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Abstract

This paper defines meta-applications as large, related collections of computational tasks, designed to achieve a specific
overall result, running on a (possibly geographically) distributed, non-dedicated meta-computing platform. To carry out such
applications in an industrial context, one requires resource management and job scheduling facilities (including capacity
planning), to ensure that the application is feasible using the available resources, that each component job will be sent to an
appropriate resource, and that everything will finish before the computing resources are needed for other purposes.

This requirement has been addressed by the PAC in three major European collaborative projects: PROMENVIR, TOOL-
SHED and HPC-VAO, leading to the creation of job scheduling software, in which scheduling is brought together with
performance modelling of applications and systems, to provide meta-applications management facilities. This software is
described, focusing on the performance modelling approach which was needed to support it.

Early results from this approach are discussed, raising some new issues in performance modelling and software deployment
for meta-applications. An indication is given about ongoing work at the PAC designed to overcome current limitations and
address these outstanding issues. ©1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Meta-applications may be defined as large, re-
lated collections of computational tasks, designed
to achieve a specific overall result, running on a
(possibly geographically) distributed, non-dedicated
meta-computing platform. The PROMENVIR tool
is a typical example of such a meta-application,
which performs probabilistic analysis of mechani-
cal systems, using Monte Carlo simulations [1]. The
meta-application consists of a large number of indi-
vidual solver runs (e.g. NASTRAN), and the statisti-
cal analysis of the collective output results provides
insights into the effects of uncertainty on manufac-
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turing properties (e.g. stresses). Other examples of
meta-applications are given in Section 2.2.

A meta-computing platform generally consists of a
collection of heterogeneous, non-dedicated computing
resources, which may include networks of UNIX or
NT workstations as well as multiprocessor platforms
(e.g. SGI PowerChallenge, IBM SP2). These resources
may reside within a company Local Area Network
(LAN) or WAN environment (distributed across the
Internet).

To carry out meta-applications in an industrial con-
text, one must exploit large-scale, coarse-grain paral-
lelism in order to obtain results in a useful time. Meta-
computing offers a way to achieve this, by exploiting
idle time on a very large collection of computing re-
sources on a corporate scale. Typically, the application
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will run during silent hours, in batch-mode, therefore
resource management and job scheduling facilities are
needed to provide transparent access to the computing
resources.

However, to undertake a meta-application, one must
also ensure beforehand that it is feasible using the
available resources, since no-one can afford to commit
their (non-dedicated) computer systems on a corporate
scale for an indefinite time. In particular, it is essential
that each component task in the meta-application will
be sent to an appropriate resource where it can run
without running out of disk-space, etc, so that every-
thing will finish within silent hours before the com-
puting systems are needed for other purposes.

This requirement has been addressed by the PAC
in three major European collaborative projects:
PROMENVIR, TOOLSHED and HPC-VAO, lead-
ing to the creation of software system in which job
scheduling is brought together with performance
modelling of applications and systems to provide
meta-application management facilities. The aim of
our approach is to exploit models of performance:
• to predict the duration of such applications, so that

users can ensure that they fit within the available
resources, and

• to ensure that each job is sent to an appropriate host,
where it will run sufficiently quickly, and without
running out of local resources.
The meta-application management software devel-

oped by PAC has been used to run some large-scale
applications, including some tests running over the In-
ternet across several secure sites, the results of which
are reported elsewhere [2]. The purpose of this paper
is to expand on the performance modelling require-
ments for ‘predictive resource management’, to show
how these have been addressed for a number of ap-
plication software packages, and to present some en-
hancements which are the subject of ongoing research
at the PAC.

2. Meta-application manager

2.1. Overview

The PAC’s meta-application manager incorporates
a number of components and features:

• A basic resource management system, incorporat-
ing system load monitoring and task execution dae-
mons. This enables the meta-application manager
to be used even where no network resource man-
agement facilities are available.

• Interfaces to more sophisticated commercial re-
source management systems: currently LoadLeveler
and LSF.

• A resources database, describing the available
machines, networks and storage devices, including
capacity and performance parameters.

• A graphical system definition and administration
interface, enabling the resources data to be de-
fined and updated, and the various daemons to
be launched. A library of machine performance
parameters is available, so that the system can
automatically set these for most machines detected.

