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Abstract

In this paper we define an abstract machine model for themλ typed intermediate language. This abstract machine is used
to give a formal description of the operation of run-time module replacement for the programming language Dynamic ML.
The essential technical device which we employ for module replacement is a modification of two-space copying garbage
collection. We show how the operation of module replacement could be applied to other garbage-collected languages such as
Java. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

We have previously presented the high-level design of Dynamic ML, a variant of the Standard ML programming
language which incorporates a facility for the replacement of modular components during program execution [1].
This useful facility builds upon existing compiler technology which permits the separate compilation of modular
units of a Standard ML program. A suitable application for Dynamic ML would be the implementation of a distributed
system where it is necessary to correct errors, improve run-time performance or reduce memory use, all without
interrupting the execution of the system. We use a modified form of memory management to implement this idea.

The definition of Standard ML [2] is a formal description of the language which acts as a solid scientific platform
where experiments in programming language design may be conducted. Any alteration to the Standard ML language
such as ours should be investigated in the terms of the definition. However, as readers of the definition will know, it
is silent on the topic of memory management except to say that “there are no (semantic) rules concerning disposal
of inaccessible addresses” ([2], p. 42). The definition also separates the static and the dynamic semantics in such
a way that the typing information inferred at compile-time is discarded before run-time. However, Dynamic ML
needs some type information at run-time. These differences have motivated our work on a novel semantic model
that would form a suitable setting for the formal definition of Dynamic ML. That model is presented in this paper.

Other authors have argued for the usefulness of a semantic model of memory management in making precise
implementation notions such as memory leaks and tail recursion optimisation, developing suitable abstract machine
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models of memory management for this purpose [3]. Our abstract machine model for Dynamic ML serves a different
purpose and this has led to the creation of a significantly different abstract machine than those used by previous
authors. An essential feature of our machine is the modelling of user program exceptions, which other authors do
not include.

In Section 2 we present the main idea of our module replacement model by means of an example. Sections 3
and 4 introduce respectively the language on which our discussion is based and the abstract machine which is used
in specifying the dynamic semantics of this language. In Section 5 we give the formal definition of the garbage
collection with replacement operation. Section 6 describes how the main idea of our work can be applied to other
garbage-collected languages such as Java. Section 7 discusses the practicality of our model and the related work of
others. We conclude in Section 8.

2. A model for module replacement

We introduce our first-order module-level replacement with an example to give the reader an informal under-
standing of its use in practice. Standard ML has interfaces calledsignaturesand modules calledstructures. In our
replacement model we allow the replacement of signatures by other signatures and structures by other structures,
under reasonably generous conditions [1]. As our running example we consider the replacement of one imple-
mentation of a name table with another which is functionally equivalent but offers improved performance. Both
implementations match theTABLE signature shown below.

signature TABLE =
sig

type table

type ame = string
val empty: table
val insert: name × table → table
val member: name × table → bool

end ;

We provide a facility for expressing such a replacement which ensures that the data values already present in memory
cannot be used in ways which are inconsistent with their type. The replacement operation is expressed by allowing

Fig. 1. Code replacement with type update.
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the user to abstract over aTbl structure which is specialised to implement a name table as a list of character strings.
The Standard ML terminology for a structure abstraction is afunctor. The functor body describes a structure which
implements name tables as binary search trees. The user-defined datatype for tables declares that a table can either be
empty or it can be constructed from a name as its root and left and right sub-trees which are name tables themselves.
The functions for inserting a name into a table and testing for membership use pattern-matching to de-construct the
name tables and bind values to the formal parameters (nameds, l, v andr for the string to be added, the left sub-tree,
the value at the root and the right sub-tree, respectively). The functor also contains functions to convert from the
old representations to the new. These functions are placed inside anInstall structure. They follow a convention
of using the same identifier as the type which they update. The first conversion function is the identity function
and the second one is an application of the Standard ML Basis library function implementing folding a function
across a list with right associativity. This method of structure replacement is encoded as a Dynamic ML functor
below.

functor InstallTable (Tbl: TABLE where type table =string list) :> TABLE =
struct

type name = string
datatype table = empty | node of table × name × table

fun insert (s, empty) = node (empty, s, empty)
| insert (s, node (l, v, r)) =

if s < v then node (insert (s, l), v, r)
else if s > v then node (l, v, insert (s, r)) else node (l, v, r)

fun member (s, empty) = false
| member (s, node (l, v, r)) =

if s < v then member (s, l)
else if s > v then member (s, r) else true

structure Install = struct
val name: Tbl.name → name =fn x ⇒ x
val table: Tbl.table → table =List.foldr insert empty

end

end ;

Through the use of theInstallTable functor, a Dynamic ML programmer could replace a structure which im-
plemented tables as (either sorted or unsorted) lists with one which implemented them as binary search trees. This
is an example of a very simple modification which would improve the performance of theinsert andmember
operations. However, more sophisticated improvements would also be made by the same method: defining a functor
which maps the old implementation to the new one and provides functions to convert from the old types to the new.
In both cases, it is critical that the types under replacement are abstract ones (with only the type identifier given in
the signature) in order that functions outside the structure were not able to depend on a particular choice of concrete
representation for a type, thereby preventing its replacement.

