NH,
i PARALLEL
;ﬁ% COMPUTING

ELSEVIER Parallel Computing 26 (2000) 1109-1128

www.elsevier.com/locate/parco

List scheduling of general task graphs under
LogP

Tomasz Kalinowski ?, Iskander Kort >*, Denis Trystram

& Institute of Computer Science, Polish Academy of Sciences, ul Ordona 21 01-237 Warsaw, Poland
® Laboratoire de Modélisation et de Calcul, BP53, Domaine Universitaire, 38041, Grenoble Cedex 9, France

b

Received 1 October 1998; received in revised form 1 June 1999; accepted 1 November 1999

Abstract

List scheduling is the most frequently used scheduling technique. In this context worst case
analysis as well as many experimental studies were performed for various computational
models. However, many new models have been proposed during the last decade with the aim
to provide a realistic but still simple and general model of parallel computation. LogP is one of
the most popular models so far suggested. It takes into account the time a computation
processor spends to manage a communication. Many experimental studies on current parallel
architectures have shown that such a parameter cannot be neglected. The aim of this paper is
to assess the applicability of the list scheduling approach to the LogP model. More precisely,
we present two adaptations of the earliest task first (ETF) heuristic. Then, we establish an
upper bound on list schedules under LogP. Finally, we present an extensive experimental study
for different graph classes and model instances. © 2000 Elsevier Science B.V. All rights
reserved.

Keywords. List scheduling; LogP model; Communication

1. Introduction

Efficient execution of parallel programs requires constant developing of sched-
uling strategies. This goal requires the construction of computational models which

* Corresponding author.
E-mail addresses: tkal@ipipan.waw.pl (T. Kalinowski), kort@imag.fr (I. Kort), trystram@imag.fr
(D. Trystram).

0167-8191/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-8191(00)00031-4



1110 T. Kalinowski et al. | Parallel Computing 26 (2000) 1109-1128

describe the architecture components as well as the way parallel computation is
performed. Such models should be precise enough to well reflect the behaviour of
contemporary multi-computers being simultaneously general to cover a broad class
of architectures. Many computational models have been suggested during the last
years. These models can be classified into three categories: shared memory models,
distributed memory models and bridging models.

In a shared memory model processors exchange data by issuing read and write
requests to a common memory. The first model in this category was the PRAM
model [7]. A PRAM machine consists of a set of processors sharing a global
memory. A PRAM computation is organised as a sequence of steps. At each step,
every processor reads some data from the global memory, performs some operation
on it and then writes the results back in the global memory. However, PRAM is too
simple to be realistic. Efficient PRAM algorithms often perform poorly on actual
parallel architectures. This is because the model neglects communication and syn-
chronisation costs.

In a distributed memory model, processors communicate by exchanging messages
through an interconnection network. A representative model in this class is the
standard delay model (SDM) [19]. In this model, a machine consists of a set of
processors that communicate using an interconnection network. A parallel program
is described by a directed acyclic graph (DAG) called a task graph. In such a graph
nodes correspond to tasks, whereas arcs correspond to communications. A task
cannot start unless it has received data from all its remote predecessors. Upon
completion, a task sends its results to all its remote successors. The communication
cost is neglected when tasks are assigned to the same processor, and depends on
message size otherwise. SDM model takes into account communication latency, that
is the time spent by the message to go through the interconnection network. How-
ever, the model ignores some other features relevant to current parallel architectures
namely communication overheads. Communication overhead is the time a compu-
tation processor spends managing a data transfer. Many studies have shown that this
is not the case for many parallel architectures especially when a high level commu-
nication software is used [6]. A second drawback of this model is that the per-pro-
cessor bandwidth is unbounded. In other words, a processor can send or receive as
many messages as needed at a time.

A bridging model describes a parallel architecture using a set of pertinent pa-
rameters. The aim is to bridge the gap between the world of parallel programming
and the world of parallel architectures. This class includes BSP [21], QSM [8] and
LogP [5] models. In this paper, we will focus on the LogP model since it is more
realistic than many other models and can be easily extended to cope with various
features related to parallel architectures. LogP addresses two aspects of inter-pro-
cessor communication: communication overheads on computation processors as
well as communication latency.

In this work, we present two list scheduling heuristics for the LogP model. List
scheduling is the most frequently used technique when the number of processors is
bounded. It has been implemented in many programming environments [15,20,23]
which confirms its usefulness in practice.
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The proposed algorithms are based on the ETF strategy. We also give a worst-
case performance bound. The next important problem under consideration is per-
formance comparison of the proposed algorithms. We performed an extensive
simulation study for different parallel program attributes, and parallel architecture
characteristics. The aim of the conducted simulation was to indicate the area of
application of these algorithms.

The structure of this paper is as follows. Section 2 presents some results on
scheduling under both SDM and LogP models. Section 3 contains a brief description
of the LogP model and presents some basic notations used throughout the paper. In
Section 4, the scheduling problem under the LogP model is discussed, the proposed
list scheduling algorithms are described and their performance bounds are given. In
Section 6, simulation results for the implemented algorithms are reported. Finally,
we provide some conclusions on the applicablility of list scheduling to the LogP
model as well as some guidelines for future work.

