor of S. Any space filling curve sf also de-
fines a visit v(sf) of the H-Tree that returns a sequence
Sq(v(sf)) = [N0, N1, . . . , Nm] of hnodes. Alternative
curves may be adopted because the aspects of v(sf)
that depend upon sf may be encapsulated into a func-
tion that returns the next hnode to be visited. The load
of a hnode N is a problem dependent metric that eval-
uates the amount of computations due to the elements
in space(N). According to the considered problem,
this load can be (i) constant and equal for all the hn-
odes; (ii) constant but distinct for each hnode; or (iii)
variable and distinct for each hnode. In the last case,
the program has to be instrumented to measure the
load during the computation. In those parallel archi-
tectures where the cost of a communication depends
upon the communicating p-nodes, the np p-nodes are
ordered too. A p-node A immediately precedes B in
the ordered sequence SP, if the cost of an interaction
between A and B is not larger than the cost of the
same interaction between A and any other p-node fol-
lowing B. Since each p-node executes one process, in
the following, Pk denotes both the kth p-node of SP
and the process executed by the p-node. To preserve
the ordering, the spaces are mapped onto the p-nodes
through a blocking strategy that partitions Sq(v(sf))
into np segments, i.e. into np subsequences of consec-
utive hnodes. The first segment is mapped onto P0, the
second onto P1 and so on. The resulting mapping sat-
isfies the range property: if the hnodes Ni andNi+j

are assigned to Ph, then all the hnodes in-between Ni

andNi+j in Sq(v(sf)) are assigned to Ph as well. This
property guarantees that the spaces assigned to Ph are
close to each other. The load of each segment should
be as close as possible to average load, the ratio be-
tween the overall load and the number of p-nodes. We
cannot assume that the load of each segment is equal
to average load, because each hnode, and its load, can
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be assigned to one segment only. However, due to the
large number of elements, the difference between av-
erage load and the load of each segment is negligible.
Starting from the chosen mapping, each process Ph

builds the replicated H-Tree and its private H-Trees.
An hnode N belongs to one private H-Tree of Ph if
space(N) is assigned to Ph. The replicated H-Tree is
the union of the paths from the root of the H-Tree to
those of the private H-Trees. Each hnode N of the repli-
cated H-Tree records the position of space(N) in the
domain and the identifier of the owner process, while
each hnode N of one of the private H-Trees records
the properties of space(N). In some problems, the in-
tersection among a private H-Tree and the replicated
H-Tree includes the roots of the private H-Tree only.
In other problems, the private H-Trees and the repli-
cated H-Tree are partially overlapped.

Due to the system evolution, the initial mapping
may later result in an unbalanced load. We define a
procedure to update the mapping while respecting
locality and minimizing the corresponding overhead.
To detect when the mapping has to be updated, each
process periodically broadcasts its workload and com-
putes max unbalance, the largest difference between
average load and the workload of each process. To
avoid a too frequent execution, the procedure is in-
voked only if max unbalance is larger than an user
defined threshold T. In the following, = (Se, C),
where Se is a segment of hnodes and C is a constant,
denotes the segment Se whose load is as close as
possible to C. Let us suppose that the workload of Ph

is average load +C, C > T , while that of Pk , h < k,
is average load − C. To recover the unbalance, Ph

cannot send to Pk a set of hnodes whose load is equal
to C because the resulting mapping violates the range
property. Hence, any process Pi in between Ph and
Pk is involved in a shift of the spaces from Ph to
Pk . Let us define Prei and Suci as the two sequences
of processes [P0, . . . , Pi−1] and [Pi+1, . . . , Pnp−1]
that, respectively, precede and follow Pi in SP. Fur-
thermore, Unb(Prei) and Unb(Suci) are, respectively,
the global load unbalances of Prei and Suci . If
Unb(Prei ) = C > T , i.e. processes in Prei are over-
loaded, Pi receives from Pi−1 a segment S1 where
= (S1, C). If, instead, Unb(Prei ) = C < −T , Pi

sends to Pi−1 a segment S2 where = (S2, C). The
same procedure is applied to Unb(Suci ) but, in this
case, the hnodes are either sent to or received from

Pi+1. To respect the range property, if [Nq, . . . , Nr ]
is the segment assigned to Pi , then Pi sends to Pi−1
a segment [Nq, . . . , Ns], while it sends to Pi+1 a
segment [Nt, . . . , Nr ], with s ≤ r and q ≤ t .