We propose to perform the code replacement operation during garbage collection. A functor, such as the one
shown above, is compiled separately. We then invoke the garbage collection operation extended with the application
of the replacement functions from theInstall structure to any values of the type under replacement. After completion
of the copying with replacement, it is possible to dispose of the outdated version of the structure under modification
(in the from semi-space), and switch to use the new version (in theto semi-space) which now contains the data
values of the newly introduced replacement types. This is illustrated in Fig. 1 where a list representation of a name
table containing the namesb anda is replaced by the corresponding tree representation. Values of types not under
replacement are unaltered: this includes values of built-in types such as booleans and real numbers.
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The functions which are executed during code replacement are unrestricted Standard ML functions which may
diverge upon application or raise an exception to signal an inability to continue processing. Our method of recovery
is to rollback the garbage collection operation when any exception is raised. We revert to using thefromsemi-space
of data values and the old types and we continue with the execution of the old program code.

One remaining issue that must be addressed is the replacement of code that is active. It is important to take steps to
prevent the replacement of any function which is currently being executed. If allowed, such unguarded replacements
would result in undefined behaviour as the continuation point would no longer exist. One way of preventing
unguarded replacements is to maintain the old version of the function (and its data) until the present invocation of
the function has terminated. However, this method of prevention significantly complicates the replacement operation.
Consequently, our solution only permits the replacement of functions that are inactive. This is not a severe restriction
because in the language on which replacement is defined, iteration is performed by recursion and replacement may
be performed between recursive function calls.

3. Themλmλmλ language

In order to formalise the replacement operation described in the previous section we first define a call-by-value
lambda languagemλ. This language is representative of a typical typed intermediate language used in the current
state-of-the-art Standard ML compilers [4–7]. By basing replacement on such an intermediate language, we obtain
an operation that is applicable to the whole of Standard ML, yet avoid a great deal of the complexity. For example,
pattern matching is converted into switch statements by the higher-level match compiler. Furthermore, we can
assume that themλ program is well-typed. For brevity, we have restricted our attention here to a purely-functional
monomorphic lambda language. However, we note that including polymorphism at the Dynamic ML language level
does not change the resulting replacement operation because a polymorphic source language may be compiled down
into a monomorphic typed intermediate language. Adding references also does not change the resulting replacement
operation, as the machine state is stored on the heap. Thus, references may simply be treated as values of datatypes.

The syntax of themλ language is given in Fig. 2. The syntactic categories of the language include special constants
of types unit, integer, real, and string; value constructors such as ctrue; exception constructors such as ematch; type

Fig. 2. Syntax of themλ language.
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names such as tbool. Variables are bound uniquely to values generated by the evaluation of expressions. The types
are constructor types (which may be either nullary or unary), record types, and function types. Constructor types
include the basic types, as required by the special constants; value constructor types; and exception constructor
types. A program consists of a sequence of datatype declarations followed by a single expression. A datatype
declaration consists of a unique type name and a sequence of typed constructors. The expressions divide into
those for constructing and de-constructing values, defining and manipulating variables, and controlling the order of
evaluation.

Notation:We use the meta-variablessconfor special constants,conandexconfor value and exception constructors
with c ranging over all three of these andi over special constants of integer type. We usetn for type names and
v for variables. We usep for type pointers andl for value locations. A set is defined by enumerating its members
in braces, such as̄̄x = {a, b, c, d} with ∅ for the empty set. A sequence is an ordered list of members of a set,
e.g. x̄k = (a, b, c, a). The ith element of a non-empty sequence is writtenxi , where 0< i ≤ k. A finite map

from x̄k to ȳk is defined:x
map7→y = {x1 7→ y1, . . . , xk 7→ yk} (the elements of̄xk must be unique). The domain

Dom and range Rng are the sets of elements ofx̄k andȳk, respectively. A stack is written as a dotted sequence, e.g.
S = (a · b · c). The left-most element of the sequence is the top of the stack, and a pair of adjacent brackets () is
used to represent the empty stack.

