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Abstract

PODOS is a performance oriented distributed operating system being developed to harness the performance capabilities
of a cluster-computing environment. In order to address the growing demand for performance, we are designing a distributed
operating system (DOS) that can utilize the computing potential of a number of systems. Earlier clustering approaches have
traditionally stressed more on resource sharing or reliability and have given lesser priority to performance.

PODOS adds just four new components to the existing Linux operating system to make it distributed. These components
are a Communication Manager (CM), a PODOS Distributed File System (PDFS), a Resource Manager (RM), and Global
Interprocess Communication (GIPC). This paper addresses the design and implementation of the various components of the
PODOS system. © 2002 Published by Elsevier Science B.V.
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1. Introduction

A distributed operating system (DOS) is basically
the cooperation among a group of machines intercon-
nected by a network such that the group of machines
appears to the user as a single operating system. With
DOS, users are neither aware of where their files are
stored nor they are aware that remote machines may
execute their programs. All resources within the net-
work are managed in a global fashion using global
mechanisms rather than local mechanisms [1].

A group of machines could cooperate for a variety
of reasons. A few of them are: (1) resource sharing;
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(2) performance enhancement; (3) reliability; (4) fault
tolerance; (5) transparency [1]. Tens of DOSs have
been designed and implemented with various goals.
Most distributed system designs are willing to com-
promise on performance. On the other hand, systems
that are designed to be performance oriented make no
attempt to provide a single system image. They pro-
vide a high-performance computing environment (ex-
amples of clustering systems: Condor [2], Beowulf [3],
etc.; e.g., DOS: Amoeba [4]). High-performance com-
puting environments are designed to solve one class of
problems, whereas a system like PODOS is designed
as a general high-performance computing solution.

With these issues in mind, we are designing a
distributed system, PODOS, an experimental Linux
[5] cluster (being developed at the University of
Mississippi). The primary intent is to explore the
performance capabilities of a clustering system, but
at the same time provide a good resource-sharing
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environment. Furthermore, we try to minimize the
additions to the basic operating system [6]. Each node
in the PODOS cluster is a monolithic Linux kernel.
The PODOS design has a number of key performance
benefits. A few of these are:

1. PODOS builds upon a highly robust and perfor-
mance oriented monolithic Linux kernel.

2. PODOS adds very few components to the basic
Linux operating system, thereby maintaining a sim-
ple design.

3. Each of these components is designed to achieve
high performance. For example, the CM uses a cus-
tom high-speed protocol and the PDFS is tightly
glued to Linux’s file system to speed up remote file
fetches.

PODOS comprises of the following components:
Communication Manager(CM). The CM handles

remote communication in the PODOS by using a cus-
tom protocol to interact with peer CMs in the cluster.
Higher-level layers (RM, GIPC and PDFS) use the
CM to talk to their peer components in the cluster [6].

Resource Manager(RM). The RM in each node
maintains global system state information, i.e., infor-
mation about each node in the cluster. The RM makes
use of the CM to transmit and receive system informa-
tion in a broadcast or a piggybacked fashion among
its peers [6].

Global Inter-Process Communication(GIPC). The
GIPC provides a mechanism with which processes
can communicate in PODOS, by allocating a global
PID (GPID) for every process in PODOS so that
processes can be uniquely identified. GIPC further
provides communication primitives for processes to
communicate among themselves [6].

PODOS Distributed File System(PDFS). The PDFS
extends the basic operating system file capabilities
to support distributed file access. Processes will be
able to recognize non-local file names and invoke the
PDFS. PDFS local-to-remote requests will be carried
out by simply invoking the CM [6].

Let us look at the network architecture in PODOS.

2. The PODOS network topology

PODOS has a special network topology that aids
in implementing an efficient and a high-performance

Fig. 1. PODOS network topology.

communication mechanism [7]. Let us look at a
model of the PODOS network topology. Fig. 1 gives
an overview of the PODOS network architecture.

PODOS uses an Ethernet network interface as
the communication media. Each node represents a
machine, where node 1, node 2, etc., is machine 1,
machine 2, etc., respectively. PODOS can use as
many interfaces as the system supports. Our current
implementation has three Ethernet interfaces, namely
eth0, eth1, andeth2. Each node is connected to
the public subnet, W.X.Y.0, through the primary in-
terface,eth0 and thus gets an IP address, W.X.Y.n,
wheren is between 1 and 254. Further to this, each
node has two more interfaces,eth1 and eth2,
which are, connected to private subnets 192.168.1.0
and 192.168.2.0, respectively, and thus get two more
IP addresses, 192.168.l.n and 192.168.2.n. Thus,
each machine in PODOS is a multihomed host. Pri-
vate subnets in PODOS are configured in such a
way that machines can communicate only through
the interface pairseth0–eth0, eth1–eth1, and
eth2–eth2. More specifically, packets oneth1
can only go toeth1 on another machine. This can
be easily observed from Fig. 1, since the network
192.168.1.0 connects onlyeth1’s in all machines.
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Similarly, the network 192.168.2.0 connectseth2’s.
The Transmission-Groups feature uses these inter-
faces in a round-robin fashion [7].

In the following sections we will discuss the various
components of PODOS.

3. Communication in PODOS

Communication in PODOS is handled by the CM.
Higher-level DOS layers (RM, PDFS, GIPC, etc.) rely
on the CM for packet transmission and reception. The
CM in each node uses a specialized protocol to talk
to its neighbors. The CM comprises of the following
components:

• PODOS-packet protocol;
• Communication Descriptor Table (CDT);
• Transmission-Groups.

Fig. 2 demonstrates the relationship among these
subsystems. To the left, in Fig. 2, is the traditional
network protocol stack, the Open Systems Intercon-
nection (OSI) [8] model of networking. To the right,
in Fig. 2, are the PODOS components. The communi-
cation subsystem is depicted in more detail. The CM
comprises of three components, namely the CDT, the
Transmission-Groups, and the PODOS-packet proto-
col. The CDT is an interface for higher-level PODOS
layers. Higher-level layers typically make entries
with the CDT. A Transmission-Group algorithm is
applied to each entry in the CDT. And finally, the
PODOS-packet protocol transmits the packet using

Fig. 2. Communication subsystem.

the datalink layer of the OSI model. The RM, PDFS,
and GIPC use the CM to communicate with peer en-
tities in the PODOS cluster. We will now look at the
various components of the CM, depicted in Fig. 2.

