UNIVERSITY OF LEEDS

This is a repository copy of A comparison of some dynamic load-balancing algorithms for a
parallel adaptive flow solver.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1710/

Article:

Touheed, N., Selwood, P., Jimack, P.K. et al. (1 more author) (2000) A comparison of some
dynamic load-balancing algorithms for a parallel adaptive flow solver. Parallel Computing,
26 (12). pp. 1535-1554. ISSN 0167-8191

https://doi.org/10.1016/S0167-8191(00)00045-4

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A A Universities of Leeds, Sheffield & York

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Parallel Computing.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/1710/

Published paper

Touheed, N., Selwood, P., Jimack, P.K. and Berzins, M. (2000) A comparison of
some dynamic load-balancing algorithms for a parallel adaptive flow solver.
Parallel Computing, 26 (12). pp. 1535-1554.

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk



A Comparison of Some Dynamic
Load-Balancing Algorithms for a Parallel
Adaptive Flow Solver

N. Touheed, P. Selwood, P.K. Jimack ! and M. Berzins

School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK

Abstract

In this paper we contrast the performance of a number of different parallel dynam-
ic load-balancing algorithms when used in conjunction with a particular parallel,
adaptive, time-dependent, 3-d flow solver. An overview of this solver is given a-
long with a description of the dynamic load-balancing problem that results from
its use. Two recently published parallel dynamic load-balancing software tools are
then briefly described and a number of recursive parallel dynamic load-balancing
techniques are also outlined. The effectiveness of each of these algorithms is then
assessed when they are coupled with the parallel adaptive solver and used to tackle
a model 3-d flow problem.

1 Introduction

In this work we consider the dynamic load-balancing problem which arises in
the adaptive solution of time-dependent partial differential equations (PDEs)
using a particular parallel adaptive algorithm based upon hierarchical mesh
refinement. This algorithm is applicable to hyperbolic and parabolic problems
and is based upon the adaptive refinement of a coarse root mesh, Ty say, of
tetrahedra which covers the domain and is never coarsened. The flexibility
of the data structures held within the adaptivity code means that the exact
nature of the parallel solver may vary (e.g. finite element or finite volume)
provided it uses a tetrahedral mesh and is able to work with a partition of
the elements of this mesh. In this paper however we restrict our numerical
experiments to a cell-centred finite volume solver. This uses a simple explic-
it conservative scheme for solving three-dimensional Euler equations and is

described in detail in [14,16,18].

1 Corresponding author. E-mail: pkj@scs.leeds.ac.uk.

Preprint submitted to Elsevier Preprint 22 September 1999



In the following section an overview of the parallel adaptive algorithm is given.
Section 3 then discusses the dynamic load-balancing problem that arises when
using parallel adaptivity. This is followed, in Section 4, by a brief description
of four different families of parallel dynamic load-balancing algorithm: two
implemented in publicly available software tools ([9,24]), and two more which
we have developed from existing published work ([17,21]). The paper concludes
by reporting and discussing the results of a number of numerical tests which
are used to contrast the load-balancing algorithms for this particular solver.

2 A Parallel Adaptive Algorithm

The PTETRAD software outlined in this section is a parallel implementation
of a general-purpose serial code, TETRAD (TETRahedral ADaptivity), for
the adaptation of unstructured tetrahedral meshes [18]. The technique used is
that of local refinements/derefinements of the mesh to ensure sufficient density
of the approximation space throughout the spatial domain at all times. A
complete discussion of the parallel algorithms and data structures may be
found in [14-16]. Briefly, however, a tree-based hierarchical mesh structure is
used, with a fairly rich interconnection between mesh objects, requiring two
main data-structure issues to be addressed.

(1) The partitioning of the hierarchical mesh is undertaken at the coarsest
level, 7. This way the mesh hierarchy is such that all parent/child inter-
actions (such as refinement/derefinement) are local to a processor. Also,
the partitioning cost will be relatively low since the coarse mesh is gen-
erally much smaller than the computational mesh. It may, however, be
difficult to obtain a good partition for comparatively small coarse meshes
with large amounts of refinement.

(2) Given a partitioned mesh, data-structures are needed to support inter-
processor communication and to ensure data consistency. The latter is
handled by assigning a processor to own all mesh objects (elements, faces,
edges and nodes), whilst communication is supported through the use of
halo objects (e.g. copies of inter-processor boundary elements and their
associated data-structures). If a mesh object shares a boundary with
many processors, it will have a halo copy on each of these. The main
advantage of maintaining such a rich set of distributed data structures is
that the adaptive code may be used with a variety of different parallel
solvers. The disadvantage however is that, compared to more focused
algorithms (such as [13] for example), the amount of data that needs to
be stored and partitioned between the processors is significantly greater.