2. Related work
2.1. Scheduling under SDM-like models

Many papers were concerned with the problem of scheduling task graphs in some
more or less realistic computational models. In [19], Rayward-Smith showed that the
problem of finding a minimum-length schedule for a UECT graph ! is NP-complete
when the number of processors is a parameter of the problem. In [18], the authors
showed that the problem is NP-complete for task graphs with a constant commu-
nication delay C, C > 1, unit execution times and when the number of processors is
unbounded.

However, some instances of the scheduling problem remain tractable. In [3],
Chrétienne described an optimal polynomial-time scheduling algorithm for trees.
This algorithm is based on task replication. The same author showed that the problem
is tractable when the number of processors is unbounded and when cither the tree is
flat or the communication times are not greater than the execution times [2]. A survey
of some recent results on scheduling with communication delays can be found in [4].

Many heuristics have been suggested to deal with general task graphs under
SDM-like computational models. These heuristics are twofold : placement heuristics
and clustering heuristics. Placement heuristics assume a bounded number of pro-
cessors. On the other hand, clustering heuristics assign tasks to an unbounded
number of virtual processors, so that communication delays are minimized. We
focus in this paper on placement heuristics. List scheduling is probably the most
frequently used placement algorithm. It has been studied for almost forty years since
the pioneer works by Hu [10] and Graham [9]. This approach has been successfully
applied for various computational models. Also, a performance bound (Graham’s

! Unit Execution and Communication Times.
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bound) has been computed when no communication delays are considered [9].
Graham’s algorithm was first extended by Rayward-Smith to the UECT case [19]. A
performance guarantee has been established for this case, as well.

In [11], Hwang et al. presented a list scheduling algorithm called Earliest Task
First (ETF). This algorithm deals with arbitrary execution and communication de-
lays. The authors established that the schedules produced by ETF have a length not
greater than

1
<2 - 1_3>Wopt + Chaxs

where P is the number of processors, wey the length of an optimal schedule when
communication delays are ignored, Cp,y is the length of a maximum-length path in
the graph when execution delays are ignored. Notice that the term (2 — (1/P))wop is
the bound established by Graham. Since the heuristics we suggest in this paper are
based on ETF, we present a brief description of this algorithm.

In ETF, the earliest starting time (denoted by e;) of each available task * is
computed. To do so, the heuristic finds out the set of available tasks (denoted by A4)
and the set of free processors (denoted by I) at the current moment (denoted by CM).
Then, every task 7; in A4 is tentatively scheduled on each free processor p and the time
when all messages incoming from 7;’s remote predecessors arrive is computed. Such
time is denoted by (7}, p) and computed according to the expression:

r(T;,p) = 0 if T; has no predecessors,
r(Ti,p) = max{o(T;) + w(T;) + t(I(T}, T))|T; € Pred(T;) and n(T;) # p},

where 1.(/(T}, T;)) is the communication time of an /(7}, T;) words message, w and n
are respectively the weight and allocation function, and ¢ is the starting time.
Thereafter, a task 7 which can be started first on a processor p is chosen. If e (T) is
greater than the completion time of some currently executed task then the scheduling
decision is postponed to take into account tasks which become available at the next
decision moment (denoted by NM) and to consider new possible task placements.
The complexity of the ETF algorithm is in O(Pn?) where n is the number of tasks and
P is the number of processors. An outline of ETF is given in Algorithm 1.

2.2. Scheduling under LogP

Scheduling task graphs is much more difficult under the LogP model. The
problem is NP-complete even for some simple graphs such as fork graphs [22] and
coarse-grained inverse trees [16].

Some polynomial-time optimal algorithms have been proposed. In [16], the au-
thors described an algorithm that computes optimal linear schedules for inverse
trees. The same authors proposed an algorithm to determine optimal k-linear
schedules for trees [26]. A schedule is said to be k-linear if each processor is allowed

2 A task is said to be available at time 7 if all its predecessors terminate before 7.
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to execute at most k parallel paths. In [14], optimal polynomial-time algorithms are
described for some special cases of the fork graph.

Some heuristics have been presented for the general case. The work in [25] ad-
dressed some issues related to scheduling under LogP. In [1], the author proposed a
scheduling heuristic based on task replication under a LogP-like computational
model.

Algorithm 1. ETF
Begin
{Initially: I ={0,...,P—1},A={T € V|Pred(T) = 0},CM = 0,NM = 00,0 = 0}
while (O # V) do
while (4 # 0 and [ # () do
{Compute for every task 7 € A and for every processor i € I value #(T,i)}
{Select a task 7" and a processor i s.t. T € 4,i € I and
#(T,1) = minge, miny #(T,i). Let & = max(CM, r(T,7))}
if (6, < NM) then
Assign T to i
Update sets 4,1, 0.
if (6(T) +w(T) < NM) then
NM := o(T) + w(T);
end if
else {&, > NM}
exit the innermost while loop.
end if
end while
{Update CM,NM,A,I}
end while
End

3. Basic concepts and notations
3.1. LogP model

As mentioned in Section 1, the LogP model was defined in [5] with the aim to
bridge the gap between the world of parallel programming and the world of parallel
architectures. In other words, the model is intended to allow writing parallel algo-
rithms and programs that would sustain good performance when run on a wide
range of parallel architectures. In order to achieve such a goal, the model describes a
parallel architecture using four parameters:

L (latency) is the time it takes a message to go through the interconnection

network.

o (overhead) is the time needed by a computation processor to manage a commu-

nication. Managing a communication may correspond to dividing the message

into packets at the sender side and to error checking at the receiver side.
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g (gap) is the minimum delay required between two consecutive communication
events of the same type (i.e. two sends or two receives). In other words, a proces-
sor can send (or receive) at most one message every g time units. Such a gap occurs
for example when a processor must wait for a communication buffer to be avail-
able before sending the next message.