4. Themλmλmλ abstract machine

The dynamic semantics ofmλ is formalised in this section by a transition relation between states of an abstract
machine. The organisation of our abstract machine has some features in common with theλ→∀

gc abstract machine [3]
which is used in the formal description of the behaviour of the TIL/ML compiler. However, the resulting transitions
differ considerably asmλ is significantly different fromλ→∀

gc . One important way in which it differs is thatmλ does
not adopt the named-form representation of expressions and types.

The syntax of the abstract machine is given in Fig. 3. The state of the machine is defined by a 4-tuple(H, E, ES, RS)
of a heap, an environment, an exception stack, and a result stack. The heap is used to store all the run-time objects
of the program, while the environment provides a view of the heap relevant to the fragment of the program being
evaluated (for example, a mapping between the bound variables currently in scope, and their values on the heap).
The exception stack stores pointers to exception handling functions (closures). The result stack holds pointers to
temporary results.

The heap consists of a type-heap mapping pointers to allocated types, and a value-heap mapping locations to
allocated values. The heap types correspond directly to types in themλ language, and the heap values belong to the
heap types. Nullary constructorsscon, con, andexconall have typetn. Unary constructorscon(l) andexcon(l) have
type tn(p). Records{l̄k} have type{p̄k}, and closures〈〈E, v, X〉〉 have typep1 → p2. The type heap and value
heap are represented by finite maps, as locations and type-pointers may be bound only once. It is important to note
that we can only determine the shape of the data at a particular location by examining its corresponding type. Thus,
each heap location will be paired with a type-pointer:(l, p). This is essential for implementing tag-free garbage
collection in the following section.

The following syntactic conventions are used for allocating heap objects: the termH [l1 7→ val1, . . . , lk 7→ valk]
allocates valuesval1, . . . , valk on the value heap, binding them to fresh locationsl1, . . . , lk. Correspondingly,
the termH [p1 7→ τ1, . . . , pk 7→ τk] allocates typesτ1, . . . , τk on the type heap, binding them to fresh pointers
p1, . . . , pk. There are no corresponding operations for removing objects from the heap as this is achieved through
garbage collection. However, the implementation of the fixed-point expression which is used to implement recursive
functions requires a heap-update operation. As a special case,H [l 7→ �] allocates a dummy closure on the value
heap bound to a fresh locationl. This location can subsequently be updated with a mapping to a new closure.

The environment records the allocation ofmλ values, mapping them to heap locations and type-pointers. As the
identifiers and variables have been made unique, via the compilation intomλ, their environments are represented by
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Fig. 3. Syntax of themλ abstract machine.

finite maps, with the exception of the type environment where it is sufficient just to use a set. The following notational
conventions are used for extending the environment:E[tn] addstn to the type environment,E[con 7→ p] binds the
constructorconto the type-pointerp in the constructor environment. Similarly,E[excon7→ p] andE[v 7→ (l, p)]
denote the binding of exception constructors and variables respectively to heap locations and type-pointers in the
environment. There are no operations for removing objects from the environment. However, unlike the heap, a copy
of the current environment may be made at any time, for example by creating a closure. Thus, objects can effectively
be removed from the environment by reverting to an old copy of the environment.

Execution of the abstract machine is defined by a transition system between machine states. The individual tran-
sitions are listed in Appendix A. The top-level transition has the form(H, E, ES, RS, P ) ⇒ (H ′, E′, ES′, RS′),
where P is an mλ program, (H, E, ES, RS) is the initial machine state (as illustrated in Fig. 4), and

Fig. 4. Initial machine state.
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(H ′, E′, ES′, RS′) is the final machine state. This top-level transition decomposes into a sequence of transitions
of the form(H, E, ES, RS, D) ⇒ (H ′, E′, ES′, RS′) for processing the datatypesD, followed by a sequence
(H, E, ES, RS, X) ⇒ (H ′, E′, ES′, RS′) for evaluating the expressionX.

There are three possible outcomes which can result from the evaluation of this expression. These three outcomes
are well-known to programmers working within the simpler Standard ML programming discipline: termination,
exceptional termination and non-termination. Firstly, the sequence may terminate normally yielding a single pair
(l, p) in the result stack which references the result. Secondly, the sequence may terminate prematurely, through
an uncaught exception, yielding a pair(l, p) at the top of the result stack which references the exception. Thirdly,
the machine may encounter an infinite sequence of transitions and fail to terminate.

5. Garbage collection with replacement

In Section 2 we have explained how we extend the traditional two-space copying garbage collection to implement
our replacement operation. In this section, we give the formal definition of this extended garbage collection as it
is used in the abstract machine defined in Section 4. The replacement operation has been presented in terms of the
use of the modular constructs of Standard ML. However, for brevity we restrict our discussion here to the simpler
non-modular language presented in Section 3.