3.1. PODOS-packet protocol

The PODOS-packet protocol is at the very bottom
of the CM. It provides primitives for transmitting and
receiving PODOS packets. The PODOS-packet proto-
col has evolved from a very rudimentary structure [7].
In this section, we will describe the protocol briefly.

Since our primary goal is performance and the
typical DOS bottleneck is network bandwidth, we
needed an efficient communication mechanism that
could speed up packet transmission and reception. We
needed something other than the traditional network-
ing protocol (left side of Fig. 2). The traditional pro-
tocol consists of several layers and each layer has its
own headers and error checking. However, traditional
protocols also contain a lot of detail to accommo-
date many types of network configurations [8]. Thus,
we designed and implemented a DOS packet (PO-
DOS packet), which bypasses the traditional network
protocol stack [7].

In Fig. 2, we can see how the CM resides above the
datalink layer (Ethernet driver). From Fig. 2, it is also
evident that how the CM has moved away from the
traditional network layers and has fewer overheads.
Our approach here is to have the CM interact with the
datalink layer (Ethernet driver) to transmit and receive
packets. In short, the CM will have to transmit and
receive packets that bypassed the network protocol
stack. This would mean that the CM packets would
have to have a separate protocol ID [7], one that is
different from IP, ICMP, etc.

3.1.1. The PODOS-packet structure
Table 1 describes the PODOS-packet structure and

also illustrates the importance of each field [7].
Now let us look at the CDT.

3.2. The CDT

The CDT is the CM’s interface to the other PO-
DOS layers. The CM shields the higher-level PODOS
layers by performing all the intricate details involved
with packet transmission. The higher-level PODOS
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Table 1
PODOS-packet structure

struct PODOSpkt {
char frompid[8]; The global pid of the process from whom the packet is originating
char topid[8]; The global pid of the process to whom the packet is being sent
char ctrl info; This is a 1-byte field that is used by the CM to differentiate PDFS, RM and IPC packets.

It uses the least significant 3 bits. Higher-level protocols use the most significant 5 bits. For
example, the PDFS would use it to differentiate open, read, write, close, etc.

int cdt active ind; The CDT index at the active end (the end that originated the connection)
int cdt passiveind; The CDT index at the passive end (the end that is accepting the connection)
int wakeactivepassive; Since the CM code is the same for active and passive ends, it needs to know which process to wake up
int length; The length of the data being sent
char data[1400]; The data
};

protocols register their packets with the CDT. The CM
picks up packets from the CDT and transmits the pack-
ets. The CM also uses the CDT to construct a virtual
circuit, which helps in streamlining communication
between peer components. The CM also maintains a
simple timeout mechanism by which it can keep track
of errors and retransmissions. Thus, the CM maintains
a simple and elegant protocol for packet delivery [7].

3.2.1. The CDT structure
A fully functional CDT has marked a milestone in

the evolution of the CM. The higher-level PODOS
layers fill in a CDT entry and invoke the CM. The
CM picks up the PODOS packet from the CDT and
transmits it. A typical entry in a CDT is described in
Table 2 [7].

3.2.2. Classes of CDT entries
CDT entries can be classified into two categories

based on the time spent in the table. They are:

Table 2
CDT structure

struct commdesctab {
struct PODOSpkt pkt; The PODOS-packet structure is embedded in the CDT
char *to pid[8]; Higher-level layers specify the process pid in the remote machine to which the packet is

sent. This could be a group of processes to support group communication
int to pid cnt; The count of the processes referencing this CDT entry
int needreply; Whether the CDT entry should be held for a longer time. For example, RM requests are

typically short lived as compared to PDFS or GIPC requests
Char *hostname[20]; The name of the machine to which the packet is being sent. Could be list of machine names

(for group communication)
int host cnt; The count of machine names
Struct interface if; The interface structure (will be discussed later)
};

• Ephemeral. These entries are short duration entries
and release the CDT slot once the packet has been
transmitted. An example of such a request that is
short-lived is the RM query. The RM periodically
broadcasts system information to all the nodes in
the cluster. It does not wait for the arrival of any
packet. Whenever a broadcast message arrives the
CM invokes the RM. Thus the RM would register
its packet in the CDT and invoke the CM. Once the
CM transmits the packet, it releases the CDT entry
corresponding to the RM query [7].

• Virtual Circuits (VC). When a higher-level PODOS
protocol wishes to communicate with its peer for a
longer duration, it usually requests the CM to es-
tablish a virtual circuit. The virtual circuit is noth-
ing but {cdt active index, cdtpassiveindex} pair.
When a higher-level PODOS layer (at the active
end) requests such an entry, the CM makes a CDT
entry and transmits the packet. The peer CM (at
the passive end) receives the packet, makes a CDT
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entry and then invokes the appropriate layer.
Henceforth, any communication between these
two layers would go through this virtual circuit.
This helps in streamlining the subsequent flow of
packets [7].

Now let us look at how PODOS handles Transmis-
sion-Groups.

3.3. Transmission-Groups

Transmission-Groups is a suite of algorithms that
multiplex packets across multiple network interfaces.
Transmission-Groups exploit parallel networks con-
nected among distributed computers and thereby
match the external aggregate network bandwidth
with internal memory bandwidth. The CM employs
Transmission-Groups to achieve further performance
gains over the PODOS-packet protocol. The PO-
DOS cluster is configured in such a fashion that the
suite of Transmission-Group algorithms can exploit
the network architecture. Each node in PODOS has
been configured with multiple Ethernet interfaces
(Fig. 1). This increases the local area network (LAN)
bandwidth and effectively utilizes the communication
media. Once the higher-level PODOS layers register
their packets with the CDT, the CM decides which
interface the packet should go through. This decision
making is Transmission-Groups [7].

Transmission-Group algorithms are applied only
to PODOS packets in the cluster. PODOS packets
can travel on any one of the three interface pairs (the
following denotes active-end-interface–passive-end-
interface: eth0–eth0, eth1–eth1, and eth2–
eth2). Whereas regular network traffic (IP, ICMP,
and IGMP packets) continues to go througheth0
only. If we wish to multiplex those packets too, then
we would have to employ an algorithm similar to
Transmission-Group suite at a higher level in the
network protocol stack.