Both TETRAD ([18]) and PTETRAD ([14-16]), use a similar strategy to
that outlined in [11] to perform mesh adaptation. Edges are first marked for



refinement /derefinement (or neither) according to some estimate or indicator
(provided as part of the parallel solver). Elements with all edges marked for
refinement may then be refined regularly into eight children. To deal with the
remaining elements which have one or more edge to be refined we use so-called
“oreen” refinement. This places an extra node at the centroid of each element
and 1s used to provide a link between regular elements of differing levels of
refinement. Green elements may not be further refined, as this may adversely
affect mesh quality, but are first removed and then uniform refinement is
applied to the parent element.

Immediately before the refinement of a mesh, the derefinement stage occurs.
This may only take place when all edges of all children of an element are
marked for derefinement and when none of the neighbours of an element to
be deleted are green elements or have edges which have been marked for re-
finement. This is to prevent the deleted elements immediately being generated
again at the refinement stage which follows.

3 Dynamic Load-Balancing

As explained in Section 2 above PTETRAD requires the coarse root mesh, 7o,
to be partitioned into subdomains. It is common to express the requirements
of such a partitioning in terms of the weighted dual graph of the mesh. For
each element, 7, of the root mesh define a corresponding vertex of the dual
graph and let this vertex have weight v;, where v; is the number of leaf-level
elements of the current mesh which lie within root element 7. For each pair of
face adjacent elements in the root mesh define an edge, j, of the dual graph
and let this edge have weight e;, where e; is the number of pairs of leaf-level
elements in the current mesh which meet along face j. For a homogeneous
network of processors, the requirement is to partition this graph so that:

(1) the total vertex weight in each subgraph is approximately equal,

hence the computational load per processor will be about the same when the
solver is applied. In addition to this, the number of halo elements should be
kept as low as possible so as to minimize the communication overhead of the
updates that are required at each time step and the computational overhead
of the halo calculations. Consequently,

(2) the total cut-weight of the partition should be kept to a minimum.

(The cut-weight is defined to be the sum of the edge weights of those edges
which link two vertices of the dual graph belonging to different subgraphs
within the partition.)



Note that both of the above constraints on the partition of 7o (or its dual
graph) should hold at each time step. However, when parallel adaptivity occurs
it is likely that the weights v; and e; will change. In particular, changes in the
vertex weights v; are liable to cause an existing well-balanced partition of 7y
to become unbalanced. The goal of a dynamic load-balancing algorithm is to
modify an unbalanced partition of the dual graph so as to meet objectives 1
and 2 above in such a way that:

(3) there is a minimal amount of migration of data between subgraphs,

so that the communication overhead associated with moving data between
processors does not nullify the computational advantages of obtaining an im-
proved partition. A similar argument motivates the further requirement that:

(4) the load-balancing should be completed in parallel,

as otherwise the resulting sequential bottleneck could seriously reduce the
overall efficiency and performance of the adaptive parallel solver.

It should be noted that there is no reason to expect that 1 to 4 above represen-
t a consistent set of requirements. It is perhaps not surprising therefore that
the vast majority of published dynamic load-balancing algorithms are based
heavily on heuristics. In the next section we introduce two such software tools,
called “Metis” ([8,9]) and “Jostle” ([23,24]) respectively. We also briefly de-
scribe some further heuristics, based upon [17,21], which are also used in our
comparisons.

4 Some Parallel Dynamic Load-Balancing Algorithms

This brief discussion of dynamic load-balancing heuristics will first provide
an overview of the multilevel approach that is available in both packages [9]
and [24] (in which the existing partition is coarsened before rebalancing takes
place), along with the other main features of [9]. In Subsection 4.2 some further
approaches, based upon recursive bisection, are then described. In addition to
these algorithms a number of other dynamic load-balancing heuristics have
been suggested in recent years (see [2,3,6,7,22] or many of the references in
[13] for some typical examples) although none of these are included in this
investigation. One approach that has been successfully applied to the parallel
load-balancing of adaptive unstructured meshes in 3-d is described by Oliker
and Biswas in [13]. Their paper provides more than just another dynamic
load-balancing heuristic however since it describes an entire strategy for load-
balancing, based upon carefully constructed workload and data distribution
models for their specific edge-based solver and mesh data structures. Not



only is an attempt made to quantify the gains that would be made from
repartitioning the data against the cost of undertaking such a remapping but
these gains are estimated, and any resulting repartitioning undertaken, before
the mesh refinement stage so as to minimize the amount of data migration.