4. Collecting properties from other p-nodes

To compute the properties of each element e in a
space it has been assigned, a process needs those of
the neighbors of e, that may have been allocated onto
other p-nodes. The simplest strategy to collect such
remote data is request/answer. As soon as it needs
the properties of an element e in a space S mapped
onto another p-node, Ph analyses the replicated H-Tree
to discover the process Pk where S is allocated, it
suspends the computation and sends a request to Pk .
In this way, two communications have place for these
properties for, respectively, the request and the reply.

To reduce this overhead, we introduce the fault
prevention strategy. Each process Ph, for each of
its spaces S, determines which processes require the
properties of the elements in S, and it sends to these
processes the data, without any explicit request. To
determine all the data to be sent to Pk , Ph exploits the
neighborhood stencil and the information on the sub-
spaces assigned to Pk in the replicated H-Tree. In this
way, one communication suffices to collect a remote
data from another p-node. Moreover, strategies such
as communication merging can be easily applied to
reduce the communication overhead. In general, Ph

approximates the data that Pk requires, because the
replicated H-Tree records a partial information only.
The approximation is always safe, i.e. it includes any
data Pk needs, but, due to the approximation, some of
the data sent may be useless for Pk . If the information
in the replicated H-Tree does not enable the processes
to compute an accurate approximation, informed fault
prevention can be adopted where the processes ex-
change some information about their private H-Trees
before the fault prevention phase.

5. The adaptive multigrid method

The AMM is a fast iterative method based upon
multilevel paradigms to solve multidimensional PDEs
[5,6], that can be applied to a large set of problems
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from different fields [3,4]. Starting from a uniform
grid, the level 0 of the hierarchy, the AMM discretizes
the domain through an irregular grid hierarchy built
according to the considered PDE. Each grid of the
hierarchy partitions a subset of the domain into a
set of square spaces. The values of the equation are
computed in each square corner; these points are the
elements considered by our methodology. Let us sup-
pose that, at a level l, a square A has been discretized
through the grid g. To improve the accuracy of the
values in A, a finer grid is added at level l + 1. The
new grid represents A but, to double the accuracy of
the discretization, it doubles the number of points of g
on each dimension of A. As the computation goes on,
finer and finer grids are added to the hierarchy until
the desired accuracy has been reached in each square.
To solve the PDE, several operators are applied to the
points of each grid of the hierarchy in a predefined
order, the V-cycle; for a complete description see [6].

5.1. Mapping the grids onto the p-nodes

Two aspects of locality of the AMM have to be con-
sidered, because the value of a point p on the grid g at
level l is function of the values of the neighbors of p
on the same grid g for the some operators (intra-grid
or horizontal locality) and on the grids at level l + 1
(if it exists) and l −1 for other operators (inter-grid or
vertical locality). The ordering of the hnodes through
a space filling curve takes into account both aspects,
because the recursive definition of the curve preserves
the inter-grid locality, while intra-grid locality is pre-
served by the ordering stated by the characteristic fig-
ure. For each square it has been assigned, with the
exception of these on the border of a grid, a process
which computes one point only, the rightmost down-
ward corner of the square. This avoids duplicate com-
putations.

The private H-Tree of process Ph includes all the
hnodes representing the squares assigned to Ph, while
the replicated H-Tree includes all the hnodes on the
paths from the root of the H-Tree to that of one pri-
vate H-Tree. A hnode can belong both to the replicated
H-Tree and to a private H-Tree, because the computa-
tion is executed on all the hnodes. Consider a hnode
N assigned to Ph. If one of its descendants has been
assigned to Pk , h �= k, N belongs to the private H-Tree
of Ph, because Ph computes the value of the points

in space(N), and to the replicated H-Tree, because it
belongs to the path from the root of the H-Tree to
that of the private H-Tree of Pk . The number of op-
erations is the same for each point of a grid and does
not change during the computation. Hence, the same
computational load is assigned to each square, i.e. to
each hnode, and we map the same number of squares
to each p-node.