We will consider the case where we have the information represented by a semantic object defined as follows:

RM ::= pold
map7→(lrep, prep). The domain of the replacement map DomRM is the set of the pointers to the types

that are to be dynamically replaced. Each elementpold of the domain is mapped to a location/type-pointer pair
(lrep, prep). The location contains the closure of the function which is to execute the replacement operation and the
type-pointer points to the type which is to replace the old type.

In Dynamic ML this information is extracted from the result of the evaluation of the sub-structureInstall which
contains the user defined functions for the replacement operation. The replacement map thus obtained would be
{pTbl.name 7→ (lname, pname), pTbl.table 7→ (ltable, ptable)}. We define garbage as the objects that are not reachable
either directly or indirectly from the environment, exception stack, or result stack. Garbage collection may take
place before or after any transition of themλ abstract machine dropping the bindings of the unreachable objects
provided that this does not change the observable behaviour of the program.

Garbage collection is defined as a rewriting system between configurations of the form(S, RM, Hf , Ht ). The
replacement map denoted byRM is the auxiliary data structure which provides the information necessary for the
replacement operation; the traditional two-space copying garbage collection corresponds to the case whereRM is
empty. Initially, the scan stackS contains all of the pointersp and(l, p) pairs inE, ES, andRS. Following the rules
listed in Appendix B, heap objects are copied from the semi-spaceHf to the semi-spaceHt until the scan stack is
empty. We can incorporate the garbage collection operation in the dynamic semantics of our language explicitly by
means of the following evaluation rule:

(ES· RS· FE(E), RM, Hf , ∅) ⇒∗
gc ((), ∅, Hf , Ht )

(Ht , E, ES, RS, X) ⇒ (H1, E1, ES1, RS1)

(Hf , E, ES, RS, X) ⇒ (H1, E1, ES1, RS1)

where⇒∗
gc stands for the repeated application of the⇒gc rules.

The informal understanding of the⇒gc rules is as follows:
Rule R0 is applied when the scan stack is empty. This signals the end of the garbage collection operation. The

replacement map is discarded in order for subsequent garbage collections to operate correctly.
Rules R1 and R1a and R1b are applied when the top of the scan stack is a pair of a location and a type-pointer

(l, p) and the value in the location has not yet been copied to theHt semi-space, i.e.l /∈ DomHt .
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Fig. 5. Auxiliary functions for garbage collection.

In R1 the type of the value reveals that it need not be replaced. As a result, the value in theHf semi-space is
copied to theHt semi-space. The free locations and the type pointers of the allocated value are added to the scan
stack.

R1a and R1b are variants of R1 where the type of the value indicates that the value is to be replaced, i.e.
p ∈ DomRM. Consecutive lookups in the replacement map and the heap yield the closure of the replacement
function that is to be applied to the value currently being scanned. The code of the closure is evaluated in the
environment extended by the binding of the scanned value. Note also that the disjoint union of the two semi-spaces
is assumed as the heap because the code may be referring to some location or type-pointer that has already been
copied.

There are two possible outcomes for the garbage collection operation. Either evaluation ends successfully or an
exception is raised by one of the functions which is updating the values from the old type to the new one. These
two cases are distinguished by inspecting the type of the most recent result which is at the top of the result stack.
The first case is captured by R1a. The new value is copied to theHt semi-space and the scan stack is arranged as
in R1. The second case is captured by R1b where the top of the stack indicates that a top level exception has been
raised. According to our implementation model we rollback the garbage collection operation and revert to using
theHf semi-space values. This is indicated by setting the scan stack to empty and identifyingHt with Hf . The
replacement map is discarded as in R0.

R2 is applied when the top of the scan stack is a location/type-pointer pair and the value in the location has already
been copied to theHt semi-space. It simply skips this location and continues with the rest of the scan stack. R4 is
exactly like R2 but skips over a type-pointer instead of a location.

R3 and R3a are applied when the top of the scan stack is a type-pointer and the type-pointer has not yet been
copied to theHt semi-space. R3 deals with the case where the type need not be replaced. The free pointers of the
allocated type are added to the scan stack and the old representation of the type is copied to theHt semi-space. R3a
deals with the case where the old representation of the type is to be replaced by the new representation.

The functionsFE, FP andFL employed in the rewriting rules compute the free location/type-pointer pairs(l, p)

and type-pointersp. These rules are given in Fig. 5.

6. Replacement in Java

Our discussion of module replacement has been exclusively framed in the context of Standard ML. However, given
an appropriate abstract machine and notion of replacement, the operation could be applied to a number of different
garbage-collected languages. Indeed, such a re-use of the idea is appealing because useful, soundly-engineered
products such as Java can be deployed in contexts where it is presently difficult to apply Standard ML. These would
include embedded systems and also application domains where interoperability is an important consideration. Thus,
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Fig. 6. Syntax of the JAM.

we are currently considering the dynamic replacement of loaded classes in the Java run-time system. As it stands,
the Java Virtual Machine (JVM) is not suitable as it does not retain enough typing information. However, we have
designed a similar abstract machine for a subset of Java that is compatible with our replacement model.