P is the number of processors.

Besides these parameters, the model makes some assumptions on the parallel
architecture. First, it is assumed that the interconnection network has a completely
connected topology. Second, it is assumed that the network has a bounded capacity.
More precisely, at most [(L/g)] messages coming from or destined to a processor
can be in transit at any time. Finally, the model assumes that processors run asyn-
chronously.

In LogP, only elementary messages can be exchanged between processors. How-
ever, it is well known today that communicating long messages leads to better
performance on most of the current parallel architectures. In order to overcome this
drawback, many researchers defined some LogP extensions [12,17]. These extensions
allow processors to exchange messages of arbitrary sizes. Therefore, the model pa-
rameters (except P) become functions of message size.

3.2. Definitions

A parallel program is described by a directed acyclic graph (DAG) denoted by
G = (V,E,w,I). Each node T; in V represents a task. A weight w(T;) is associated to
T;. This weight is the execution time of task 7;. Each arc (7;,7;) in E represents a
communication from 7; to T;. A weight /(7;, T;) is associated to (T}, 7;). This weight is
the length of the message sent by 7; to 7;. Let T; be a task. We denote by Predg(T;)
(resp. Succg(T;)) the set of immediate predecessors (resp. successors) of 7; in G.

Let M = (L,0,g,P) be a LogP instance such that g = 0. > Moreover, we will
restrict ourselves to LogP instances with unbounded capacity. A schedule of G under
M is a map S that assigns to every task 7; a pair (a5(7;), ns(T;)). ns(7;) is the pro-
cessor that will execute 7;. o5(7T;) is the starting time of 7; on 7g(7;).The overhead
parameter can be taken into account by scheduling communication tasks. Such tasks
are defined as follows. Let (7}, 7;) be an arc in E. Assume that 7; and 7} are assigned
to distinct processors in S. A send task, send(T},dy, ms(7;)) and a receive task
receive(ns(T;), T;,d;;) have to be scheduled on ns(7;) and ns(7;), respectively.
Task send(T;,dy, ns(7T;)) sends message d;; produced by 7; to ms(7;). Similarly, task
receive(ns(T;), T;, d;;) receives message d;; produced by 7; from ns(T;).

Schedule S is said to be feasible under M if and only if the conditions below are
fulfilled:
e A processor does not execute more than one task at a time.
e A computation task does not start unless it has received all its data.
e A computation task does not send any of its results before it completes.

3 Such an assumption holds for some parallel computers [12,13].
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¢ A message cannot be received, unless it has been sent. Moreover, a delay of at least
L is required between a send task and its corresponding receive task.
e All tasks in V are scheduled.

Let S be a schedule of G. We denote by PT(S) the completion time (also called the
makespan) of S. Let (7;, T;) be an arc in E. We denote by L(/(7;, T;)) (vesp. o(I(T;, T}))
the latency (resp. overhead) of (7}, 7;) communication. The duration of this com-
munication depends on the order according to which 7; sends data to its successors
and on the order according to which T; receives data from its predecessors. The worst
case is reached when (7;, 7;) message is the last message sent by 7; and is the first
message received by 7;. Let Ly, (77, 7;) denote the maximum duration of (73, 7;)

communication. Then L. (7}, T;) is given by the following expression [17]:

Lua(T5, T) = 20T, T)) + LUTLT)) + 3 o(U(T 1)
Ty €Suceg(T)\{ T}
+ Z o(I(T}, T))).

TkEPi'L’dG(n)\{n}

The granularity of task T; is defined as follows:

(Ti) = o0 if T; has no predecessors,
(T min{w(T))|T)EPredq(T;)} .
W) = maxitom (7 7T oy Otherwise.

The granularity of task graph G is
7(G) = min{y(7})[T; € V'}.

The graph is called coarse grained when y(G) = 1, and is called fine grained,
otherwise.

4. List scheduling under LogP

As mentioned earlier, our algorithms are based on the ETF heuristic. Originally,
the ETF was proposed for an SDM-like computational model in which send and
receive tasks are not taken into account (i.e., g = o0 = 0). Taking into account these
tasks implies further modifications of the original ETF algorithm since the scheduled
communications influence the starting times of other data transfers. More specifi-
cally, the earliest starting time of each available task has to be re-computed whenever
a task is assigned to a processor. This is not the case in the original ETF algorithm.
In the proposed extensions to the ETF, we assume that the execution of each task is
preceeded by a sequence of receive tasks concerned with incoming communications.
After task completion, all outgoing communications are initialized before the exe-
cution of any other task on this processor. This simple communication scheme re-
duces the number of possible assignments of send and receive tasks and so the
algorithm complexity. Another problem has been encountered in the implementa-
tion. Consider a computation task 7. The number of the remote successors of T
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cannot be computed unless all the successors of T are scheduled. Thus, the time
during which processor 7n(7) is involved in sending the results of 7 cannot be
computed in advance. Two approaches can be applied to cope with this problem. If
task starting times can vary during the construction of a schedule, then task exe-
cutions can be delayed due to allow the insertion of send tasks. Otherwise, if task
starting times are fixed then idle slots have to be inserted in the schedule in advance
to accommodate prospective send tasks. In our opinion, the first approach can lead
to too complex algorithms because the delay in the starting time of one task can
propagate along a chain of tasks. We propose two opposite methods of assigning
time slots to potential send tasks:

e Two-pass ETF algorithm (2ETF). In the first pass, an ETF schedule is computed
assuming that send and receive overheads are a part of communication time but
they do not occupy processors. In the second pass, for the given task allocation
the schedule is adjusted according to LogP requirements.