• The core meta-application task allocator, which pro-
cesses descriptions of meta-application task sets,
and assigns them to the available resources.

• A database of application performance models,
which are used by the task allocator in order to
make its decisions.
The software acts as a server, to which meta-applica-

tions can connect to exploit its facilities. To enable
this, an Application Programming Interface (API)
is provided, enabling meta-application developers to
build up task graphs, initiate meta-application task
allocation processes, extract data on the projected
performance at the task or application level, and ini-
tiate execution. The meta-application manager does
not itself include a graphical interface to these fea-
tures, since they are typically integrated closely with
meta-application itself, but a command-line version
of the API is available.

Fig. 1 shows the overall architecture of the
meta-application manager, as described above.

2.2. Applications of the meta-application manager

The PAC’s meta-application manger software is be-
ing used in several research and development projects,
whose status is as follows.

The PROMENVIR project [1,3] finished at the
end of 1997, having achieved its goal of providing
a meta-application software package for probabilis-
tic analysis through simulation of mechanical sys-
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Fig. 1. Meta-application manager architecture.

tems. Typical applications include failure analysis
for complex mechanical systems (e.g. space mission
components and processes, turbine components, etc)
and the effect of uncertainty in such systems (e.g.
probabilistic crash analysis, etc).

The PROMENVIR meta-application conducts a
Monte-Carlo search of the uncertain parameter space,
generating a task-graph consisting of a number of
‘shots’, each of which consists of a mechanical sim-
ulation. PROMENVIR comes with a generic user
interface enabling probabilistic features to be defined,
based on a single specimen set of simulation data
files. A library of probabilistic material parameters
and generic distribution functions is available, and
sophisticated data processing facilities for statistical
analysis of the simulation results.

In late the 1997, the meta-application manager was
used within PROMENVIR to analyse the behaviour
of a satellite antennae deployment, to determine the
ways in which the planarity of the antennae depended
on uncertainties of manufacture. Deviations from
the designed planarity affect the performance of the
antennae, and in extreme cases make communica-
tion with the satellite impossible, which is obviously
critical to satellite operation. The analysis was con-
ducted over the Internet, using a pool of over 100
non-dedicated workstations across eight sites, some
of which were secure, one of the first large-scale,
industrial meta-applications to be carried out over the
Internet in Europe [2].

An earlier version of the PROMENVIR envi-
ronment, which incorporates some meta-application

manager components (although not yet includ-
ing performance models), is currently distributed
commercially through BLUE Engineering in
Turin.

The TOOLSHED project [4] is still ongoing
and will finish later this year. Toolshed has cre-
ated a STEP-based parallel simulation environ-
ment for commercial mesh-based analysis codes.
TOOLSHED incorporates an activity management
facility which acts as the meta-application driver,
a data-management facility (based on the DEVA
software from Rutherford–Appleton Laboratories),
a range of mesh generation and partitioning tools
(from NUMECA, Bertin and RAL), and data ex-
traction and visualisation (including, run-time visu-
alisation) based on GLView from Sintef/Viewtech.
The meta-application manager forms back-end of
the activity management facility, which is used to
define and manage parametric studies or one-off
analysis processes including meshing, simulation
and post-processing. Three example applications
are being addressed in the TOOLSHED project: a
non-linear structural analysis of dams under differ-
ent load conditions using the PARNASO code from
ENEL, an electromagnetic analysis of airframes using
the AS-THETIS code from Aerospatiale, and a diesel
engine CFD analysis carried out by Ruston Diesels
using the CALIFE code from Bertin.

The TOOLSHED system has only recently been
installed at the end-user companies, so no industrial
test results are yet available. However, demonstrations
of the environment with the CALIFE code have been
made at Ruston Diesels, in which performance predic-
tions for a previously unseen simulation were accurate
to within 15%.

The HPC-VAO project [5] is also ongoing, aiming
to provide a framework for vibroacoustic analysis
and optimisation and apply it in the automotive sec-
tor. The meta-application in this case consists of the
optimisation driver Optimus, which is already avail-
able from LMS in a non-distributed version. The
integration of Optimus with the meta-application
manager is still ongoing, so no industrial results are
yet available from the end-users in the project (Rover,
Renault and BMW). However, a hand-built interface
between Optimus and the meta-application man-
ager (based on its command-line interface) has been
demonstrated.
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Fig. 2. Example meta-application and resulting task graph.