The syntax of the Java Abstract Machine (JAM) appears in Fig. 6. The organisation of the machine is identical
to themλ machine, but the contents of the heap and the environment have been adapted for the Java language. As
before, the heap types correspond directly to types in the Java language, and the heap objects belong to the heap
types. The heap typesty are primitive typespt, class instance typescn, array typesp[ ], method typesp̄k

1 → p2,

and the null typenull. The corresponding heap objectsobj are constantsc, class objects〈vmap7→ l, m
map7→(l, p)〉, array

objects [̄lk], method (and constructor) closures〈〈v̄j , S̄k〉〉, and thenull object.
Notation:The meta-variablescn, i, m, v, andc are used for class names, interface names, method names, variables,

and constants respectively. The meta-variablept denotes the primitive types (int , float , boolean , etc.).
The environment contains the class hierarchy and maps fields, methods, and variables to objects on the heap.

When evaluating inside a class body,this is mapped to the current class object. The hierarchy is described by the
class environmentCEwhich maps a class namecn to its superclasscn′. The top of the hierarchy is assumed to be a
class namedObject which has itself as superclass.

The Java Abstract Machine presented above would provide the basis for a rigorous description of another appli-
cation of dynamic code replacement. However, the completion of such a description remains as further work. We
now turn to the consideration of practical application of the technique of dynamic code replacement.

7. Implementation issues

Users of state-of-the-art compilers for modern programming languages have become accustomed to complex
program analyses. These can safely deliver impressive performance benefits in terms of run-time and memory
usage. Modern programming languages also offer access to a more sophisticated model of computation incorporating
advanced features such as remote evaluation or code mobility. In this setting it is all too easy to invent a new paradigm
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for program execution and to claim that it can be implemented efficiently because modern compilers and run-time
systems offer so much functionality and convenience. In this section we would like to provide a more concrete
explanation of the key implementation technology which could be used to provide an efficient implementation of
the code replacement operation which we have described. Furthermore, experimental systems already exist which
make use of dynamic code replacement for related purposes such as improving data locality and we include a brief
description of these here.

Languages in the Standard ML family are strongly typed. In order to enforce the application of the type-checking
stage these language make a strict distinction betweenelaborationandevaluation, insisting that programs which
have not successfully elaborated cannot be evaluated at all. The rigid ordering of these two stages prohibits the
execution of any programs which attempt to use data values in ways which are not allowed by their type and
thus eliminates a large number of software errors which would manifest themselves at run-time if working in an
untyped programming language. However, several authors have observed that two stages are not enough for complex
applications such as program generators. This has led to approaches such as themulti-stageprogramming paradigm
for MetaML [9], staged type inference[10] and thestaged compilationparadigm for the language Modal ML [11].
The last of these is the most closely related to our own approach because it has demonstrated the effectiveness
of the use of run-time code generation by Lee and colleagues in the development of the Fabius compiler for ML
[12]. Using this technology it is possible for us to eliminate the run-time penalties incurred by the use of abstract
types in module specifications by exploiting the underlying representation of an abstract type and re-compiling at
run-time when the replacement module is available. Further, many other benefits come from the use of run-time
code generation including those associated with partial evaluation since it is possible to take advantage of values
which are not known until run-time. Other standard compiler optimisations such as elimination of array-bounds
checking and loop unrolling also become more profitable in this setting.

Other researchers are considering similar ideas in the setting of dynamic object-oriented languages such as Java.
Java differs from ML-like languages in several ways. For example, it does not provide the same level of abstraction
provided by Standard ML signatures. Java interfaces allow us to abstract method declarations, but not types. Without
this abstraction, replacing one Java class with another will force the rebuilding of all of its subclasses and all classes
that reference it. Andersson et al. [8] have proposed one solution: they perform replacement of objects of the outdated
class as they are accessed, meaning that both versions of the class are active at the same time. Replaced objects are
garbage-collected as the computation proceeds, and whenever all of the objects of the old version of the class have
been replaced the class object will have no more references and it can then be garbage-collected also.