4.1  Metis and Jostle multilevel software tools

Both Metis ([8,9]) and Jostle ([23,24]) use multilevel partitioning algorithm-
s which produce a hierarchy of coarsenings of the original weighted graph
(where each level in the hierarchy is produced by merging together groups of
neighbouring vertices of the graph at the previous level), followed by a careful
repartition of the coarsest graph. This new partition is then projected onto
the graph at the previous level and modified using a local algorithm (such as
[4,10]) in order to improve the partition quality. This step of projection onto
the previous level followed by local improvement is repeated until the original
graph has been recovered, when the algorithm terminates. Full details of each
tool may be found in [8,9] and [23,24] respectively.

Parallel Metis provides four different options for the rebalancing of a parti-
tioned weighted graph, the first two of which attempt to modify the existing
partition incrementally (based upon diffusion algorithms; see, for example,
[2,6]) and the second two of which compute entirely new partitions, using the
existing partition to determine an efficient mapping between the old and new
partitions.

(1) PMetisG refers to a multilevel diffusion algorithm that makes use of load-
imbalance information that is obtained globally in order to update the
partition incrementally.

(2) PMetisL refers to another diffusion algorithm which only makes use of
local load-imbalance information in order to update the partition incre-
mentally.

(3) PMetisM refers to a multilevel remapping algorithm which computes an
entirely new p-way partition at the coarsest level and maps this to the
original partition, refining locally at each finer level.

(4) PMetisR refers to another p-way remapping algorithm that computes an
entirely new p-way partition directly and then maps this to the original
partition.

Parallel Jostle only uses a multilevel remapping approach (although a type
of local diffusion algorithm, [7], is automatically built into it). The user is
able to control the amount of coarsening that takes place when forming the
hierarchy of weighted graphs via a “graph reduction threshold parameter”
that must be set. This gives Jostle an indication of how small the lowest-level



weighted graph should be allowed to become during the coarsening process.
Two different choices of this parameter have been used in this work.

(1) PJostle20 here refers to Parallel Jostle with the default value of 20 vertices
for this threshold parameter.
(2) PJostle300 here refers to Parallel Jostle with this value set to 300 vertices.

4.2 Fwe recursive load-balancing algorithms

In this subsection we briefly describe five more dynamic load-balancing algo-
rithms which are all based upon the use of recursive bisection. The first two
of these are based upon recursive coordinate bisection (RCB), [17], and the
other three are based upon the algorithm of Vidwans et al. in [21].

Algorithm RCBO

This algorithm is the simplest of all of those considered here: recursive coordi-
nate bisection, [17]. Although it is not strictly a dynamic algorithm it may be
used in such a context, as discussed in [3] for example. The basic idea at each
level of this approach is to cut the domain perpendicular to the coordinate
direction in which the subdomain is longest and in such a way that there is
an approximately equal load on either side of the cut. This bisection process
is then repeated recursively on each subdomain until the required number of
subdomains is obtained (with some minor modifications if this number is not
a power of two). In our simple implementation each cut is determined sequen-
tially on a single processor by estimating the median element in the longest
direction (this is an element such that the total weight of those elements above
and below it (in the longest direction) are approximately equal).

Algorithm RCBI1

This is a variant of the RCB algorithm in which the sequence of cut directions
is left unchanged from that used in the first repartition. The idea behind this
approach is that the cutting plane should only move a small amount from one
partition to the next, thus making this version of RCB more incremental than
the original and ensuring that the majority of elements remain in the same
subdomain. For the first repartition this algorithm is identical to RCBO.



Algorithm VKV

This is also a relatively simple algorithm, proposed in [21]. It works by divid-
ing the processors into equally-sized processor groups (or groups with a size
difference of one when there is an odd number of processors) based upon the
rank (in the MPI sense, [12]) of each processor. Data is then passed from one
group to the other until the total workload for each group is approximately
equal. This idea is then repeated recursively on each of the processor groups
until there are p equally-weighted groups, each consisting of a single proces-
sor. For the particular application being considered here each data item to be
transferred takes the form of an entire element of the coarse mesh 7y, along
with the locally refined mesh beneath it (plus associated data structures). S-
ince these coarse elements have predetermined weights (dependent upon their
current level of refinement) it will not generally be possible to get an exact
load-balance between the groups at each stage. Nevertheless, the difference in
the total weight of the processors in each group allows us to define a target for
the required load to be transferred. We also define the group with the higher
load to be the “Sender” group and the other group to be the “Receiver”.