Table 3
Interface structure

struct interface if{
char activeinterface[6]; The hardware address of the interface at the active end
char passiveinterface[6]; The hardware address of the interface at the passive end
int (*elect interface)(struct device*); Transmission-Group algorithm held as a function

pointer. This is the function that round-robin’s packets
};

Now let us look at Transmission-Groups in more
detail.

3.3.1. Transmission-Group suite
The Transmission-Groups is a suite of algorithms,

each based on a different goal. We provided a set
of routines (round-robin, load based), so that one
may select the best algorithm that suits their require-
ments. The Transmission-Group routine is held as a
function pointer in the interface structure (described
in Table 3) in the CDT entry. When a higher-level
layer wishes to transmit a packet it makes an entry
in the CDT and invokes the CM. The CM initiates
the Transmission-Group algorithm by invoking the
function pointer. The function pointer is set during
system initialization.

The following paragraph describes a simple
round-robin Transmission-Group algorithm that mul-
tiplexes virtual circuits across multiple interfaces.

• Round-robin with VC multiplexing. PODOS em-
ploys a simple round-robin mechanism to multiplex
packets across multiple network interfaces. But
since, multiplexing packets would result in order-
ing and sequencing issues, PODOS multiplexes
virtual circuits. This implies that all packets re-
sulting from a virtual circuit would be transmitted
on a particular interface pair. In short, PODOS
employs a “1-Interface-for-all-Packets-in-a-VC”
rule. This ensures that packets reach their destina-
tion in order and saves us the trouble of ordering
them. Ephemeral packets (packets resulting from
an Ephemeral CDT entry, a RM packet) would be
transmitted on the current interface (maintained by
the Transmission-Group routine). Let us look at
this algorithm in more detail.

• Implementation. The round-robin algorithm main-
tains an interface counter which it increments for
every virtual circuit. This counter is reset once
it reaches IFMAX. The algorithm differentiates
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virtual circuits from ephemeral entries by looking
at the control byte of the packet. Let us discuss the
implementation of VC multiplexing with reference
to a PDFS remote file-write. The local PDFS wishes
to write a file to another node by contacting its
peer entity in the other node. This PDFS file-write
request is characterized by an open call, a sequence
of write calls and then a close call. This is a typical
virtual circuit. Once the PDFS decides to write a file
to another node, it builds a PODOS packet, makes
a CDT entry and invokes the CM. Embedded in
the CDT entry is the interface structure. Below is
Table 3 describing the interface structure.

Having the interface structure in the CDT entry is
the key to the algorithm. Each entry will have such a
structure and packets can be transmitted to/from the
address specified in the interface structure. Once an en-
try is made in the CDT, the Transmission-Group rou-
tine corresponding to that CDT entry is launched by
calling cdt[i]->elect interface( ), wherei denotes the
particular entry. The Transmission-Group algorithm
maintains a simple round-robin strategy with which it
multiplexes virtual circuits.

Now, when the higher-level layer (PDFS) regis-
ters subsequent packets in the CDT, the CM just in-
spects the interface structure of the CDT entry and
transmits the packet to the passiveinterface address
on the activeinterface address. Thus, with this ap-
proach, the Transmission-Group routine is invoked
only once per virtual circuit (or CDT entry) and all
packets belonging to one virtual circuit are transmitted
on the same interface pair. Thus, the algorithm makes
a basic assumption that “virtual circuits have the po-
tential to generate a lot of traffic on the interface”.
Hence, the algorithm attempts to uniformly distribute
virtual circuits across the three interfaces. Ephemeral
entries do not contribute much to the interface load
and thus the algorithm does not worry about such
packets [7].

3.4. Performance

In this section, we analyze the performance capabil-
ities of PODOS protocol and its variants. We further
compare them with the traditional TCP/IP protocol and
present the preliminary results based on this analysis.

In order to study the behavior of these two proto-
cols, we conducted a series of experiments, each with

a different objective, and measured the average round
trip time (average RTT) in each case. All our experi-
ments involved comparing variants of the PODOS pro-
tocol with the traditional networking protocol under
various network loads [9]. Each experiment:

1. Computes the average RTT of packets using 10 sets
of 100 packets each.

2. It discards the maximum and the minimum set and
then computes the average.

3. Transmits each packet with a 1 s delay.

Let us look at each experiment in detail [7].

3.4.1. Experiment 1
In this experiment, we compare the RTT’s of a sim-

ple PODOS protocol with a typical socket read/write
call of the TCP/IP. The experiment transmits 10 sets of
100 packets each. Each packet is 64 bytes long and is
transmitted with a 1 s delay. Fig. 3 depicts the perfor-
mance gain achieved. From the graph it is evident that
PODOS protocol out-performs traditional networking
protocol and is almost twice as fast. The RTT differ-
ence is substantial at higher network loads. The graph
depicts RTT’s for loads up to 35–40%. This is be-
cause 35–40% network load is a substantial network
load and the system is saturated at that load. In nor-
mal circumstances, the multiprogramming level would
further increase the RTT thus making the load sub-
stantial [7]. The RTT for the PODOS protocol is given
in Eq. (1).

TPODOS= Tbuild-PODOS-pkt + Txmit + Tpropagation,

Txmit = Talloc-net-buff + Tbuild-Ethernet-pkt + Tdrv-xmit,

Tpropagation= Tforward-propagation+ Tbackward-propagation

+Tfilter. (1)

The RTT for a PODOS packet is the sum of the times
taken to build a PODOS packet, build an Ethernet
packet, the driver transmit time (the time taken by the
driver to place the packet on the physical media after
its transmit function has been invoked), and the prop-
agation time. The propagation time includes forward
and backward propagation and the filter time. The
forward propagation is the time taken for the packet
to reach its destination after it has been placed on
the physical media. The backward propagation time
includes the time taken by the passive end to filter out



S. Vazhkudai et al. / Future Generation Computer Systems 18 (2002) 335–352 341

Fig. 3. Comparison between PODOS RTT and RTT using regular sockets.

the PODOS packet and reply. The filter time is the time
taken by the filter, installed in the datalink layer, to ex-
tract PODOS packets. Of these, the propagation time
is entirely dependent on the network load and the rest
depend on the multiprogramming level of the system.