A number of other researchers have investigated the use of garbage collection to improve the run-time behaviour
of programs. For example, [13] outlines a dynamic profiling algorithm for exploring the data access patterns
of a program in the Cecil language. During garbage collection, this information is used to regroup the data to
improve locality. A similar technique is also used in the Java Hotspot Virtual Machine [14]. The authors of [15]
have implemented a general-purpose run-time system combining dynamic profiling and optimisation, as described
above, with dynamic replacement of code and data. The intention of this system is to allow the optimisation of
the code by replacing procedures with more efficient ones during execution. The technique used is very similar to
the one presented in this paper. Replacement is performed by building a list of translation tuples(ptrold, ptrnew)

analogous to our replacement map. During garbage collection, all occurrences ofptrold are replaced byptrnew.
However, without the type preservation, installation and rollback mechanisms which we have presented in this
paper, there is no guarantee that the notion of replacement from [15] is valid.

8. Conclusions

Modern compilers for higher-order typed programming languages use typed intermediate languages to structure
the compilation process. We have provided an abstract machine definition of a small functional language which is
representative of these. This has allowed us to define precisely the operation of dynamic module replacement which
is used in Dynamic ML.
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In composing the definition of Standard ML, the authors chose not to give an account of the operation of garbage
collection, which most compilers for that language provide. This was the right decision when focusing upon the
abstract description of a sophisticated high-level language such as Standard ML. Our concern was to describe part
of the operation of an executing computation, with access to values described by concrete manifestations.

The use of an abstract machine notation has allowed us to isolate the novel feature of interest from our language.
We have been able to present its definition separately from other aspects such as syntax and type-correctness.
For our purposes, the use of an abstract machine has established the right level of detail. In addition, it provides
an implementor with an unambiguous and precise description of the operation of module-level code replace-
ment.
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Appendix A. Abstract machine definition

A.1. Programs

P = (D̄k, X)

(H, E, ES, RS, D1) ⇒ (H1, E1, ES, RS) . . .

. . . (Hk−1, Ek−1, ES, RS, Dk) ⇒ (Hk, Ek, ES, RS)

(Hk, Ek, ES, RS, X) ⇒ (Hk+1, Ek+1, ES1, RS1)

(H, E, ES, RS, P ) ⇒ (Hk+1, Ek+1, ES1, RS1)

(A.1)

A.2. Datatypes

(H, E, ES, RS, datatypetn of (con, τ )
k
) ⇒

(H [p1 7→ τ1 → tn, . . . , pk 7→ τ k → tn]
E[tn][con1 7→ p1, . . . , conk 7→ pk], ES, RS)

(A.2)

Comment:(Rule A.2) Datatype constructors are represented as functions from the constructor argument type to the
datatype nameτ → tn. The type of a nullary constructor is tunit → tn. Function types are allocated on the type
heapH [p 7→ τ → tn], and entered into the environmentE[tn][con 7→ p].

E(con) = p1 H(p1) = p2 → p3

(H, E, ES, RS, concon) ⇒ (H [l1 7→ con], E, ES, (l1, p3) · RS)
(A.3)

(H, E, ES, RS, X) ⇒ (H1, E, ES, (l1, p1) · RS)

E(con) = p2 H1(p2) = p3 → p4

(H, E, ES, RS, con (con, X)) ⇒ (H1[l2 7→ con(l1)], E, ES, (l2, p4) · RS)

(A.4)



804 C. Walton et al. / Future Generation Computer Systems 16 (2000) 793–808

Comment:(Rules A.3 and A.4) Constructing a datatype value is analogous to applying the constructor function
τ → tn. For a unary constructor, an argumentX of typeτ is required. A new constructor value is allocated on the
value heap with associated typetn in the type heap.

(H, E, ES, RS, X) ⇒ (H1, E, ES, (l1, p1) · RS)

E(con) = p2 H1(p2) = p3 → p4 H1(l1) = con(l2)

(H, E, ES, RS, decon(con, X)) ⇒ (H1, E, ES, (l2, p3) · RS)

(A.5)

A.3. Values

(H, E, ES, RS, sconscon) ⇒ (H [l 7→ scon][p 7→ τscon], E, ES, (l, p) · RS) (A.6)

Comment:(Rule A.6)τscon is the type of the special constantscon(e.g. t int).

E(v) = (l, p)

(H, E, ES, RS, var v) ⇒ (H, E, ES, (l, p) · RS)
(A.7)

(H, E, ES, RS, fn (v, τ1 → τ2) = X) ⇒
(H [l 7→ 〈〈E, v, X〉〉][p 7→ τ1 → τ2], E, ES, (l, p) · RS)

(A.8)

Comment:(Rule A.8) This rule allocates a new closure on the value heap. The closure consists of a copy of the
environment, a variable to be bound to the function parameter, and an expression for the body of the function.