e A strategy with reservation (ETFR). It this algorithm, it is assumed that all task
successors are to be allocated on other processors. Thus, an idle slot is inserted
which is sufficiently large for all potential send tasks.

4.1. Two-pass ETF heuristic

During the first pass, the original ETF algorithm is applied under an SDM
model instance in which the cost of a communication (7;,7;) is set to be
t. =20({(T;,T;)) + L(I(T;,T;)). During the second pass, communication tasks are
inserted using algorithm LogP_FEASIBLE_SCHEDULE (whose code is detailed
in Algorithm 2). This algorithm accepts as an input a precedence graph G, a LogP
instance M and the schedule S of G under SDM computed by the first pass. It
produces a schedule S’ of G under LogP. This schedule is feasible under M
provided that g = 0. Schedule S’ is computed as follows. Tasks are visited ac-
cording to increasing values of their starting times in S. At each time step ¢, the
algorithm computes the set C of all tasks that start at 7 in S. This is done by
statement S.CurrentTasks(C) in Algorithm 2. Then, for each task 7; in C, the
algorithm schedules the tasks that receive 7; input data from its remote prede-
cessors. Afterward, task 7; is scheduled. Finally, the tasks that send 7; output data
to its remote successors are scheduled. Let us calculate the complexity of the
2ETF heuristic. The complexity of the first pass is in O(n*P) [11]. Consider now
the second pass. Collecting tasks that start at time 7 can be done in O(P).
Scheduling a task 7; in C requires visiting all the immediate predecessors and
successors of T;. So this can be done in O(dmax) Where dmax is the maximum degree
of graph G. On the other hand, the cardinal of C is not greater than P. So, the
complexity of the processing performed at each time step is in O(Pdy.x). More-
over, at most n time steps have to be considered since at most n tasks are
scheduled on a single processor in S. So, LogP_FEASIBLE_SCHEDULE has a
complexity in O(nPdy,x). Since dpax < n, the complexity of 2ETF is in O(n*P) as
the original ETF.
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Algorithm 2. LogP_FEASIBLE_SCHEDULE
Input
G,w, I: a precedence graph.
= (L,0,g,P): A LogP instance s.t. g = o.
S: a schedule of G under SDM.
Output
S’: a schedule of G under M.
Begin
{Associate to every processor i, (0 <i < P) variable c#(i) representing the comple-
tion time of 7 in §'. Initially: c#(i) =0, Vi, 0<i < P}
S.CurrentTasks(C);
repeat
for each task 7; in C do
g (T}) := ms(T));
for each task 7; € Pred(T;) do
if TC_g(Tk) 7é TCs( ) then
ns (receive(ng (Ti), Ty, diy)) == ng(T});
O'Sr (receive(ngr(Tk) Tk, dk/)) = IIlaX(C‘l(T[Sr(Y}))7 Oy (send(Tk, dkja 7[5/(]})))
+o(I(T3, ) + L(I(Ti, T)));
ct(ms (T))) = o (receive(n (Ti), Ty, dy)) + o(I((Ti T)));
end if
end for
o5 (T;) := ct(ns (T}));
et(ng(T})) i= o5 (T)) +w(T));
for each task 7, € Succ(T, ) do
if TC_g(Tk> 7é 7'[3( ) then
ng/(send(T dk, TCS(Tk))) = TCS/(T)'
o (send(7 d (1)) = s (1)
ct(ns (T))) := o5 (send (T, dy, s (1)) + o(I(T), T1)):
end if
end for
end for
S.CurrentTasks(C);
until C = ()
End

4.2. ETF with reservation heuristic

Like ETF, ETFR assigns highest priorities to tasks that can start the earliest.
Nevertheless, in order to prevent a computation task from delaying some send tasks,
ETFR reserves enough space to accomodate all send tasks related to a given com-
putation task. More specifically, ETFR proceeds as follows (the code is detailed in
Algorithm 3). The set of ready tasks and the set of available processors at the current
moment (CM) are determined. These sets are denoted by A and I, respectively. Then,
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the heuristic computes for every task 7" in 4 and for every processor i in [ the time
es(T,i) at which i may start 7. This time is computed as follows. Let 7" be an im-
mediate predecessor of 7. Let NSM(T") be the next send moment of task 7, that is
the time at which processor n(7") can send the next message of 7'. The immediate
predecessors of T are then sorted according to non-decreasing values of
NSM(T") 4+ o(I(T",T)) + L(I(T', T)). This expression is the time at which the message
sent by 7" to T reaches a remote processor. Let sPred be the array composed of the
sorted elements of Pred(T). The following procedure is used to compute (7, i).