3.4.2. Experiment 2
In this experiment, we compare the RTT’s of

three protocols, the TCP/IP, the simple PODOS pro-
tocol, and PODOS with Transmission-Groups. The
PODOS with Transmission-Groups is a variant of
the PODOS protocol that transmits PODOS packets
across multiple interfaces. In this case, we vary the

Fig. 4. Comparison between PODOS RTT and RTT using regular sockets with minimal load on secondary interfaces.

network load only on the primary interface and main-
tain minimal load on the other two interfaces. The
Transmission-Groups-based communication is a sim-
ple divide-and-conquer strategy:

TRTT = TPODOS+ Ttgcomm. (2)

It divides the tasks in hand equally among interfaces
thereby sharing load and enhancing system through-
put.

Fig. 4 is a graphical representation of the results
of this experiment. The T(tgminload) is the aver-
age RTT when transmitting packets across multiple
interfaces, with varied load on the primary interface
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and minimal load on the other two interfaces. In
Fig. 4, we can observe the drastic performance gain
with Transmission-Groups. We can see how the
Transmission-Groups-based PODOS protocol per-
forms consistently at higher loads. It is almost three
times faster than the regular networking protocol.
Transmitting PODOS packets across multiple inter-
faces reduces the load on a particular interface and
thus decreases the RTT of packets.

The RTT is given in Eq. (2). The RTT is the time
taken to transmit a regular PODOS packet plus the
time taken by the Transmission-Group algorithm. The
Transmission-Group algorithm usually takes around
100–150�s, which is very less overhead when com-
pared to the performance gain [7].

3.4.3. Experiment 3
This experiment is similar to the previous one

except in that, we compare only the PODOS vari-
ants, namely the simple PODOS, the PODOS
with Transmission-Groups (minimum load on sec-
ondary and tertiary interfaces), and the PODOS with
Transmission-Groups (approximately same load on
all interfaces). In this case, we vary the network load
on all interfaces.

We can observe the stability of the T(sameload) pro-
tocol at high loads, 20, 25, and 30%. The RTT varies
by very meager amounts. Fig. 5 depicts these results.
From Fig. 5, it is evident that even when the load on all
interfaces is approximately the same, it is profitable to
distribute packets among interfaces rather than trans-
mitting them on a single highly loaded interface.

Fig. 5. Comparison between PODOS RTT and RTT using regular sockets with same load on all interfaces.

Let us consider the 30% load case. The primary in-
terface was already 30% loaded and transmitting an-
other 1000 packets resulted in an RTT of 2524�s.
This loads further a highly loaded interface. Whereas
dividing the 1000 packets among three interfaces and
transmitting 333 packets on each interface resulted in
an RTT of 1239�s which is less than half the RTT of
a simple PODOS. Thus Transmission-Groups is ben-
eficial even in a heavily loaded case.

From Figs. 3–5 we can derive the relation, de-
picted by Eq. (3), that holds under all network loads.
The relation that is of more interest to us is the
Transmission-Groups at approximately same load
and the socket. From the above graphs, it is obvious
that the RTT of Transmission-Groups would be much
better than that of a socket read/write [7].

Ttgcomm-minload

< Ttgcomm-sameload< TPODOS< Tsocket. (3)

3.4.4. Experiment 4
This experiment is to measure the connection es-

tablishment time of the PODOS protocol. We further
compare this to traditional socket connection estab-
lishment in TCP/IP. Connection establishment in PO-
DOS implies making a CDT entry at the active end,
transmitting the packet, making a CDT entry at the
passive end and responding back to the active end.
This signifies a virtual circuit. We further time the read
and write of the first 1500 byte packet through this
circuit. In traditional socket connection, this involves
the following system calls: socket( ), bind( ) and
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Fig. 6. Comparison between PODOS connection establishment time and socket connection establishment time.

connect( ). From Fig. 6, we can observe that T(cdt) is
very stable and consistent at network loads.

The connection establishment in PODOS includes
the server setup time too, whereas in typical socket
connections, the server is assumed to be listening for a
connection and thus server setup time is ignored. And
server setup time typically takes around 500–800�s.
Further, the results above depict connection establish-
ment without Transmission-Groups. Thus, in reality,
the performance gain is much more.

The RTT is given in Eq. (4).

TRTT = TPODOS+ TCDT. (4)

A typical CDT entry creation, under an optimal mul-
tiprogramming level takes around 200�s, which is
lesser than standard connection setup time.

4. The PDFS

In this section, we will discuss the implementation
of the PDFS [10]. We will consider the following:

• distributed file systems;
• motivation for PDFS;
• design and overall structure;
• architecture and implementation;
• trace of a remote file fetch;
• performance.

4.1. Distributed file systems

There are a number of distributed and network file
systems, each with its own design goals. In this sec-

tion, we will briefly look at two of them, the NFS [11]
and Coda [12].

NFS is a network file system by Sun Microsystems,
designed for a network of computers. NFS works
in both LAN and wide area network (WAN) envi-
ronments. NFS uses a standard networking protocol
called Remote Procedure Calls (RPCs) [8], which is
built on sockets and UDP [8]. NFS is based on the
virtual i-node architecture, wherein a virtual i-node is
constructed for each remote file. NFS uses state-less
servers that increase their reliability but make them
slower. NFS performs read-aheads and entire file
caching [11].

Coda is a distributed file system from CMU. It uses
the standard TCP/IP protocol. Coda is primarily in-
tended to be a wide area distributed file system and
implements an extensive caching mechanism for mo-
bile and disconnected operation [12].

Before discussing the PDFS let us briefly look at
the communication protocol it uses, thereby justifying
the need for yet another distributed file system.