5.2. Informed fault prevention

In the following, we denote by Do(Ph) the sub-
domain assigned to process Ph. Each process Ph

applies the AMM operators, in the order stated by the
V-cycle, to the points in the squares in Do(Ph). Due
to the locality of our mapping strategy, the squares
required by Ph to apply the operators have been as-
signed to Ph as well, with the exception of some
square in the border of Do(Ph). For each operator op,
Ph has to collect the updated properties of the points
in these squares from the other processes. Let us de-
fine Bo(op, Ph), the boundary of Do(Ph), as the sets of
the squares in Do(Ph) such that one of their neighbors
does not belong to Do(Ph). Bo(op, Ph) depends upon
the neighborhood relation of the considered operator
op. Let us define Ih(op, l) as the set of squares not
belonging to Do(Ph) and including the points whose
values are required by Ph to apply op to the subgrid
at level l of Do(Ph). The values of points in Ih(op,
l) are exchanged among the processes just before the
application of op, because they are updated by the op-
erators preceding op in the V-cycle. If fault prevention
is adopted, Ph does not compute Ih(op, l). Instead, for
each process Pk , Ph determines through the replicated
H-Tree which squares in Do(Ph) belongs to Ik(op, l),
∀k �= h. Since the information in a hnode N does not
fully describe the elements in space(N), Ph computes
an approximation AhIk(op, l) of Ik(op, l) that, because
of safety, includes all the squares that could be a
neighbor of a square at level l in Do(Pk). Then Ph

sends to Pk , without any explicit request, the values of
the points in AhIk(op, l). To show that some of these
values may be useless for Pk , suppose that Do(Ph) and
Do(Pk) share a side, that they have been uniformly
partitioned until, respectively level l and level l − m,
and that the neighborhood stencil of op for the point
p includes points on the same level of p only. Since
Ph does not know l − m, it could send to Pk some
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of its squares at levels higher than l − m that are use-
less for Pk , that has no spaces on these levels. When
adopting informed fault prevention, instead, Pk sends
to Ph, before the fault prevention phase, the depth of
each square in Bo(op, Pk) that could have a neighbor
in Do(Ph). This allows Ph to improve the approxi-
mated set of squares sent to Pk because, to determine
whether to send a square, Ph can use both the data
in the replicated H-Tree and the depth of the squares
received by Pk . Pk sends the depth information at the
beginning of each V-cycle and this information is cor-
rect until the end of the V-cycle, when new grids may
be added to improve the discretization. Hence, all the
informed fault prevention phases for the operators of
the V-cycle can exploit this information. If the load
balancing procedure has been applied, at the beginning
of the V-cycle, Pk sends the depth of all the squares in
Bo(op, Pk). Otherwise, since grids can be added but
not removed, it sends information on the new grids
only.

5.3. Implementation in MPI

Our parallel version of the AMM has been de-
veloped starting from a sequential version in C that
has been extended through a set of procedures writ-
ten in C plus MPI primitives. The most important
of these procedures are those that, respectively, bal-
ance the load among the p-nodes, evaluate the cur-
rent load unbalance and implement the informed fault
prevention strategy. The procedure implementing the
AMM operators are of the same sequential version
because, after the informed fault prevention phase,
each p-node owns all the information it needs and
it can apply each operator as in the sequential case.
This is an important advantage of fault prevention
strategy.

The load balancing procedure is invoked at the end
of the V-cycle. It computes max unbalance by col-
lecting the current load of each p-node through a
MPI Allgather. If the load is to be rebalanced, the el-
ements are shifted among the p-nodes through MPI
point-to-point communications. Then, the processes
exchange the roots of their new private H-Trees to up-
date the replicated H-Tree. Through a MPI Allgather,
each process communicates to any other how many
roots it is going to send, i.e. how many trees belong to
Do(Ph). This information is used to allocate a buffer

to be exploited by a MPI Allgather that implements
the actual exchange of the roots.