Begin

es(T,i) := ct(i); {ct(i): current completion time of processor i}

for (j = 1 to |sPred|) do
es(T,i) == max(es(T, 1), NSM (sPred[j]) + o(I(sPred|j], T)) + L(I(sPred[j],T))
+o(l(sPred[j], T));

end for

End

Afterward, ETFR selects the task 7' and the processor i that minimize e,. Tasks
that receive the input data of 7' from its remote predecessors are scheduled. Once 7
finishes, ETFR reserves enough space for the tasks that send the results of 7 to its
remote Successors.

Let 7" be an immediate successor of 7. Assume that 7 and 7" are assigned to the
same processor. Then, the space reserved for communication (7', 7") becomes useless.
However, this space is not used by ETFR to schedule other tasks. This leads to a
simpler and a more efficient heuristic but may result in unnecessary idle periods. In
order to assess the effect of these idle periods on the final schedule length we con-
sidered another heuristic called ETFRGC (ETFR with garbage collection). This
heuristic proceeds in two phases. In the first phase ETFR is applied. In the second
phase, useless idle periods are removed from the ETFR produced schedule. The
garbage collector proceeds this way. Tasks are visited according to decreasing values
of their starting times (i.e. the Gantt chart is scanned from right to left). At each time
step ¢, the algorithm computes the set C of all tasks that start at time ¢. This is done
analogously r to 2ETF. Let T be the current task. Let f be 0 if 7 is the first task
scheduled on #(7") On the contrary, let f'be the finish time of the task scheduled just
before T on n(T). Two cases are distinguished. If 7' is a computation or a send task,
then o(7) is changed to f'(thus, the potential idle period [f, o(T)] is removed). Now,
assume that 7'is a receive task. Let fs be the finish time of the sending task associated
to T(cf. Fig. 1). Then o(T) is changed to max(f,fs+ L). This ensures that the
schedule remains feasible once all the useless idle periods are collected.

Now, let us calculate the complexity of ETFR. The outermost while loop repeats
at most n times. The innermost while loop repeats at most 2z times. Remember that
computing es(7,i), T € A,i € I requires sorting T incoming communications. So the
complexity of this step is in O(nPd_, logd_ ) when all tasks in 4 and all processors
in I are considered. d, denotes the maximum in-degree of G. Scheduling task 7 and
reserving space for send tasks have a complexity in O(d,,. ) and O(d, ), respectively.

max
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Fig. 1. Collecting useless periods in the case of a receive task.

d! . denotes the maximum out-degree of G. So, an iteration of the innermost while
loop has a cost in O(nPd_, logd_ ).

max max

Therefore, the complexity of ETFR is in O(n*Pd,, logd, ). On the other hand,

the garbage collection phase of ETFRGC has a complexity in O(nP). So, ETFRGC
also has a complexity in O(n*Pd,,, logd,, ).

Algorithm 3. ETFR
Begin
{Initially: 7 = {0,...,P—1},4A = {T € V|Pred(T) = 0},CM = 0,NM = oo,
O0=0,ct(i)=0Viie{0,...,P—1}}
while (O # V) do
while (4 # 0 and [ # () do
{Compute for every task T € 4 and for every processor i € [ value e(T,i)}
{Select a task 7 and a processor i st T ediel and
es(f7 1) = mingey ming eg(7T, 7). Let & = es(f",i)}
if (é; < NM) then
for all (T’ € sPred(T) s.t. n(T") # 1) do
{Schedule necessary communication tasks.}
n(send(T',d',1)) .= n(T"); o(send(T',d',1)) :== NSM(T');
n(receive(n(T"), T',d")) :=1;
o(receive(n(T"), T',d")) := max(o(send(T",d',1)) + o({(T",T))
+L(I(T',T)),ct(i));
NSM(T') := NSM(T') + o(I(T", T));
ct(i) := a(receive(n(T"), T',d")) + o(I(T", T));
end for
n(T) =1 G(T) =&
NSM(T) = o(T) +w(T);
{Let v= ZT’GSuCC (T) O(I(T T/))
ct(i) := o(T) +w(T) +
A —A\{T}I =1\ {i
if(ct(i) < NM) then
NM = ct(i);
end if
else {¢, > NM}

;{Reserve v time units for send tasks}

}Q QU (T}
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exit the innermost while loop.
end if
end while
{Update CM,NM,A,I}
end while
End

5. An upper bound on LogP schedules

Let G=(V,E,w,I) be a task graph. Let M = (L,0, g, P) be a LogP instance such
that g = 0. Let S be a schedule of G produced by a heuristic H under a given
computational model. This latter could be SDM or even a model where communi-
cation costs are neglected. The only claim is that S respects the precedence relation
defined by E. Let S’ be a LogP schedule of G under M which is derived from S by
inserting necessary communication tasks. Assume that a performance guarantee B is
already known for heuristic H. An upper bound on the length of S’ is given by the
theorem below.

Theorem 1. The length of S’ is not greater than (1 + (1/79(G)))B where y(G) is the
granularity of G.

Proof. The proof uses an intermediate graph G'. The set of G’ nodes is V. We denote
by E’ the set of arcs in G'. This set is constructed from E as follows:
e Initially £’ is equal to E.
e Add to E'arcs(T;, T;) such that
o (T,T) ¢E,

o T; and T; are scheduled on the same processor in S and o5(7;) < a5(T}),

o there is no task which is scheduled on n5(7;) between 7; and 7} in S.
e Let (73, T;) be an arc in E'. This arc is deleted from E’ iff

o T; and 7; are scheduled on the same processor in S,

o there exists a task T such that n5(7;) = ns(T;) and o5(7;) < 05(T}) < as(T7).