4.2. Motivation for PDFS

Since PODOS employs a high-speed communica-
tion mechanism, we needed a file system that could ex-
ploit this feature of PODOS. The network file systems
discussed in Section 2 are based upon the traditional
TCP and UDP protocols that were primarily designed
for WANs. For example, the NFS uses a networking
standard called RPC, which is built upon UDP (TCP
versions are available too). RPC [13] is another layer
over traditional networking protocol, which definitely
makes programming simpler and the system more
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reliable, but also increases the latency time. Added to
this, NFS uses state-less servers [11], which would
make it reliable but slower. We basically needed
to minimize the layer overhead and thus needed
a file system that could function in such an envi-
ronment. Further, we realized that an efficient file
system could be designed and implemented with
high-performance benefits. We required a file system
for a cluster in a LAN. This led to the evolution of
the PDFS.

Let us look at the design and implementation of the
PDFS. In this section, we will discuss the PDFS, its
architecture and implementation.

4.3. Overall structure

Each node in the PODOS cluster is named aslinus1,
linus2, linus〈n〉. Every node has its own unique files
system, i.e., PODOS does not strive to provide a uni-
fied file system, but tries to provide a high speed and
efficient environment for sharing resources in other
nodes. The following sections discuss a few impor-
tant design decisions, which would dictate the manner
in which the PDFS would be used and would behave
[10]. They are the following:

• naming scheme;
• assumed mounts;
• lazy update semantics.

4.3.1. Naming scheme
Every distributed file system has to have a naming

convention that would help to resolve local and remote
file names. Traditionally, distributed systems have fol-
lowed three approaches [4]:

1. machine name+ path name of the file;
2. mounting remote file systems onto local file hier-

archy;
3. a single unified name space.

In PODOS, we have adopted a hybrid approach be-
tween options 1 and 2. Remote file names have to be
specified along with their machine names, but these
machine names are tightly integrated into the local
file system hierarchy as directories in order to fa-
cilitate easy access to remote files using traditional
file system structure. For example, if “miaow” is a
file that resides in the root directory of the node,

“linus4”, then this file can be accessed from any other
node by simply specifying, “/linus4/miaow”, where
“ linus4” is a directory under “/” in the local file sys-
tem hierarchy. Typically, this directory could reside
anywhere in the local file hierarchy. Hiding the ma-
chine names simply involves another layer of map-
ping (mapping machine names to local directories). It
is a design tradeoff between performance and trans-
parency [10].

4.3.2. Assumed mounts
Every node in PODOS can access files and di-

rectories in every other node by specifying the ma-
chine name, followed by the path. Every node in the
cluster is assumed mounted in every other node. No
explicit mounting is necessary as required in NFS.
NFS spends a lot of time creating virtual i-nodes (vn-
odes) for each remote file. This is essential for the
design goals of NFS (stresses on reliability, supports
wide-area mounts, etc.) [11].

When an access is made to a file, “/linus4/miaow”,
the PDFS, contacts the RM to check the validity of
the node, “linus4”. The RM in turn contacts the SST
to check if “linus4” is a valid host and if it is alive
and finally returns its results to PDFS. If RM returned
a positive result, then the PDFS proceeds to fetch the
file. Thus, the PDFS attempts to blend-in the remote
file systems into the local file system hierarchy by
treating machine names as implicit directories, and
interpreting them appropriately. The entries “/linus4”,
“/ linus5”, etc., are created as directories in each node
at startup.

4.3.3. Lazy update semantics
Typical distributed systems follow one of the fol-

lowing file sharing semantics [12]:

1. Unix semantics, where updates are visible imme-
diately.

2. Session semantics, where updates are visible only
after the file is closed.

Following the Unix semantics is very costly in a dis-
tributed scenario. Thus, we employ a lazy update se-
mantics, which is a slightly modified version of the
Unix semantics, wherein updates are made visible af-
ter a certain size (typically 1 K) [10].

Let us look at the architecture and implementation
of the PDFS.
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Fig. 7. PDFS architecture with kernel threads.

4.4. Architecture

In this section, we will discuss the following [10]:

• mapping i-node operations;
• kernel resident state-full threads;
• read ahead caching.

These features help in making the PDFS robust and
highly tuned towards performance.

4.4.1. Mapping i-node operations
The PDFS is tightly integrated with the Linux file

system and exploits its architecture for performance
benefits (Fig. 7). PDFS uses the same file access
primitives for both local and remote file operations.
The PDFS exploits the Linux operating system’s
virtual file system (VFS) [5] interface to implement
remote file access. The VFS is an elegant mechanism
that is responsible for Linux file system’s flexibility
and performance. The Linux operating system sup-
ports multiple file systems using the VFS interface.
The VFS layer provides hooks and generic interfaces
which specific file systems could use. Specific file
system implementations (ext2, MSDOS, etc.) imple-
ment these interfaces and can be plugged into these
hooks. We have modified the VFS layer to incorpo-
rate support for remote file fetches. This is achieved
through the i-node operations mapping technique. The

i-node operations mapping, done at the active end,
is a technique with which the file operations of an
i-node are mapped to methods that implement remote
file accesses. Let us look at how this is accomplished.

Typically, in local file accesses, the VFS layer ob-
tains the i-node of the file being fetched. This i-node
is of type,struct inode∗. This structure contains all
necessary information about the file, its creation time,
modification time, etc. It also contains the VFS ele-
ment, i op, of type struct inodeoperations∗. It con-
tains an element,default file ops, which is of type,
struct fileoperations∗. This structure contains func-
tion pointers, which hold the addresses of the file sys-
tem specific functions [5].

Once the VFS obtains the i-node, it simply makes
a call inode->i op->defaultfile ops->open(inode,
f) which invokes the file system specific open call.
Inside the VFS layer, we map these i-node opera-
tions to functions that perform remote opens, reads
and writes. The remote operations in the PDFS are
performed by pfs open( ), pfs read( ), pfs write( ),
and pfs close( ). The mapping is accomplished by:
inode->i op->defaultfile ops-open=&pfs open; this
statement sets the function pointer to hold the address
of thepfs open( )function. Read and write pointers are
set as above (seeks could be done similarly). In short,
the PDFS uses the VFS architecture to channel remote
file operation through traditional i-node structures.
Thus, the advantages to this approach are the folowing:

1. speed;
2. tight Integration with traditional file system;
3. same primitives for local and remote accesses.

We will discuss more about the functionality of the
above-mentioned methods in Section 4.5. Let us look
at kernel threads [10].