Having established the target load to be transferred, the next issue to address
is that of how many nodes (i.e. elements of 7g) each processor in the Sender
group should actually send and which processors in the Receiver group they
should be sent to. In order to do this we introduce the concept of “candidate
processors”. Processors in each group that contain elements of 7Ty that are
face-adjacent to an element of 7y owned by a processor in the other group are
called candidate processors. Where possible, only the candidate processors
are allowed to be involved in the actual migration of data from Sender to
Receiver. In order to determine precisely which elements from the candidate
processors in the Sender group are migrated a simple grid-connectivity-based
approach is then used. This starts by moving cells which are face adjacent
to a cell in the Receiver group and then migrating layers of elements of Ty
(based upon its connectivity) until the required load has been transferred.
Such an approach is acknowledged in [21] to frequently lead to the formation
of jagged partition boundaries and so in both of the variants below a different
heuristic is used to decide which items of data to migrate, and to where. This
is based upon attempting to send an equal share of the data from each of the
candidate processors in Sender and attempting to keep the cut-weight between
the two groups as small as possible, using the notion of “gain” that is defined
in [10]. Further details of this heuristic may found in [19,20], along with more
extensive details of these two extensions of the algorithm.



Algorithm VKV1

This is a variant of the algorithm of Vidwans el al. which involves a slightly
more sophisticated mechanism for dividing the processors into two equally-
sized groups than simply using the processor ranks. This is achieved by con-
sidering the weighted partition communication graph (WPCQ) of the initial
partition of the mesh 75. The WPCG is obtained by having one vertex for
every processor and an edge between two vertices if and only if the corre-
sponding processors are face adjacent to each other (i.e. there is an element
of T on one processor which is face-adjacent to an element of 7y on the other
processor). The weight wy, of the i’ vertex of the WPCG is equal to the sum
of weights of all coarse elements on the i** processor and the weight wg,,; of
the edge connecting the :** and j** processors is equal to the sum of weights
of all coarse element faces on the partition boundary between the two pro-
cessors. We now use a weighted version of the spectral bisection algorithm
(see, for example, [22]) to order the processors (as opposed to just using their
rank) before dividing them into two groups of equal size. The algorithm then
proceeds as in VKVO0 above (but with the modified scheme for selecting which
cells to migrate at each level of the recursion).

Algorithm VKV?2

This is a second variant of the algorithm in [21] which also applies weighted
spectral bisection to the WPCG, but this time at each level of the recursion
rather than as a pre-ordering mechanism. Moreover, when dividing the pro-
cessors into two groups based upon this ordering we do not select groups of
equal size but instead choose to form groups of (approximately) equal total
weight. If the coarse mesh Ty is much more heavily refined in some parts than
others then these two groups could have very different numbers of processors
in them. When attempting to balance the load in each group it is now neces-
sary to define the Sender to be the group with the highest average load per
processor and to send from it enough data to ensure that the average load per
processor in each group is approximately equal after rebalancing. We again
achieve this data migration through the use of candidate processors and make
use of the notion of gain to try to keep the cut-weight between the two groups
as small as possible (as described in [19,20]).

It should be emphasized that, as with the multilevel and diffusion algorithms
of the previous subsection, when applying all five of these recursive bisection
algorithms to the problem outlined in Section 2 we only actually work with
the weighted dual graph of 7y that was defined in Section 3. Only when the
final location of each coarse element in 75 has been determined are the full
mesh data structures transferred.



5 Some Computational Comparisons

In this section we contrast the different dynamic load-balancing algorithm-
s briefly described in Section 4 when used in conjunction with the parallel
adaptive solver outlined in Section 2. This flow solver requires a partition of
the root mesh, 7, such that the total number of leaf-level elements on each
processor is approximately equal. However, when there is heavy local refine-
ment in some regions of the spatial domain (as in the examples below) the
dual graph of 7y has highly disparate weights. Hence, in this paper we are on-
ly testing the performance of the dynamic load-balancing algorithms for one
specific class of problem: the repartitioning of highly non-uniformly weighted
graphs.

In each example we apply the parallel adaptive Euler solver of [14] to model a
shock wave diffraction around the 3D right-angled corner formed between two
cuboid regions (taken from [14,15,18]). The initial condition is of Rankine-
Hugoniot shock data at the interface of the two cuboid regions with a shock
speed of Mach 1.7. Fig. 1 illustrates how the mesh adapts to the solution as
the shock progresses through the domain. Note that the smaller cube is sit-
uated behind the larger cube from the viewpoint selected for this figure. It is
clear that, although a partition of the mesh for the initial condition may be
good, it 1s unlikely to remain so as the solution develops and thus dynamic
load-balancing of the distributed data will be required. All of the computa-
tions described were completed on a 32 processor SGI Origin2000 using the
C binding of MPI ([12]) for communication and data redistribution. To ob-
tain results and timings that are as reproducible as possible the calculations
were performed using the Miser utility which allocates exclusive use of the
processors and memory being used for the entire duration of each run.