2.3. Resource allocation strategy

The PAC’s meta-application management software
assigns component computational tasks to resources,
whilst giving feedback to the user, in a series of
phases.

Firstly, a meta-application task-graph is received
from the driver application. This defines the tasks to
be executed, including their input and output datasets,
such that the dependencies between tasks (where the
output of one forms the input of another) may be de-
termined. In addition, the driver application (or user)
can impose constraints on the resources to be used for
the task-graph as a whole, or at the individual task
level. At present, the number of processors to be used
for parallel tasks is entered as a task-level constraint,
for example.

Fig. 2 shows a very simple example of a simple
meta-application, consisting of two dependent tasks,
and a typical task graph file which would be gener-
ated (via the manager’s API) by the meta-application
driver. We define a ‘producer’ as an individual
solver/application program (e.g. NASTRAN), and
a ‘product’ as a file, which may be an input or an
output for one or more producers. The dependencies
are determined simply from the usage of the defined
products, i.e. two tasks are said to be dependent if the
output of one is used as the input of the other.

The task graph file is read in by the meta-application
manager, then a selection heuristic is applied, based
on a comparison of predicted computational loads and
storage requirements from different tasks. This defines
the order in which the tasks will be considered and as-
signed to machines, and is designed to ensure that the
most expensive or critical tasks are allocated first, to
the fastest machines. At present, this selection heuris-
tic is based on a simple analysis of the critical path
(based on computational load), ensuring that critical
tasks are considered first.

The next phase considers each task in turn, and
pre-assigns it to the machine that will return the fastest
possible result. At this stage, the meta-application
manager applies additional constraints based on the
availability of software licenses, and predictions of
the memory and disk space needed by the task. The
software also maintains a database of task allocations
to machines, so that the loads represented by these
tasks can be taken into account when allocating sub-
sequent tasks. During the pre-assignment phase, par-
allel scalability models are consulted, and feedback
given to the user on the best number of processors
to use (usually the smallest number which would
allow the code to run in-core, since this gives the best
possible throughput). The predicted execution time
of the whole task-graph (and, if desired, individual
tasks) is also available through the API, so that the
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meta-application user can establish whether the scale
of the application defined is feasible. At this stage, the
user can abort the meta-application, impose different
resource constraints, or negotiate with management
for the use of additional resources.

Finally, the user initiates execution. During execu-
tion, the meta-application manager keeps track of the
progress of each task, and dynamically adjusts the as-
signment of tasks to machines where appropriate. Typ-
ically, at least some tasks do not run on the machine
originally assigned, due to inaccuracies in the perfor-
mance models, and uncertain factors such as unex-
pected background loads. The software does not sup-
port dynamic migration of tasks once they start exe-
cuting, but seeks to avoid initiating any new task on a
machine that becomes inappropriate or unavailable.

3. Performance modelling

3.1. Background

Performance modelling originates from the applica-
tion of complexity theories to computational systems
and applications, especially in the high-performance
computing (HPC) regime. Early complexity models of
parallel systems such as the PRAM model have been
extended in abstract models such as Bulk synchronous
Parallelism (BSR) [6] and LogP [7], to include more
realistic parallel computing phenomena such as com-
munication bottlenecks and synchronisation. This has
led to the possibility of modelling real system archi-
tectures and application software, to enable their de-
velopers to understand and tune their computational
efficiency.

Performance modelling has developed alongside
benchmarking and performance monitoring, which
also provides information about computational effi-
ciency and effectiveness. The level of sophistication
used in all three areas has grown along with the
complexity of the systems and software to be mod-
elled. Thus simple benchmarks such as the Livermore
Loops [8] have been superseded by more sophisti-
cated benchmarks incorporating models of ‘typical’
behaviour such as SPEC [9,10], ParkBench [11] and
EuroBen [12]. At the same time, performance mon-
itoring techniques have moved beyond simple tools
to monitor processing loads, to encompass full event

tracing [13], and sophisticated data processing and
visualisation tools [14].