The informed fault prevention strategy is imple-
mented through MPI point-to-point, non-blocking
communications. Collective primitives, i.e. MPI
Scatter, have not been adopted, because this requires
the creation, for each Ph, of a distinct communica-
tor including any neighbor of Ph. To this aim, Ph

should determine the neighbors of any process, but
it does not have enough information to do so. More-
over, MPI Comm split cannot be adopted because
the communicators associated with two processes are
not disjoint. Furthermore, since the mapping of the
elements may be updated, the neighbors of Ph change
and new communicator should be created after each
update of the mapping or each refinement. Lastly,
since collective communications are blocking, they
have to be properly reordered to prevent the dead-
lock. In order to overlap a communication with useful
computation, non-blocking primitives are exploited
and each process determines the data to be sent to
other processes while it is waiting for the data from
its neighbors. Moreover, more data to be sent to the
same process are merged into one message to reduce
both the number of communications and the setup
overhead. This is a further advantage of this strategy
and it is implemented as follows: each process Pk

issues an MPI Irecv from MPI ANY SOURCE to
declare that it is ready to receive from any other pro-
cess. While waiting for these data, Ph determines the
data to be sent to all the other processes, i.e. it com-
putes AhIk(op, l) ∀k �= h. When a predefined amount
of data for the same process has been determined,
Ph sends it using an MPI Issend. Subsequently, Ph

checks through an MPI Test the status of the pending
MPI Irecv. If the communication has been completed,
Ph inserts the received data in its copy of the repli-
cated H-Tree and it posts another MPI Irecv. In any
case, the computation of the data to be sent goes on.
After sending AhIk(op, l) for any k, Ph broadcasts,
through np − 1 MPI Isend, a synchronization mes-
sage and it continues to receive data from its partners.
Since Ph does not know how many data it will re-
ceive, it waits for the synchronization message from
all the other processes. A MPI barrier cannot be used
to synchronize the processes because, after issuing an
MPI Barrier, Ph is blocked and it cannot collect data
from other processes.
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Fig. 1. A comparison of remote data collection techniques.

5.4. Experimental results

We present some experimental results of the parallel
version of the AMM resulting from our methodology.
The parallel architecture we consider is a Cray T3E.
Each p-node has a DEC Alpha 21164 processor and
128 Mb of memory. The interconnection network is a
torus.

The simulations solve two PDEs derived from the
Poisson differential equation in two dimensions, sub-
ject to the Dirichlet boundary conditions:

−d2u

dx2
− d2u

dy2
= f (x, y) in Ω =]0, 1[×]0, 1[

u = h(x, y) in δΩ

h(x, y) = 10 (1)

Fig. 2. Efficiency for problems with fixed data dimension.

h(x, y) = 10 cos(2π(x − y))
sinh(2π(x + y + 2))

sinh(8π)

(2)

where f (x, y) = 0 and (1) and (2) are two different
boundary conditions. With respect to other PDEs, such
as the Navier–Stokes one, this equation is a more sig-
nificant test for a parallel implementation because the
ratio between computational work and parallel over-
head is among the lowest ones.

Fig. 1 compares the remote data collecting tech-
niques. We plot the overall amount of data exchanged
for request/answer (req/ans), for fault prevention (fp)
and for informed fault prevention (ifp). In both prob-
lems, the informed fault prevention strategy is more
convenient because the number of communications
of fault prevention and of informed fault prevention
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are, respectively, less than 61 and 52% than those
of request/answer. Fig. 2 shows the efficiency of our
implementation for the two PDEs, for a fixed num-
ber of initial points, 214, the same maximum grid
level, 12, and a variable number of p-nodes. These
simulations adopt informed fault prevention. Com-
munication merging has been exploited and each
message includes the properties of 15 points. The low
efficiency achieved in the second problem is due to a
highly irregular grid hierarchy. However, even in the
worst case, our solution achieves an efficiency larger
than 50% even on 16 p-nodes.

6. Conclusions

This paper has presented a methodology for the
parallelization of irregular problems based upon the
hierarchical structuring of the domain, a load balanc-
ing strategy based upon space filling curves and a
technique, informed fault prevention, that reduces the
communication overhead. Our experimental results
in the case of the AMM together with those of [1]
show that this approach achieves good performances
on high parallel distributed memory architectures.
We are currently defining a package based upon the
methodology to simplify the development of parallel
solutions to irregular problems.
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