5.1  FEzxample one

For this example a root mesh, 7Ty, containing 5184 elements is used and up
to three levels of refinement are allowed. This leads to an initial fine mesh
containing ~ 80000 elements, with more elements appearing in this leaf-level
mesh at later times. Note that throughout these calculations the adaptive
mesh has a resolution equivalent to a mesh of 5184 x 8% ~ 2.6 million uniform,
regular elements.

Table 1 presents a comparison of some partition-quality metrics when the d-
ifferent load-balancing algorithms are applied using 8, 16 and 32 processors.
(Similar results were also collected for 2 and 4 processors, however these are
not included as they show only small variations in performance for the differ-



o

e

VAl
(YaVA

!

Vi

VA
X

Fig. 1. An initial mesh (left) and an adapted mesh after a number of time steps

(right).

ent algorithms and appear to yield little information that cannot be derived
from the 8 processor examples.) In each case the initial partition has a max-
imum imbalance (MaxImb) of over 30% (this is the percentage by which the
total vertex weight of the most heavily-weighted subgraph exceeds the average
weight of the subgraphs) and the cut-weight (CutWt) is given. The solution
times (SolT) quoted represent the wall-clock time (in seconds) taken by the
parallel finite volume solver for the next thirty time steps, either using the
initial partition or using a new partition after application of one of the load-
balancing algorithms. Finally, when load-balancing has been performed, the
total weight of all of the root elements of 7y that have been migrated from one
processor to another is quoted (MigTot). (Note that, with 32 processors, two
of the algorithms failed to produce partitions that could be used by our solver
in this example, which is why there are some blank entries in this table, and
the one that follows. The reasons for this are discussed in Subsection 5.3.)

An alternative form of comparison between the load-balancing algorithms is
provided by Table 2. These results are intended to provide a more complete
picture of each load-balancer’s performance, and are obtained using sequences
of 300 time steps with ten separate mesh adaptations (after every 30 time
steps). Whenever the maximum imbalance exceeds a prescribed tolerance of
10% after adaptivity has occurred the load-balancing algorithm is called. The
solution times (SolT) quoted are the total times for the finite volume solver
to complete all 300 time steps excluding the repartitioning times, which are
given separately. These latter times have themselves been split into the cost
of calculating which coarse elements must be transferred (RepT) and the cost
of actually transferring them (RedT), thus giving a true indication of the to-
tal overhead of each load-balancing algorithm on a particular architecture.
As additional, architecture independent, indicators of this overhead the table

10



also shows the total weight of all of the root elements that were migrated
throughout the 300 time steps (MigTot), the number of times that reparti-
tioning needed to be undertaken (Mig#), and the average amount of data
migrated each time repartitioning took place (ezcluding the first repartition)

(MigAve).

5.2  Ezamples two and three

These examples are similar to the previous one except that now the root
mesh, 7o, contains 34560 elements, with a maximum of three and four levels of
refinement respectively. When up to three levels of refinement are allowed the
initial fine mesh contains ~ 291000 elements, with more elements appearing
at later times, and with up to four levels of refinement the final leaf-level mesh
contains over a million elements. Note that throughout these calculations the
three-level adaptive mesh has a resolution equivalent to a mesh of 34560 x
8% ~ 17.7 million uniform, regular elements, and the four-level mesh has a
resolution equivalent to over 140 million such elements. Tables 3 and 4 present
corresponding results to those given in Tables 1 and 2 respectively for the
three-level example and Table 5 presents results over 300 time steps for the
four-level example. Both of these examples made use of the same initial mesh
and so no table is provided for the rebalancing of the initial partition in the
latter case since the results are identical to those in Table 3.

5.3 Discussion

Before discussing the specific details of the figures presented in Tables 1 to
5 there are a few general observations that should be made. We emphasize
that these results are for a particular parallel adaptive solver and refinement
algorithm applied to a particular system of partial differential equations. Great
care should therefore be taken not to attempt to extrapolate from this data
more than is reasonable. Two particularly important features of the parallel
adaptive algorithm used here are that it requires a partition of the coarse root
mesh rather than the actual computational mesh at each stage, and that a
significant computational overhead is incurred when the cut-weight is large
(due to the additional calculations required on halo elements). These factors
clearly have a significant effect on the outcome of all of the load-balancing
experiments undertaken. We also remark that it is generally accepted that
remapping schemes (such as PMetisM and PMetisR) tend to produce better
cut-weights in the new partition than diffusive schemes (such as PMetisG
and PMetisL) but at the cost of a greater amount of data redistribution.
Furthermore, it should be noted that the implementation of RCB used here

11



is not entirely parallel (since it produces the bisection of each subdomain
sequentially) and so the timings for this (RepT) could possibly be improved
somewhat if a fully parallel algorithm were to be implemented.