Not surprisingly, the most sophisticated approach to
performance modelling today, therefore involves con-
structing a detailed model of the computer at various
levels, ranging from the main components of the archi-
tecture to the gate level [15]. The performance of an
application can be predicted by simulating the detailed
behaviour of the system when running the application.
This approach is highly rewarding for systems archi-
tecture developers, but the simulation models take a
long time to execute, and are platform-specific.

A variation known as performance characterisation
uses a simplified model of the computing platform,
constructed from a common basis set of system ar-
chitecture component models. The performance of an
application is still obtained through simulation, but
this can now be generated in a standard way from the
application source code, so that it is easy to produce
comparative models for different platforms. However,
the simulations are still quite slow, and one needs ac-
cess to source code or detailed descriptions of code
behaviour, in order to generate them. A typical exam-
ple of this approach is given by the PEPS project [16],
and more recent derived work such as PACE [17].

Neither of these detailed modelling approaches is
practical for on-line, predictive resource management
with third-party, commercial application software
packages. The simulations needed to produce perfor-
mance predictions are too slow, and the generation
of these simulations requires detailed knowledge of
application code structure and system architectures.
Furthermore, detailed modelling cannot easily handle
the input data-dependence of performance, without
going to a level of detail comparable to the application
being modelled.

For predictive resource management, one needs a
simpler approach in which:
• Performance predictions can be derived rapidly in

real-time;
• Account is taken of the effect of the input data on

performance;
• Detailed knowledge and representation of code

structures and machine architectures is not required;
and

• Results should allow performance and resource con-
sumption to be compared easily between different
jobs and machines.



728 N. Floros et al. / Future Generation Computer Systems 15 (1999) 723–734

At first, this seems like an impossible task, but fortu-
nately, one does not need highly accurate models in or-
der to extract useful information for meta-application
management.

3.2. Performance modelling architecture

The PAC meta-application manager uses perfor-
mance models in two ways:
• To find a machine-independent ‘weight’ through

which to compare different tasks during the selec-
tion phase;

• To compare completion times for a specific
task on different machines, during the predic-
tive, pre-assignment phase, and also for dynamic
re-assignment of tasks during execution of the
meta-application.
To support this, a three-tiered performance mod-

elling architecture is used, in which tasks are charac-
terised through:
• Application-specific problem-size parameters, ex-

tracted from the input decks;
• Machine-and application-independent loads, ob-

tained from the problem sizes via an application
model; and

• Predicted run-time and resource usage on a spe-
cific machine, obtained from the loads via an
application-independent machine model.
This arrangement, and its use within the meta-appli-

cation task allocation algorithm is illustrated in Fig. 3.

3.3. Machine model

Within this architecture, the machine model must
be independent of the application codes. Furthermore,
since the machine model is used repeatedly within the
task assignment process, during, as well as prior to,
the meta-application execution, it must be computa-
tionally lightweight.

For these reasons, a simplistic approach has been
adopted in which the application is characterised via
the ‘computational load’(Lcpu), the ‘I/O load’ (Lio),
the ‘communication load’(Lcomm), and the memory
and disk space needed (Vmem andSdisk). The machine
model then consists only of a set of ‘rates’ for compu-
tation(Rcpu), I/O (Rio) and communications(Rcomm),
along with the available memory and disk space (Smem

andSdisk. For parallel codes, performance scalability
is modelled via the communication load, and by as-
suming a simple Amdahl decomposition of the loads
(and space requirements) into serial and parallel por-
tions, in whichf is the fraction remaining sequential.
Finally, for some commercial codes, it has been found
necessary to include an overall machine-independent
start-up time(Tstart), to allow for license authentica-
tion, lock files, etc., which is presumably installation
dependent (since it will depend on the software license
server).

The machine model then maps loads to the run-time
and utilisation via:

T (P ) = Tstart+
Lcpufcpu

Rcpu
+ Lcpu(1 − fcpu)

PRcpu

+Liofio

Rio
+ Lio(1 − fio)

PRio
+ Lcomm(P )

Rcomm

and

Ux(P ) = Lx(P )

T (P )Rx

where the loadLx(P ) is found directly (in the case of
Lcomm) or via the Amdahl partitioning (forLcpu and
Lio).