4.4.2. State-full kernel threads
A key design decision of the PDFS is the use of

kernel resident state-full threads. These threads are
specialized kernel-level worker-bees of the PDFS,
started for each remote file request. These state-full
threads reside at the passive end. State-full threads
maintain the state information of the open files, like
the file descriptor position. The use of state-full
threads provides better performance and shorter mes-
sages over NFS that uses a state-less server. State-less
servers are typically more fault-tolerant but are slower
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and result in longer messages (as filename and po-
sition in the file has to be sent with each read/
write request).

The CM, upon receipt of a file fetch request initi-
ates the PDFS. The PDFS spawns a thread (called “Yet
Another PDFS”) and keeps it in the kernel space. The
reason behind having a kernel thread is to improve
performance by minimizing the number of context
switches that would result otherwise. The main PDFS
thread goes back to listening for further requests after
creating the thread. Thus, it behaves like a concurrent
server in processing remote requests. From then on,
the kernel thread takes the responsibility of process-
ing further requests with reference to the file. Once
its properties are set, it opens the file using the local
system’s file-primitives. After opening the file the ker-
nel thread returns an acknowledgement (and the first
block if read operation) and suspends itself. It wakes
up whenever further requests to that particular file ar-
rive, processes it and goes back to suspended state.
The kernel thread remains alive until the file is closed
at the active end. When the file is finally closed at the
active end, the kernel thread closes the file locally and
performs an exit [10].

4.4.3. Read-ahead caching
The PDFS employs read-ahead caching to further

improve the performance. It is traditional in distributed
file systems to perform read-aheads. The PDFS fetches
data from the remote system in terms of 1 K blocks
and buffers it in the CDT. As long as the length of
the data requested is less than the length of the data
in the CDT, the PDFS avoids making a remote fetch.
The moment the length requested is greater than the
length of the buffered data in the CDT, a 1 K block is
fetched from the remote end. Read-aheads are typical
in file systems (even etx2 performs read-ahead; NFS
performs read-aheads and entire file caching). In gen-
eral, read-aheads work on the principle that most file
accesses are sequential and drastically improve the file
system performance [14].

Let us look at the implementation in detail by ana-
lyzing a remote file fetch.

4.5. Tracing a remote file fetch

In this section, we will trace the execution of
a remote file fetch, thereby discussing the various

components of the PDFS and their interaction with
the CM and the RM. The protocol used by PDFS
for peer-to-peer communication (PDFS–PDFS) is as
follows [10]:

• The open call at the active end
◦ The active end initiates the remote request using

an open system call in which it specifies the file-
name along the remote host name. For example,
“ /linus4/miaow”.

◦ The PDFS component in the VFS layer
(pfs open) contacts the RM, to check to see if
“ linus4” is a valid host in the cluster. The RM
contacts the System State Table (SST) (Table 5)
to verify details about “linus4”.

• The fd-cdt map
◦ If “ linus4” is a valid host in the cluster, the RM

returns a TRUE value. The PDFS component in
the VFS layer then initializes aremfstructure, of
type, struct remotefile ∗. The remotefile struc-
ture contains the following:

struct remotefile {
. . . . . . . . .

char ∗host;
char ∗filename;
/∗ the CDT index through which
the remote file is accessed∗/

int cdt active ind;
};

◦ This structure is stuffed into theprivate data
field of the file structure. All open files in the
Linux operating system are maintained in a dou-
bly linked list, each node of which is of type
struct file ∗. The structure contains the foll-
owing [5]:

struct file{
. . . . . . . . . . . . . . . . . . . . .

struct file∗f next,∗f prev;
struct inode∗f inode;
struct fileoperations∗f op;
void ∗private data; /∗ needed for tty

driver, and maybe others∗/
};

◦ This structure is typically allocated by the open
call and subsequently used by read and write calls
to refer to the specific file.
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◦ The PDFS builds a packet and then invokes the
CM to make a CDT entry and transmit the packet
to the remote end. Once it makes an entry, it
copies thecdt active ind to remf->cdt active ind
and returns. This index is important because, it
saves the search time for subsequent read and
write calls, i.e., read and write calls can directly
map onto the CDT entry to refer to the file and
not search through the table. In short, the file
descriptor is directly mapped onto the CDT entry.

• Passive end’s response to open
◦ At the passive end, the CM makes a CDT entry,

establishes a virtual circuit and then invokes the
PDFS.

◦ The PDFS spawns a kernel thread to process the
file request and returns to listen to further re-
quests.

◦ The thread spawned opens the file and returns
the CDT index and its GPID (address of the
node+ local PID) (Fig. 10) along with the mes-
sage (also returns the first block of data if it is a
read operation) and suspends itself.

• Read/write calls at the active end
◦ Subsequent read/write calls at the active end

go through thepfs read and pfs write methods
in the PDFS. The read/write calls directly map
onto the CDT entry corresponding to the file
based on thecdt active ind in the remotefile
structure.

◦ The pfsread and pfswrite access the CDT en-
tries to fetch and write data. The pfsread checks
to see if the data in theread aheadbuff (in the
CDT) is greater than the requested length. If so, it
copies the data from the CDT to the USER space
into the read buffer specified along with the read
call.

◦ Writes are typically stored in the CDT and
flushed to the remote end after the CDT buffer
reaches 1 K. In the case where the requested
length is greater than the CDT buffer length,
the PDFS builds a packet (requesting for a 1 K
block), registers it with the CDT, and invokes the
CM for transmission and blocks for the arrival
of the data.

• Passive end’s response to read/write
◦ When the message arrives at the passive end, the

CM realizes that the packet is on its way to the
specific kernel thread and wakes it up.

◦ The thread reads or writes data, builds a packet
and registers it with the CDT and invokes the CM
to transmit the message.

◦ It then suspends itself waiting for further requests
and remains alive until the file is closed.

• Active end closes the file
◦ After the active end is done processing, it closes

the file by making aclosecall, which is translated
into a pfs closecall, which sends a message to
the kernel thread at the remote end directing it to
exit.

In the following section, we will discuss the
performance results of the PDFS.

4.6. Performance

In this section, we present the preliminary perfor-
mance results obtained by analyzing the PDFS against
NFS, network file system. All experiments were con-
ducted with the following setup [10]:

1. Using Pentium 133 MHZ machines, with 32 MB
of RAM, interconnected with Ethernet [9] adapter
cards (16 and 8 bit cards).