The selection of a tolerance of 10% for Tables 2, 4 and 5 is not particularly
significant. Similar data was also collected for tolerances of 5% and 15% with
similar qualitative outcomes. We have chosen to present these specific figures
mainly because the overall solution times were marginally lower for this choice
of tolerance than for the other two. The advantages of basing the decision
about whether or not to repartition upon a tolerance such as this are its
simplicity and generality. It seems unlikely however that this strategy will
be as efficient as that described in [13], nevertheless we find that our simple
strategy is surprisingly robust and, since our adaptive software is intended
for use with a variety of different parallel solvers based upon different data
structures, it saves the work of developing reliable cost models for each of
these. Finally, we note that the migration patterns themselves will have a
significant effect on the total repartitioning time. For example, if nearly all of
the data being migrated is going to or from one processor then this may well
take significantly longer than if the same amount of data is being migrated
equally between all p processors. This is likely to be an important issue in
most practical applications, where refinement will usually be quite localized
— such as when following a shock wave, as in the examples considered here.

Example one

The first observation that must be made about the results in Table 1 is that
for the 32 processor case two of the algorithms (VKV0 and PMetisL) produced
new partitions with an empty subdomain. This causes our parallel solver to
fail and so results are not included for these runs. An explanation for this
behaviour comes from the observation that in this example we are attempting
to repartition an extremely non-uniformly weighted graph which is initially
very poorly balanced. The basic problem is that the coarse mesh for this
problem has an insufficient number of elements to allow the leaf mesh to
be easily load-balanced. In fact, with the exception of PMetisG, all of the
algorithms have great difficulty in obtaining a good final partition (as an
indication of the difficulties associated with finding such a partition we note
that the output from PMetisG gives just 5 (highly-refined) coarse elements
on one processor and as many as 1705 on another). Inspection of Table 1
however shows that these poor load-balances appear to have little effect on
the solution times. This is because these small examples contain a relatively
high halo element ratio which means that the cut-weight appears to be a
much more significant statistic. It is the improved cut-weight per processor
which appears to be the cause of the surprisingly small solution times, after
repartitioning, when 32 processors are used.

12



MaxImb | CutWt | SolT | MigTot | Procs
Initial 33% 3064 | 32.6 0
RCBO 4% 6474 | 25.7 | 73474
RCB1 4% 6474 | 25.7 | 73474
VKVO0 3% 5634 | 25.6 | 26569
VKV1 0% 4942 | 25.4 | 30877
VKV2 0% 4905 | 25.0 | 25182
PMetisG 5% 3719 | 25.0 | 18025 8
PMetisl. 5% 4509 | 25.5 | 19094
PMetisM 5% 3496 | 25.2 | 49800
PMetisR 3% 3202 | 24.1 | 48293
PJostle20 2% 4171 | 25.1 | 82376
PJostle300 2% 3842 | 25.2 | 54832
Initial 55% 4760 17.1 0
RCBO 9% 9197 | 13.1 | 81465
RCB1 9% 9197 | 13.1 | 81465
VKVO0 2% 8010 13.3 | 31507
VKV1 5% 7316 13.0 | 30058
VKV2 4% 7510 12.4 | 30424
PMetisG 5% 6402 12.7 | 30185 16
PMetisl. 18% 5964 | 13.2 | 33579
PMetisM 6% 4824 | 12.2 | 45858
PMetisR 9% 4872 12.5 | 48970
PJostle20 6% 5840 13.1 | 66119
PJostle300 7% 5501 13.4 | 55707
Initial 143% 5616 11.2 0
RCBO 28% 10490 | 6.4 69921
RCB1 28% 10490 | 6.4 69921
VKVO0 — — — —
VKV1 24% 9320 6.1 38131
VKV2 24% 8959 6.0 36714
PMetisG 6% 8680 6.2 32744 32
PMetisl. — — — —
PMetisM 20% 6105 5.5 47213
PMetisR 16% 6317 5.4 51886
PJostle20 22% 7213 6.0 57841
PJostle300 42% 7103 6.6 43884

Table 1

Some partition-quality metrics for a single rebalancing step for Example one.

Although each of the load-balancing algorithms performs sufficiently well in
this case to ensure that the parallel adaptive solver scales far better than would
otherwise be the case, there are some differences that are worth noting. As
expected, the remapping schemes tend to lead to better cut-weights than the
diffusion schemes which migrate less data. It is also apparent that for parallel
Jostle a smaller graph reduction threshold parameter leads to a better load-

13




balance but at the cost of more data migration. Finally for Table 1 we note
that the recursive bisection algorithms appear to be quite competitive in terms
of the metrics that have been considered. The only exception to this being the
high migration costs associated with RCB0 and RCBI1. These are always very
high at the start of an adaptive solve since the RCB algorithm cannot take
into account the initial partition produced by the parallel adaptivity software.