The only remaining problem is to determine the
units of measurements for the various loads and space
requirements. For everything exceptLcpu, one can
simply measure the volume of data to be transferred or
stored in bytes, and use bandwidth figures (bytes/sec)
for the corresponding machine rates.

The problem of establishing a representative mea-
sure for processing speed is a well researched area,
and initially it was hoped to use the well-respected
SPECmark figures, which provide a good compara-
tive measure of machine performance. Unfortunately,
the standard SPEC-unit has been changed every few
years, so that a single comparative set of SPECmark
figures is not available for all machines likely to be
used. For this reason, the unit of measure forLcpu was
taken as the ‘flop equivalent’, that is the amount of
computation which would take the same time as a sin-
gle floating point calculation. The machine parameter
Rcpu is measured using the public domain benchmark
FLOPS V2.0 [18] which can obviously be executed
on any machine encountered.
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Fig. 3. Performance modelling architecture.

3.4. Application performance characterisation

The application models in this tiered performance
modelling architecture consist of relationships be-
tween the problem size parameters (extracted from
the input files) and the machine-independent loads.
These models are obtained empirically by:
• Selecting the (application-specific) problem size pa-

rameters to be used, and constructing an extraction
utility to obtain them from the input files;

• Running benchmarks for a range of problem sizes,
and for parallel codes on different numbers of pro-
cessors, to obtain measurements of run-time, mem-
ory usage, etc.

• Inverting the machine model to obtain the loads
corresponding to each benchmark;

• Fitting analytical functions of the problem sizes to
account for the observed loads.

Typically, the final step involves choosing the type and
order of candidate functions based on a knowledge
of the application and its probable algorithms: thus
one chooses 3rd-order polynomials for FE codes, for
example. However, no access to the source code is
needed for this empirical modelling approach.

The final application models obtained through this
procedure will be crude, but are able to give a rea-
sonable estimate of which jobs should receive priority
in the task allocation procedure. They can also help
a user to determine whether a given meta-application

will finish in (say) a weekend, albeit with fairly large
error bars.

4. Application models

4.1. Overview

Application models have been developed for:
• CALIFE: a CFD application from Bertin et Cie

(France);
• MSC/NASTRAN: the statics solution sequence

from MacNeal–Schwendler’s well-known finite
elements code;

• PARNASO: a non-linear structural analysis code
from ENEL (Italy);

• AS-THETIS: an electromagnetics analysis code
from Aerospatiale (France);

• SIMAID: a multi-body dynamics code with appli-
cation to robotics, from CEIT (Spain).
Currently, the PAC is developing further models for:

• MSC/NASTRAN: the modal analysis sequence; and
• SYSNOISE: the acoustics analysis code from LMS

(Belgium).
Not surprisingly, since many of these applications

are commercially available, we are unable, for reasons
of commercial sensitivity, to report any details of the
performance models obtained. However, we can pro-
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vide an outline of the procedure as applied to the (se-
quential) CALIFE application, as an example of the
modelling approach.

4.2. Example: CALIFE

CALIFE is a Computational Fluid Dynamics (CFD)
code developed in France by Bertin et Cie. Bertin uses
it in their engineering consultancy business, and also
by some of their customers including Ruston Diesels,
a partner in the TOOLSHED simulation environment
project, described in Section 2.2.

The characterisation of CALIFE can be broken into
two parts:
• finding the loads per iteration of the CFD

time-marching procedure (i.e. loads per time-step);
• finding the rate of progress of this procedure, and

hence the number of iterations to be carried out.
A series of benchmarks were provided by Bertin,

encompassing a typical internal combustion calcula-
tion of the type used by Ruston Diesels, on a range
of meshes ranging from 5000 to 160 000 tetrahedral
elements.

The inversion of the machine models to provide
load information was conducted using Sun and Sili-
con Graphics benchmarks. However, the SGI version
of the code was compiled on a 32-bit (R4000 series)
system, so that the normalRcpu value of the Power-
Challenge benchmark platform could not be used. This
problem had been encountered before, and a rate ob-
tained by compiling the FLOPS20 benchmark in the
same way. This gave a reasonably good agreement for
loads between the 32-bit and 64-bit machine architec-
tures (see Fig. 4).