A.4. Structured expressions

(H, E, ES, RS, X1) ⇒ (H1, E, ES, (l1, p1) · RS)

cmap = {c1 7→ X1
2, . . . , ck 7→ Xk

2} H1(l1) = val

X4 = if val ∈ Domcmap thencmap(val) elseX3
(H1, E, ES, RS, X4) ⇒ (H2, E, ES, RS2)

(H, E, ES, RS, switchX1 case(cmap, X3)) ⇒ (H2, E, ES, RS2)

(A.9)

(H, E, ES, RS, X1) ⇒ (H1, E, ES, (l1, p1) · RS)

(H1, E[v 7→ (l1, p1)], ES, RS, X2) ⇒ (H2, E2, ES, RS2)

(H, E, ES, RS, let v = X1 in X2) ⇒ (H2, E, ES, RS2)

(A.10)

(H, E, ES, RS, X1) ⇒ (H1, E, ES, (l1, p1) · RS) . . .

. . . (Hk−1, E, ES, (lk−1, pk−1) · · · (l1, p1) · RS, Xk) ⇒ (Hk, E, ES, (lk, pk) · · · (l1, p1) · RS)

(H, E, ES, RS, record X̄k) ⇒ (H [l 7→ {l1, . . . , lk}][p 7→ {p1, . . . , pk}], E, ES, (l, p) · RS)

(A.11)

Comment:(Rule A.11) A record is constructed by evaluating its membersX̄k in left-to-right order (Standard ML
record labels are removed earlier in the compilation). The resulting(l, p) pairs are kept on the result stackRSuntil
the last one is evaluated. A record{l̄k} is then allocated on the value heap (with a corresponding type on the type
heap) to hold the results.

(H, E, ES, RS, X) ⇒ (H1, E, ES, (l1, p1) · RS)

H1(l1) = {l̄k} H1(p1) = {p̄k}
(H, E, ES, RS, select(i, X)) ⇒ (H1, E, ES, (li , pi) · RS)

(A.12)
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A.5. Function expressions

(H [l1f 7→ �, . . . , lkf 7→ �][p1
f 7→ τ1, . . . , pk

f 7→ τ k],
E[v1 7→ (l1f , p1

f ), . . . , vk 7→ (lkf , pk
f )], ES, RS, X1

1)

⇒ (H1, E1, ES, (l1, p1) · RS)

(H1[l1f
upd7→l1], E1, ES, RS, X2

1) ⇒ (H2, E1, ES, (l2, p2) · RS) . . .

(Hk−1[lk−1
f

upd7→lk−1], E1, ES, RS, Xk
1) ⇒ (Hk, E1, ES, (lk, pk) · RS)

(Hk[lkf
upd7→lk], E1, ES, RS, X2) ⇒ (Hk+1, E1, ES, RSk+1)

(H, E, ES, RS, fix (v, τ ) = X1
k in X2) ⇒ (Hk+1, E, ES, RSk+1)

(A.13)

Comment:(Rule A.13) This rule achieves a simultaneous binding of a sequence of function closures (obtained
from evaluatingX̄k) to the variables̄vk. This is performed by initially allocating a dummy closureH [l 7→ �] on
the heap for each variable. The closure expressions are then evaluated in turn, and the dummy closures are updated

to real closuresH [lold
upd7→lnew]. Thus, when the body expressionX2 is evaluated, all of the dummy closures will have

been updated, and any closure which references another will do so correctly when evaluated.

(H, E, ES, RS, X1) ⇒ (H1, E, ES, (l1, p1) · RS)

(H1, E, ES, (l1, p1) · RS, X2) ⇒ (H2, E, ES, (l2, p2) · (l1, p1) · RS)

H2(l1) = 〈〈E1, v, X3〉〉
(H2, E1[v 7→ (l2, p2)], ES, RS, X3) ⇒ (H3, E2, ES, RS1)

(H, E, ES, RS, app(X1, X2)) ⇒ (H3, E, ES, RS1)

(A.14)

Comment:(Rule A.14) The function application rule applies the function expressionX1 (which evaluates to a
closure) to the argument expressionX2. Firstly, both expressions are evaluated. The closure is then obtained from
the result ofX1, and the result ofX2 is bound to the variablev in the closure environmentE1. The body of the
closureX3 is then evaluated in this environment. The previous environmentE is then restored. The result of the
function application remains on the result stack.

A.6. Exceptions

(H [p 7→ τ → t exn], E[excon 7→ p], ES, RS, X) ⇒ (H1, E1, ES, RS1)

(H, E, ES, RS, exception(excon, τ ) in X) ⇒ (H1, E, ES, RS1)
(A.15)

Comment:(Rule A.15) This construct introduces the declaration of an exception which can subsequently be
raised or handled. The effect of an exception declaration is analogous to that of adding a constructor to a pre-defined
datatype named texn (compare with Rule A.2).