The way to construct £’ is shown in Fig. 2.

Each node 7; in G’ is associated to a cost w(7;). Each arc (7;, T;) in E’ is associated
to a cost ¢(T;, T;). This cost is defined as follows:
o if 75(T}) # 7s(T)) then o(T;, T}) = LT3, T)).
o if n5(T}) = n(T)) then o7, T}) = 3 cquecorry 01T T2)

We call a cluster in G’ the set of tasks asmgned to the same processor in S. Remark
that each cluster in G’ is a path. Moreover, for each path C in G’ we have:

> w(T) < PT(S).
TieC
Now, let (T}, T;) be an arc in E'. If 75(7;) = ng(T};) then T; cannot start in M unless
T; has sent data to all its remote successors. If ng(T;) # ns(7;) then T; cannot start
unless the data sent by 7; to T} is available on 7n5(7}).
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n y 21 P2

Fig. 2. Assume that 7 is scheduled just after 7; on the same processor in S. Then arc (71, 7») is added to
E'. After adding this arc (7}, T5) becomes redundant, so it is deleted from £'.

Once &' is built, each arc (7}, T;) € E' will have a real cost denoted by rc(7;, T)).
This cost corresponds to the delay undergone by 7; due to 7;’s communications. We
have re(T;, 7)) < c(T;, T).

On the other hand, the completion time of S’ is the length of a longest path in G
assuming that each arc (7;, T;) has a cost of rc(T;, T;). Let CP = (T}, ..., T;) be a path
in G’ of maximum length assuming that each arc (7, 7;) in E' has a cost of o(T;, Ty).
According to the previous remarks, we deduce that

q—1

q
PI(S)< Y w(T)+> (T, T,,).
: .

<.
I

-
I

Since ¢(7;, T}) < Lmax (T3, T;) Y(T3, T;), (T;, T;) € E' and using the granularity definition,
we deduce that

NS o B (R s

il -

Notice that when the graph is coarse grained the makespan of S’ is at most
twice B.

The usual technique for deriving upper bounds is to decompose the Gantt chart of
a schedule S produced by a given heuristic H into computation periods and idle
periods. This leads to the expression
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PT<S>=}3<Zw<T>+ 3 wm),

TeV Teldle(S)

where Idle(S) is the set of idle periods in S. Such periods are seen to be virtual tasks
having a cost of w. Then, the technique attempts to cover the idle periods by a path
in G. Such a path usually exists because the main purpose of a list scheduling al-
gorithm is to efficiently use the system processors by minimizing their idle times.

Things are not so similar under the LogP model. Indeed, the Gantt chart of a
schedule S decomposes as follows

Tev Teldle(S) TeSend(S) TERecv(S)
1
=5 (ZW(T) + > wm+2 Y W(T)>7
Tev Teldle(S) TeSend(S)

where Idle(S) is defined as above. Send(S) and Recv(S) denote the set of send and
receive tasks in schedule S, respectively.

Therefore, a good heuristic should minimize the expression >, (s W(T)+
2> resenasy W(T). Unfortunately, minimizing idle periods may involve more send
tasks and vice versa. The 2ETF heuristic minimizes idle periods under an SDM
model instance. However, inserting communication tasks may lead to a high number
of idle periods and send tasks. On the other hand, ETFRGC attempts to minimize
idle periods assuming a maximum number of send tasks, then it removes the useless
idle periods. So, both heuristics make a special emphasis on minimizing idle periods
and do not control the number of the generated send tasks.

6. Experimental results

We have analysed the worst case behaviour of any list scheduling algorithm
(including ETF) under LogP. We deal in this section with comparing the two
complementary heuristics 2ETF and ETFR. In the first heuristic, computation tasks
are assigned to processors without taking into account communication overheads.
Then, send and receive tasks are inserted into the schedule. Notice that this approach
is followed by mostly all of the current scheduling systems such as PYRROS [24] and
HYPERTOOL [23]. On the other hand, the second heuristic assigns computation
tasks to processors assuming that all send tasks are scheduled. We will also evaluate
the effect of collecting useless idle periods induced by ETFR on the makespan.

Twenty randomly-generated graphs were used in the experiments. Each graph
consists of 20 layers and on average eight tasks per layer. These graphs belong to two
classes. In the first class (graphs 1-10) the average number of successors of a task
(denoted by s) is two. In the second class (graphs 11-20), s is equal to eight. Average
execution time is s * o + L. Assuming that L = o = 10, average execution time is 30
and 90 for the two proposed classes of test graphs. Both the execution times and the



T. Kalinowski et al. | Parallel Computing 26 (2000) 1109-1128 1123

Table 1
Graphs granularities
Graph L=10,0=10 L=10=10 L=10,0=1
1 0.029 0.033 0.125
2 0.029 0.033 0.125
3 0.011 0.012 0.056
4 0.010 0.011 0.053
5 0.013 0.014 0.059
6 0.011 0.012 0.056
7 0.010 0.011 0.053
8 0.010 0.011 0.053
9 0.008 0.009 0.048
10 0.010 0.011 0.053
11 0.005 0.005 0.032
12 0.006 0.006 0.037
13 0.013 0.013 0.080
14 0.028 0.029 0.185
15 0.008 0.008 0.045
16 0.010 0.011 0.053
17 0.040 0.043 0.250
18 0.005 0.006 0.036
19 0.018 0.020 0.100
20 0.021 0.023 0.130

number of successors are uniformly distributed. We mainly aim at answering the
following questions. Where could current scheduling approaches like 2ETF be ap-
plied? Do ETFR and ETFRGC produce better schedules than 2ETF.