It was found through the performance characterisa-
tion process that:
• The computational and I/O loads, and also the mem-

ory and disk-space requirements are proportional to
the number of time-steps, and are linear in the prob-
lem size;

• Additional loads are introduced when simulating
droplet sprays, in proportion to the number of
droplets represented in the simulation at any time;

• The number of time-steps required to complete a
run depends on the mesh size, in a way which it-
self depends on whether droplets are present in the
simulation.

Fig. 4. Relative CPU load in the CALIFE gas compression phase.

The key problem sizes were therefore:
• The simulated simulation duration, both with and

without spray (1tgas and1tspray);
• The number of elements in the mesh,N ;
• The rate of droplet injection during the spray phase

(droplets per time-step),I ; and
• The rotation speed of the engine,r.
The performance model therefore takes a simple form:

Lcpu = Lgas+ Lspray

Lgas= ngas(A + BN)

Lspray= nspray〈ndrops〉β
Lcpu is the total computational load, divided intoLgas

(the load when droplets are not present) andLspray

(the load when droplets are present). The parameters
A and B represent the start-up computation and the
computation per element for the gas flow calculations,
andβ the computation per droplet in each time-step.
The total number of time-steps is given by:

ngas= 1tgas

rδtgas

and the number of steps in which spray is represented
by:

nspray= 1tspray

rδtspray

where the average time-step(δtgas, δtspray) in each case
depends on the mesh size according to the following
(empirical) relationship:

δtgas= aN1/2



N. Floros et al. / Future Generation Computer Systems 15 (1999) 723–734 731

δtspray= b − cN

Finally, the average number of drops in the simulation
during the spray phase is given by:

〈ndrops〉 = I

(
τ

δtspray

)

whereτ is the average survival time of a droplet during
the simulation.

The parametersA, B, β, a, b, c and τ are deter-
mined empirically from benchmark data. The values
cannot be given here since CALIFE is a commercially
available code, whose precise performance is obvi-
ously commercially sensitive. Similar models have
been derived for the disk and memory as well as com-
putational resource usage.

This model is evidently very simple, whilst taking
account of the input data in a reasonable way, and
gives an upper bound on resource needs. When the
TOOLSHED environment was installed at Ruston
Diesel for the first time, and demonstrated using a test
case and execution platform which were not amongst
the benchmarks data, the predicted run-time was
accurate to within 20%.

4.3. Impact on meta-application management

Run-time predictions are used directly by the
meta-application manager for capacity predictions,
which help the user ensure that their meta-application
will be completed during silent-hours. Clearly, these
predictions will be accurate to within 20% at best,
so the user should allow a sensible margin for error
to ensure that the meta-application does not impact
‘daytime’ users of the resources.

The accuracy of run-time predictions will affect,
to some extent, the resource allocation decisions of
the scheduler. However, it is the relative run-times
between applications running on different resources
which are most important to critical path analysis and
resource selection. Furthermore, the initial allocation
decisions can be changed dynamically when a task or
resource is ready to go, so the overall performance of
the system is not very much dependent on the accuracy
of the absolute run-time predictions for each task.

Finally, the ability of the meta-application manager
to ensure robust, reliable and efficient execution of
meta-applications depends most critically on the mod-

els of disk and memory usage, and not on the run-time
predictions. In practice, space predictions are usually
much more deterministic and accurate than time pre-
dictions, and it is easier to assign a safety margin, so
that the system is able to avoid unpleasant overnight
crashes due to lack of space, even where the run-time
predictions are relatively crude.

5. Discussion

5.1. Transparent access to meta-computers

The value of the PAC’s approach to meta-application
management was demonstrated through the PROMEN-
VIR Internet experiment, outlined in Section 2.2 and
described in [2]. In this experiment, a typical proba-
bilistic engineering problem from the space industry
(developed by CEIT and CASA) was analysed, by
running a large stochastic Monte Carlo simulation. A
total of 102 CPUs were used (various types of SGI
architecture, ranging from R3000 workstations to
R10000 multi-processor machines), at eight partner
sites, some equipped with firewall security, and all
accessed via the Internet. This experiment was there-
fore representative of industrial meta-applications run
within the large manufacturing consortial often found
in Europe (e.g. ARIANE and Airbus), and we believe
that this represents one of the largest pan-European
meta-computing simulations ever carried out.