The final column of Table 2 shows that, when the initial migration is exclud-
ed, the average amount of data migrated each time the RCB algorithms are
used is significantly less than for the initial migration, as one would expect.
Arguably, this gives a fairer reflection of these heuristics as dynamic load-
balancers. Unfortunately however both RCB0 and RCB1 consistently fail to
obtain load-imbalances of less than the 10% threshold and so repartitioning is
attempted on a larger number of occasions than with the other methods. (The
reason for this difficulty is that heavily-weighted elements appearing near the
middle of the sorted list of elements make it impossible to split the list into
equally-weighted halves: and the effects of this become more and more signifi-
cant each time the bisection process is repeated.) Slightly different conclusions
regarding the performance of the VKV algorithms to those drawn from Table
1 may also now be made. Over the sequence of time steps with numerous mesh
refinements these algorithms tend to be slightly inferior to PMetis and PJos-
tle. This suggests that there may be dangers in only using the “snap-shots”
associated with a single repartitioning problem when attempting to assess the
quality of a dynamic algorithm. Having made this observation however, we
also note that the relatively small size of the coarse mesh for this problem still
causes the same difficulties for 32 processors that were apparent in Table 1
and it again appears that PMetisG is the most robust algorithm for dealing
with this severe situation.

For 8 and 16 processors the rebalancing problem is less extreme. We still
see however that, for this small problem, the total savings that result from an
efficient load-balancing strategy are not that large. Nevertheless, the figures for
the performance of parallel Jostle in Table 2 do demonstrate that the ability to
be able to control the graph reduction threshold parameter can be important.
We also observe that, even solving the same problem with the same code, the
best choice of repartitioning algorithm appears to change with p (PMetisR
for p = 16 and PMetisG for p = 32 for example). This clearly illustrates the
difficulties associated with attempting to rank the different algorithms.

Examples two and three
We now consider the statistics presented in Table 3. It is clear from this table

that the coarse mesh of 34560 elements is sufficiently large to permit a leaf
mesh with up to three levels of refinement to be partitioned across 32 pro-

14



SolT | RepT | RedT | MigTot | Mig# | MigAvg | Procs
Initial 271.9 | 0.0 0.0 0 0 0
RCBO0 218.8 | 4.5 24.8 | 108130 5 8664
RCB1 218.7 | 5.1 23.6 | 98649 5 6294
VKVO0 221.8 | 4.5 12.4 | 32477 3 2954
VKV1 211.6 | 3.9 11.7 | 37206 3 3164
VKV2 212.2| 6.3 14.1 35592 4 3470 8
PMetisG | 207.2 | 4.0 11.8 | 26676 4 2884
PMetisl. | 208.9 | 3.3 14.2 | 28587 4 3164
PMetisM | 205.7 | 1.1 11.9 | 80765 2 30965
PMetisR | 204.1 | 2.4 15.2 | 114738 3 33222
PJostle20 | 214.6 | 5.5 28.1 | 239822 4 52482
PJostle300 | 215.7 | 4.8 23.6 | 166933 4 37367
Initial 146.1 | 0.0 0.0 0 0 0
RCBO0 130.8 | 6.1 46.4 | 242178 9 20089
RCB1 127.2 | 5.9 33.3 | 162483 9 10127
VKVO0 1379 | 7.1 18.8 | 50173 5 4666
VKV1 127.8 | 5.3 16.0 | 43518 5 3365
VKV2 117.3 | 6.8 14.6 | 45665 5 3810 16
PMetisG | 113.2 | 3.6 15.5 | 45892 6 3141
PMetisl. | 112.7 | 3.7 15.6 | 52992 6 3883
PMetisM | 113.0 | 4.2 26.8 | 234071 6 37643
PMetisR | 107.1 | 2.5 18.5 | 179462 4 43497
PJostle20 | 118.4 | 10.2 | 45.4 | 491945 8 60832
PJostle300 | 119.8 | 6.6 32.8 | 301168 6 49092
Initial 104.3 | 0.0 0.0 0 0 0
RCBO 71.3 4.8 34.7 | 255368 10 20605
RCB1 72.5 3.7 28.9 | 195904 10 13998
VKV0 — — — — - —
VKV1 70.1 9.3 19.1 73578 8 5064
VKV2 69.7 | 10.3 | 22.8 | 68871 10 3573
PMetisG | 64.8 3.1 17.1 64719 8 4568 32
PMetisl. — — — — - —
PMetisM | 56.3 4.8 25.7 | 400204 10 39221
PMetisR | 57.8 5.0 26.2 | 406607 10 39413
PJostle20 | 62.9 | 11.7 | 33.3 | 578775 10 57882
PJostle300 | 64.2 4.8 27.7 | 251810 10 23103