The granularities of the test graphs are shown in Table 1. * Notice that graph
granularities do not increase significantly when only latency time is reduced (cf.
columns 2 and 3 in Table 1). However, the granularity increase is much more im-
portant when the overhead is reduced (cf. columns 2 and 4 in Table 1).

The experiments were organised as follows. In a first step, we applied the original
ETF algorithm under the SDM model assuming a communication cost of
t. =2 % 0+ L. Three values of the pair (L, ) were considered: (10, 10), (1,10) and
(10,1). Table 2 shows the results obtained for P = 8. Table 3 shows the results
obtained for P = 4.

In a second step, we conducted experiments for three LogP instances with dif-
ferent communication parameters and such that P = 8. The obtained results are
shown in Table 4. In a third step we conducted experiments with the same com-
munication parameters as in the previous step, but with only four processors. The
obtained results are shown in Table 5.

Let us analyse the results in Tables 2 and 3 first. These tables allow to establish the
following. Reducing the latency time from 10 to 1 (cf. columns 3 and 4) involves an
average makespan improvement of 3.9% when P = 4 and 5.8% when P = 8. On the

4 The granularity recalled in Section 3 is used.
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Table 2
Results of the original ETF for a 8-processors machine
Graph Lyeq L=10,0=10 L=1,0=10 L=10,0=1
1 2316 1188 1114 1024
2 3667 1175 1087 1012
3 3875 1201 1084 955
4 4604 1251 1154 1044
5 3124 1021 918 832
6 4588 1245 1143 1066
7 4827 1173 1084 1011
8 4991 1272 1165 1079
9 44381 1291 1193 1091
10 3497 1141 1021 937
11 14365 3562 3416 3312
12 14783 3514 3367 3262
13 16458 3810 3644 3559
14 12455 3512 3422 3254
15 14802 3513 3352 3244
16 13111 3469 3361 3255
17 12658 3364 3232 3093
18 15420 3521 3394 3275
19 12652 3497 3365 3233
20 17775 3791 3749 3548
Table 3
Results of the original ETF for a 4-processors machine
Graph lyeq L=10,0=10 L=1,0=10 L=10,0=1
1 2316 1239 1137 1062
2 3667 1342 1271 1234
3 3875 1351 1284 1244
4 4604 1483 1403 1344
5 3124 1171 1086 1045
6 4588 1468 1407 1369
7 4827 1464 1425 1400
8 4991 1480 1435 1374
9 4481 1495 1425 1346
10 3497 1311 1200 1149
11 14365 4466 4326 4271
12 14783 4465 4331 4306
13 16458 5102 5032 4969
14 12455 4374 4303 4245
15 14802 4464 4356 4308
16 13111 4513 4408 4323
17 12658 4172 4202 3998
18 15420 4628 4547 4453
19 12652 4358 4292 4209

20 17775 5042 4981 4902
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other hand, reducing the overhead from 10 to 1 (cf. columns 3 and 5) involves an
average makespan improvement of 8.3% when P =4 and 11.6% when P = 8. The
improvements are greater in the case of 8-processors machines. This is not surprising
since the interconnection network becomes the bottleneck when the processors
number is high.

Now, let us compare the results of the original ETF algorithm with those of the
2ETF algorithm. The purpose of this comparison is to assess the effect of inserting
communication tasks into an SDM schedule. We noticed that inserting tasks dras-
tically increases the makespan by 43% in the case when L = o = 10 and by 48% in
the case when L =1 and o = 10 (This is an average over the twenty graphs and
assuming that P = 8). However, the makespan increases only by 4% when L = 10
and o = 1. So, as expected, inserting communication tasks increases drastically the
makespan in machines where the overhead is a bottleneck.

Tables 4 and 5 show that algorithms 2ETF, ETFR and ETFRGC produce
schedules of nearly the same length under the third LogP instance (i.e. L = 10 and
o = 1). In such instance, the overhead is not an important issue. So, whatever al-
gorithm is applied (original ETF, 2ETF, ETFR or ETFRGC) the obtained schedules
do not differ too much. Hence, we will not consider the two LogP instances
(L=10,0=1,P =4) and (L = 10,0 = 1, P = 8) in the rest of our discussion.