2. With default NFS block size of 1 K.
3. In the case of NFS, the time taken to fetch the file,

the first time is considered.
4. All time values presented are averaged millisec-

onds.

Let us look at the experiments conducted [10].

4.6.1. Experiment 1
In this experiment, we compare the average time

taken by NFS and PDFS to fetch files of different
sizes. We considered standard file sizes of 10 K, 50 K,
l00 K, 500 K, and 1 M. The graph depicts the results.
The graph (Fig. 8) uses a logarithmic scale for the
y-axis, to clearly show the performance gain achieved
for all file sizes. The PDFS consistently performs bet-
ter than NFS for all file sizes. Usually, in file systems,
most files accessed are less than or equal to 10 K [14].
PDFS has a considerable performance gain of around
30–40 ms over NFS for this file size.

The time taken to fetch files are calculated as fol-
lows: in general, the time taken, by an active end, to
read or write a block is the sum of the time spent
by the kernel in the VFS layer and the suspend time.
The suspend time is the sums of the dispatch time, the
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Fig. 8. Comparison between file fetch times in PDFS and NFS.

propagation time and the thread processing time. The
dispatch time is the sums of the time taken to build
a PODOS packet, the time consumed to make a CDT
entry and the time taken to transmit the packet and
is usually around 200–300�s. The propagation time
is the sums of the forward propagation, the backward
propagation and the time taken to filter out PODOS
packets at both active and passive ends. The propa-
gation time varies with network load. The transmit
time is the time taken by the driver to allocate net-
work buffers, the time taken to build Ethernet packets
and the time taken to place the packet on the media.
This is a usually around 400�s. The thread process-
ing time is the time taken to wake-up both the active
end process (that made the request) and the passive
end thread, the time taken by the thread to make a lo-
cal read/write and its dispatch time. This is a couple
of hundred microseconds.

4.6.2. Experiment 2
The next couple of experiments were designed to

test the effective utilization of the high-speed commu-
nication bed, by the PDFS. In the previous experiment
all file fetches were made on the same network inter-
face. In this experiment, the PDFS makes use of the
Transmission-Group feature of the CM, wherein vir-
tual circuits are multiplexed across multiple network
interfaces [7]. To test this further, we studied the per-
formance of this setup under varied network loads.
These results were compared against NFS, which

Fig. 9. Comparison between file fetch times in PDFS and NFS at
10% network load.

makes all file fetches on a single network interface (im-
material of the load). The result under 10% network
load is depicted in Fig. 9. Since the CM distributes
virtual circuits uniformly using a round-robin mecha-
nism, the overall PDFS performance is improved when
compared against NFS. At all loads, the PDFS con-
sistently has a 30–50 ms gain over NFS for file sizes
around 10 K, a 100–200 ms gain for file sizes around
50 K, a couple of hundred microseconds gain for file
sizes around 100 K. When clustering activities tend to
be intense these are considerable performance gains,
which would improve overall system throughput.

Listed below (Table 4) are the average times, in mil-
liseconds, for the system calls: open, read and close.
These were computed by studying the above results
[10].

5. Global IPC

GIPC is the basis for remote program execution in
PODOS. This section discusses the following:

• GPID;
• design;
• implementation;

Table 4
PDFS seek times

NFS PDFS

Open 2.4 1.5
Close 0.052 0.03
Read 10 6
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Fig. 10. GPID structure.

• remote process execution;
• performance.

5.1. Global process identifiers

A GPID is a unique identifier for a process in the
entire cluster. When a process from one host com-
municates with a process on another host or a group
of processes from different hosts in the cluster, there
should exist a mechanism to uniquely identify the pro-
cess among group of processes. The PID of a process
is unique only in its local host. Thus, we need a GPID
(Fig. 10).

GPID in PODOS is 64 bits (8 bytes) long, of which
the least significant 2 bytes are for the local PID; the
next 2 bytes are for a sequence number; first 4 bytes
are for the host ID. The GPID of a process is also part
of its TaskStructure in Linux kernel, thus whenever
a process is created in PODOS it receives a GPID.
The sequence number is a global number that will be
maintained by the kernel and incremented every time
the kernel boots up. This avoids the sequence number
mismatch and renders GPID unique in spite of system
crashes, or reboots.

5.2. Design

In this section, we will look at some of the key
design issues involved in the GIPC component.

5.2.1. A file system interface
A primary concern while designing a distributed

system is to limit the number of services specific to
remote requests. As mentioned before, no new system
call or library functions are added in order to provide
an interface to PODOS services. This has been the
principle behind the design of GIPC.

The GIPC component, similar to PDFS, uses file
manipulation functions as its interface, although dif-
fering in its signature and the semantics of arguments
passed. The system call used to establish a GIPC con-
nection between the active end and passive end service
thread is the OPEN call. We will discuss further about
these in the implementation section. Below are a few
reasons for using a file system interface for GIPC.

• Preserve distributed system standards. In traditional
distributed systems, inter-process communication is
achieved using data structures called ports. When
user requests a new port, a descriptor to the port
structure is returned. PODOS follows a similar strat-
egy, although replacing ports with CDT entries. The
index to the CDT entry is abstracted within the file
descriptor returned by OPEN system-call.

• Exploit i-node structure. GIPC uses the i-node struc-
ture of Linux, similar to PDFS. We will discuss the
subtle differences in the implementation section.

5.3. Implementation

As mentioned above, the main goal of GIPC is to
provide user programs with the capability of being
able to execute processes on remote hosts. At the same
time the entire mechanism is made transparent to user.

Let us look at the implementation issues involved
in achieving this.

5.3.1. Mapping i-node operations
The GIPC implementation is similar to that of

PDFS, except that the protocols are slightly different.
Both GIPC and PDFS use the OPEN system call to ac-
cess the kernel space, to establish a virtual circuit, and
also to start the service thread at the passive end. The
OPEN system call accepts three arguments, namely:
file name, mode and flags. The difference in the two
protocols lies in the semantics of the signature.