E(excon) = p1 H(p1) = p2 → p3

(H, E, ES, RS, exconexcon) ⇒ (H [l1 7→ excon], E, ES, (l1, p3) · RS)
(A.16)

(H, E, ES, RS, X) ⇒ (H1, E, ES, (l1, p1) · RS)

E(excon) = p2 H1(p2) = p3 → p4

(H, E, ES, RS, excon(excon, X)) ⇒ (H1[l2 7→ excon(l1)], E, ES, (l2, p4) · RS)

(A.17)

(H, E, ES, RS, X) ⇒ (H1, E, ES, (l1, p1) · RS)

E(excon) = p2 H1(p2) = p3 → p4 H1(l1) = excon(l2)

(H, E, ES, RS, dexcon(excon, X)) ⇒ (H1, E, ES, (l2, p3) · RS)

(A.18)
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(H, E, (), RS, X) ⇒ (H1, E, (), RS1)

(H, E, (), RS, raiseX) ⇒ halt (H1, E, (), RS1)
(A.19)

Comment:(Rule A.19) If there are no closures on the exception stack then a raised exception will not be handled.
The effect of an unhandled exception is to halt the evaluation of the computation on the abstract machine unless
the exception has been raised during the execution of a code replacement operation. That mode of evaluation is
described in Appendix B on our modified garbage collection operation. In particular, Rule R1b is relevant here.

(H, E, (l1, p1) · ES, RS, X) ⇒ (H1, E, (l1, p1) · ES, RS1)

H1(l1) = 〈〈E1, v, X1〉〉
(H1, E1[v 7→ (l1, p1)], ES, RS, X1) ⇒ (H2, E2, ES, RS2)

(H, E, (l1, p1) · ES, RS, raiseX) ⇒ (H2, E, ES, RS2)

(A.20)

Comment:(Rule A.20) If an exception is raised, and the exception stack is non-empty, the closure at the top of
the exception stack is evaluated (see Rule A.14).

X2 = (fn(v, τ1 → τ2) = X3)

(H, E, ES, RS, X2) ⇒ (H1, E, ES, (l1, p1) · RS)

(H1, E, (l1, p1) · ES, RS, X1) ⇒ (H2, E, ES2, RS2)

(H, E, ES, RS, handleX1 with X2) ⇒ (H2, E, ES, RS2)

(A.21)

Comment:(Rule A.21) This rule ensures that an exception raised inX1 is handled byX2 (which is syntactically
a closure, as ensured by the equationX2 = (fn(v, τ1 → τ2) = X3)). This amounts to simply applying Rule 8 to
X2 and placing it on the exception stack whileX1 is evaluated. Theraise rule performs the actual evaluation of the
exception handler.

Appendix B. Garbage collection with replacement

((), RM, Hf , Ht ) ⇒gc ((), ∅, Hf , Ht ) (R0)

l /∈ DomHt p /∈ DomRM

((l, p) · S, RM, Hf , Ht ) ⇒gc (p · FL(Hf , l, p) · S, RM, Hf , Ht [l 7→ Hf (l)])
(R1)

l /∈ DomHt p ∈ DomRM

RM(p) = (lrep, prep) H(lrep) = 〈〈E1, v, X〉〉
(Hf ] Ht, E1[v 7→ (l, p)], ES, RS, X) ⇒ (H2, E2, ES, (lnew, pnew) · RS)

((l, p) · S, RM, Hf , Ht ) ⇒gc (p · FL(Hf , l, p) · S, RM, Hf , Ht [l 7→ H2(lnew)])

(R1a)

l /∈ DomHt p ∈ DomRM

RM(p) = (lrep, pnew) H(lrep) = 〈〈E1, v, X〉〉
(Hf ] Ht, E1[v 7→ (l, p)], ES, RS, X) ⇒ halt (H2, E2, ES, (lnew, pnew) · RS)

((l, p) · S, RM, Hf , Ht ) ⇒gc ((), ∅, Hf , Hf )

(R1b)

l ∈ DomHt

((l, p) · S, RM, Hf , Ht ) ⇒gc (S, RM, Hf , Ht )
(R2)

p /∈ DomHt p /∈ DomRM Hf (p) = ty

(p · S, RM, Hf , Ht ) ⇒gc (FP (ty) · S, RM, Hf , Ht [p 7→ ty])
(R3)



C. Walton et al. / Future Generation Computer Systems 16 (2000) 793–808 807

p /∈ DomHt p ∈ DomRM

RM(p) = (lrep, prep) Hf (prep) = ty

(p · S, RM, Hf , Ht ) ⇒gc (FP (ty) · S, RM, Hf , Ht [p 7→ ty])
(R3a)

p ∈ DomHt

(p · S, RM, Hf , Ht ) ⇒gc (S, RM, Hf , Ht )
(R4)
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