Each machine within the meta-computer was in-
stalled with the SIMAID solver from CEIT [19],
and the required meta-application manager daemons.
The simulation consisted of 1000 individual (inde-
pendent) SIMAID runs. Results were sent back to
the PROMENVIR driver module, running on an SGI
workstation at PAC (along with the meta-application
manager), and analysed statistically.

Many lessons were learned from this experience
relating to security, Internet reliability and solver ver-
sion control, which are described in [2]. In the context
of this paper, the most interesting lesson related to
machine availability: of the 102 machines provided,
only 79 were actually used during the experiment.
Many of the ‘missing’ machines were lost due to
high background loads (the meta-application manager
only dispatches tasks to machines whose load is



732 N. Floros et al. / Future Generation Computer Systems 15 (1999) 723–734

below a pre-defined threshold). A few of the slow-
est machines (R3000 series SGI workstations) were
deliberately avoided by the system because their pre-
dicted performance was too poor. It is evident that,
had jobs been sent to these systems, the run-time for
a single shot would have been close to that for the
meta-application as a whole, bringing the risk that
these shots would have slowed down the whole run!

The ability of our software to factor out machines
which are too slow on a case-by-case basis means
that one can include and exploit even slow machines
(e.g. desktop PCs) in those applications where they
can contribute. Clearly, one cannot expect to define
a different set of machines across multiple sites for
each meta-application, so without performance man-
agement features, one would be forced to exclude all
older, less powerful system, however numerous.

5.2. Cost and accuracy of performance models

The accuracy of our performance predictions for a
hitherto unseen CALIFE test problem is also interest-
ing. Obviously, with the crude approach we have had
to employ one could not hope even to be within 50%
of the actual run-time for all possible test cases. How-
ever, because our model was derived from cases rep-
resentative of Ruston’s expected use of the CALIFE
code, we achieved a much more accurate prediction
for their problems, as described above.

This raises the question of how many different mod-
els might one need for a given application. Clearly,
high accuracy can be obtained by selecting a repre-
sentative set of benchmarks for each user, but the cost
of running these benchmarks and deriving a model is
high. One cannot expect users to perform such calibra-
tion exercises for themselves, and even for an expert,
several weeks of effort may be required. The same
problem arises if the end-user decides to employ a new
code, for which no performance model is available.
The PAC has introduced a simple default model for
such cases, but this model is designed only to stabilise
the task allocation algorithms, and not to produce any
performance prediction for unknown codes.

The PAC has recently started a new project, funded
by the UK Engineering and Physical Sciences Re-
search Council, to address this problem. The project
is now investigating the use of adaptive computing

methods (e.g. neuro-fuzzy methods) as a basis for
self-calibrating performance models. The concept in-
volves logging performance data for codes in opera-
tional use, and using this to refine performance mod-
els, which fit the logged data. Since the data come
from operational use, they will be representative of the
user’s typical work load, and if a new application is
encountered, a new model fitting process can be initi-
ated.

5.3. Other meta-application issues

The final point that has emerged from our experi-
ences with meta-applications, and attempts to provide
management systems for them, is the problem of soft-
ware access.

Most of the meta-applications being conducted
around the world use free or proprietary software,
which can be installed on all available platforms at no
cost. For example, the PROMENVIR Internet exper-
iment discussed above used the SIMAID application
from CEIT, a partner in the PROMENVIR project.
Evidently, industrial users want to exploit third-party,
commercial software packages, but the cost of in-
stalling these on all available machines is high, espe-
cially if these machines are distributed throughout a
manufacturing consortium.

To address this problem, the PAC is now starting to
investigate new software supply paradigms, and this
will be the focus for a new ESPRIT project, DISTAL,
starting this year.

6. Conclusions

Industrial meta-applications require sensible man-
agement facilities, which poses new challenges for
performance prediction as well as resource man-
agement. The PAC’s meta-application management
software has addressed some of these, helping to
make commercial meta-application driver software
available.

Our experience has also raised new issues, which
we are addressing through new initiatives investigating
on-line, automatic performance characterisation and
new commercial software provision paradigms.
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