For a GIPC service the arguments of the OPEN
call map to a remote hostname (as a filename), and a
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constant OGIPC or 4 (as the mode). The flag argu-
ment is used for group communication and differen-
tiating between local and remote files at the passive
end. For example, invokingOPEN(“/ linus4” O GIPC)
from the host “linus3” will open a virtual circuit from
“linus3” to the host “linus4”. If the mode is OGIPC,
then the open call sets the “open function pointer”
in file operations field of i-node togipc openand in-
vokes it. In function gipcopen the fileoperations field
is replaced by thegipcfop, enabling further read and
write calls in the user program to invokegipc read
andgipc write functions. The definition of gipcfop is
as follows:

struct fileoperations gipcfop= {NULL,

&gipc read, &gipc write, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL};
This facilitates faster access to functions that per-

form remote actions and also provides a clean inter-
face to the user.

5.3.2. Kernel threads
Similar to PDFS, GIPC uses kernel threads at the

passive end to handle remote requests. The functional-
ity of the thread in this case is slightly different, in that
it execsthe program specified in the gipcwrite oper-
ation. This process of using kernel threads expedites
the remote execution and increases the performance
of PODOS.

5.4. Remote process execution

In this section, we will discuss the following:

• tracing a GIPC request;
• local and remote programs;
• input, error, and results.

5.4.1. Tracing a GIPC request
The protocol for GIPC is as follows:

1. The active end initiates the service using OPEN
system call passing the remote host name as argu-
ment.

2. The remote request for exec service goes through
the kernel and reaches GIPC, which will allocate a
CDT entry and dispatch the message to the remote
host using CM. The OPEN system-call returns after

sending the message and before a reply from its
remote host.

3. The remote GIPC receives the service request and
it invokes the service thread that will send an ac-
knowledgement back to active end, sending its
CDT index and GPID through the message.

4. The active end CM then receives a reply packet
containing the GPID of the service thread and the
CDT index of the passive end, thereby establishing
a virtual circuit.

5. The active end process sends the name of the pro-
gram to be executed, the program arguments and
also the program environment using the WRITE
system call.

6. Again, this request reaches the GIPC, which checks
whether an acknowledgement for the OPEN was
received. If not, it blocks the WRITE system call
until an acknowledgement arrives or until a time-
out value. If the virtual circuit has already been es-
tablished, it dispatches the write request to remote
GIPC.

7. On write request the remote service thread, which
was initiated by the open call, sets up an environ-
ment for the user program and execs it.

8. Once the program terminates, the passive end dis-
patches the results and the active end closes the
virtual circuit.

5.4.2. Local and remote programs
A detail that needs to be mentioned is the location

of the program to be executed. There exist two possi-
bilities: the program could already reside in the remote
machine, in which case a simple exec would suffice.
The more complex scenario is when the program has
to be dispatched to the remote end. These two cases
are handled by incorporating a flag in the OPEN call
that would differentiate them.

The following piece of code illustrates the first case
where the “a.out” program resides in the remote end.
The OPEN call needs no special flag; just the regular
O GIPC would suffice.

f = open(“/linus4”, O GIPC);
n = write(f, “a.out” , 7);
read(f, buff, 80);

The results are obtained by performing a read on the
file descriptor that maps to the virtual circuit between
the two ends.
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The other case is when the program to be executed
has to be fetched from the active end.

f = open(“/linus4”, O GIPC, REMOTE);
n = write(f, “/linus3/a.out” , 14);

This flag indicates to the passive end that the file spec-
ified by the subsequent WRITE call has to be fetched
from a remote machine. The machine on which it re-
sides precedes the file name. Thus, in our case, before
executing the program it is fetched from “linus3” by
the PDFS component at the passive end. This would
initiate a new virtual circuit for the file fetch and fol-
lows the protocol explained in PDFS.

The code fragments shown above would eventu-
ally become part of a scheduler that automatically
dispatches jobs based on the load on a particular
machine.

5.4.3. Input, error, and results
In order to obtain the output of remotely executed

programs, applications in PODOS are linked to a spe-
cial library that handles remote I/O. These libraries are
preinstalled in all PODOS machines. The library func-
tions hide the remote I/O handling mechanism from
the application.

We saw earlier that the CDT index of the virtual
circuit is passed as an environment variable to the
program. Library functions access the environment to
obtain the index and thus write and read from the CDT
buffers. This way, results are communicated back to
the active end.

5.5. Performance

The preliminary performance comparison results
against “rsh” [5] and “REXEC” [15], from Berkeley,
are quite promising, providing at least 30–40 ms per-
formance gain. Launching a null program and obtain-
ing results with GIPC typically costs around l30 ms,
whereas REXEC results in 160 ms.

6. Resource manager

The resource manager maintains the system state in-
formation of the PODOS cluster. The RM component
in every node has a SST that maintains information
about every other node in the cluster.

Table 5
System state table

Struct systemstate{
Char hostname[20]; The name of the node
Struct interfacestats if stats[3]; Hardware addresses
Int nr running; Number of processes running
Int nr tasks; Number of processes
Float loadavg[4]; Load average
Int idle time; Idle time
Unsigned long memfree; Total memory free
}

The information exchange is achieved using a pe-
riodic update mechanism, wherein a timer in the RM
expires after certain duration invoking an update. A
fragment of the information exchanged is given in
Table 5. The RM in a particular node builds a PODOS
packet of the information and uses the CM to trans-
mit it. While having to receive information about other
nodes in the cluster, the CM filters it out as a packet
that is destined for the RM. The RM packets can be
classified under the ephemeral category of CDT en-
tries [7]. A key attribute in RM is the update duration,
which can only be decided based on the system per-
formance. Current duration is around 5 s.

We have seen in the previous sections as to how
this information is used by PDFS and GIPC to check
if a host is valid and alive. The information would
be further used efficiently by automatic scheduling
strategies for load sharing.

7. Conclusions

In this paper, we have dealt with the design and im-
plementation of PODOS. We have described the ar-
chitecture of various components of PODOS. These
include: a custom communication protocol that em-
ploys a round-robin Transmission-Groups mechanism
to multiplex packets across multiple network inter-
faces and also provides a CDT as an interface for
other PODOS layers such as PDFS, RM, and GIPC;
a distributed file system, PDFS that builds an effi-
cient file-sharing environment on top of the high-speed
communication subsystem; a GIPC mechanism that
allows remote program execution.
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