Now let us compare 2ETF and ETFR. Table 4 shows that taking overheads into
account while scheduling (ETFR case) leads to better makespans than inserting

Table 4
Schedules lengths when P = 8
Graph  t, L=0=10 L=1,0=10 L=10,0=1
2ETF ETFR ETFRGC 2ETF ETFR ETFRGC 2ETF ETFR ETFRGC
1 2316 1522 1516 1440 1380 1441 1358 1046 1058 1045
2 3667 1618 1609 1511 1561 1507 1416 1041 1074 1054
3 3875 1710 1558 1459 1657 1470 1370 991 991 977
4 4604 1815 1720 1654 1628 1623 1575 1087 1133 1120
5 3124 1428 1415 1297 1374 1375 1289 855 869 855
6 4588 1817 1788 1683 1777 1720 1651 1114 1118 1106
7 4827 1662 1633 1504 1659 1583 1459 1055 1045 1032
8 4991 1745 1682 1597 1841 1646 1566 1111 1130 1119
9 4481 1883 1714 1654 1812 1650 1582 1136 1127 1117
10 3497 1632 1475 1376 1475 1428 1304 970 975 957
11 14365 5275 4875 4845 5217 4639 4552 3484 3455 3447
12 14783 5149 4641 4580 5184 4667  46ll 3392 3319 3305
13 16458 5991 5345 5275 5694 5275 5195 3758 3825 3808
14 12455 4742 4349 4293 4548 4343 4290 3339 3358 3344
15 14802 5154 4718 4630 5067 4571 4481 3363 3415 3401
16 13111 4936 4595 4514 4960 4525 4459 3388 3399 3383
17 12658 4470 4196 4149 4335 4025 3985 3189 3225 3218
18 15420 5088 4746 4676 5160 4552 4455 3397 3474 3460
19 12652 4953 4548 4477 4922 4458 4350 3344 3284 3270
20 17775 5869 5193 5116 5885 5115 5036 3723 3713 3703
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Table 5
Schedules lengths when P = 4
Graph ¢, L=0=10 L=1,0=10 L=10,0=1
2ETF ETFR ETFRGC 2ETF ETFR ETFRGC 2ETF ETFR ETFRGC
1 2316 1586 1622 1446 1483 1602 1467 1092 1091 1074
2 3667 1919 2117 1857 1920 2118 1858 1295 1327 1301
3 3875 1963 2191 1900 2058 2160 1900 1314 1297 1269
4 4604 2381 2445 2166 2292 2442 2149 1435 1455 1422
5 3124 1704 1931 1663 1610 1901 1654 1103 1119 1094
6 4588 2286 2491 2201 2439 2504 2212 1471 1470 1444
7 4827 2236 2519 2171 2295 2492 2087 1491 1493 1455
8 4991 2516 2549 2154 2396 2560 2227 1475 1503 1468
9 4481 2314 2382 2126 2331 2357 2041 1430 1456 1430
10 3497 1801 1989 1735 1917 2017 1753 1206 1227 1197
11 14365 6694 6862 6421 6621 6801 6298 4497 4579 4547
12 14783 7181 6938 6554 6974 6992 6579 4539 4563 4526
13 16458 8103 8145 7645 8076 7877 7432 5232 5229 5165
14 12455 6153 6105 5770 6084 6004 5688 4397 4370 4331
15 14802 6871 6945 6580 6656 6812 6358 4543 4551 4505
16 13111 6388 6443 6095 6220 6469 6199 4499 4536 4494
17 12658 5795 5862 5602 5810 5738 5457 4131 4292 4254
18 15420 7395 7126 6676 7257 7077 6623 4703 4705 4664
19 12652 6724 6458 6197 6477 6266 5946 4396 4434 4381
20 17775 8095 8121 7523 8164 8031 7524 5199 5226 5176

overheads once the schedule is built (2ETF case). The improvement of ETFR over
2ETF is more important for second class graphs (s = 8) than for first class graphs
(s = 2). For instance, when L = 1,0 = 10 and P = 8, the improvement is of 4% for
first class graphs and of 9% for second class graphs. However, ETFR leads to worse
makespans when P = 4 especially for first class graphs. In this case, on average two
task successors are executed on the same processor as their predecessor and so slots
reserved by ETFR are too large. Thus, useless time slots should be removed using
ETFRGC algorithm. In general, the application of ETFRGC leads to significantly
better results (compared to ETFR) if the number of processors is lower than the
average graph width or if the number of task successors is low (cf. graphs 1-10).

7. Concluding remarks

In this paper, we have discussed the scheduling problem under the constraints of
LogP model. We have proposed two new heuristics, based on the ETF algorithm, we
gave performance bounds for them and also we compared the schedules computed
with these algorithms for program graphs with different characteristics. The main
difference between LogP and earlier distributed memory models like SDM is that
communication incurs overhead in computation processor use. Thus, the problem
encountered during construction of program schedules for LogP model is the proper
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insertion of receive and send tasks. In the proposed algorithms, we made an as-
sumption that receive tasks directly precede computation. Similarly, all send tasks
are executed sequentially right when computation completes. This approach reduces
the number of possible task assignments and simplifies the algorithms but possibly
eliminates some good solutions. Moreover, we assumed that task starting times are
fixed, i.e., they cannot be altered after tasks are scheduled. Thus, we were obliged to
leave idle slots in which send tasks were inserted.

The proposed algorithms compute effective schedules if the communication time
is not greater than the average computation time. The best results were obtained for
ETFRGC algorithm. It is strongly recommended to use this strategy if the number
of processors is smaller than the graph parallelism and the number of task successors
is low.

Future research should be aimed at finding low complexity algorithms which
allow to change task starting times due to insertion of send tasks. Moreover, it would
be desirable to compare schedules obtained for program graphs against program
execution times on a contemporary machine which preserves properties of the LogP
model, like the IBM-SP [13].
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