Table 2
Performance statistics over 300 time steps using a rebalancing tolerance of 10% for
Example one.

cessors without significant difficulty. It is also possible, once again, to observe
the excellent scalability of the parallel solver as the number of processors is
increased, and to see that the algorithms producing the lowest cut-weights
(the Metis remapping algorithms) lead to the best solution times. Interesting-
ly however, neither PMetisM or PMetisR migrate as much data as Jostle20,

15



MaxImb | CutWt | SolT | MigTot | Procs
Initial 48% 6776 | 118.6 0
RCBO 2% 18359 | 87.9 | 230335
RCB1 2% 18359 | 87.9 | 230335
VKVO0 0% 15947 | 86.9 | 89811
VKV1 0% 12314 | 85.1 | 86945
VKV2 2% 11395 | 83.8 | 77261
PMetisG 5% 8682 88.4 | 88151 8
PMetisL. 5% 7862 85.8 | 92669
PMetisM 4% 5511 83.4 | 137326
PMetisR 3% 6001 81.4 | 174347
PJostle20 1% 6919 84.9 | 225691
PJostle300 2% 6778 81.8 | 192914
Initial 91% 9183 71.4 0
RCBO 3% 25577 | 47.5 | 276327
RCB1 3% 25577 | 47.5 | 276327
VKVO0 0% 20490 | 44.2 | 115058
VKV1 1% 16406 | 43.0 | 112618
VKV2 1% 16027 | 43.2 | 117723
PMetisG 6% 12045 | 43.7 | 101199 16
PMetisL. 5% 11901 | 43.4 | 109214
PMetisM 4% 8460 42.2 | 179626
PMetisR 5% 8346 41.7 | 188889
PJostle20 2% 10188 | 46.6 | 246636
PJostle300 3% 10068 | 46.1 | 182617
Initial 96% 12875 | 42.5 0
RCBO 6% 28510 | 22.8 | 254311
RCB1 6% 28510 | 22.8 | 254311
VKV0 2% 28085 | 22.5 | 129931
VKV1 3% 23457 | 22.1 | 129573
VKV2 2% 22950 | 22.6 | 128408
PMetisG 5% 18357 | 22.2 | 112400 32
PMetisl. 5% 17209 | 22.6 | 132722
PMetisM 5% 12239 | 21.0 | 158375
PMetisR 5% 12278 | 20.8 | 208496
PJostle20 4% 14009 | 21.8 | 235667
PJostle300 9% 15009 | 22.9 | 176209

Table 3

Some partition-quality metrics for a single rebalancing step for Example two.

which has almost the same migration total as RCB: although it is far more ef-
ficient than RCB. (Note that in Tables 1 and 3 RCB0 and RCBI1 give identical

results since they are identical algorithms when applied to the first partition.)

The next set of results presented is given in Table 4 where we again see that,

16




by considering numerous applications of each algorithm over the evolution of
an entire problem, a much greater diversity in their relative performance is
apparent than from a single application of each algorithm (as in Table 3).
Table 5 presents similar results for a different run of the same problem but
with a finer leaf mesh. In each case a major factor determining the overall
parallel simulation time is the number of occasions on which repartitioning is
necessary after adaptivity has occurred. This suggests that our approach of
basing the repartitioning decision on whether or not the maximum imbalance
exceeds some given tolerance may be a little simplistic (and an approach such
as in [13], where remapping costs are estimated before deciding whether or not
to repartition, may be worthwhile). Nevertheless, we feel that the simplicity
and generality of our criterion mean that it is worthy of this investigation.

Perhaps the most striking statistics in both Tables 4 and 5 are the times taken
by the recursive bisection algorithms to calculate what the new partitions
should be (RepT). For the RCB algorithm this is clearly due, at least in part,
to the use of a sequential bisection algorithm at each step. Nevertheless, there
is a more significant difficulty than this, which is also apparent for the three
VKV algorithms. This difficulty stems from the fact that in both example
two and example three the coarse mesh contains 34560 elements, hence this
is the size of the weighted graph that must be partitioned. The PMetis and
PJostle algorithms coarsen the weighted dual graph of this mesh in order to
perform repartitioning, whereas the RCB and VKV algorithms do not. Whilst
all of these algorithms have a linear complexity, the use of graph coarsening
clearly has an enormous effect on the cost of the algorithms as the root mesh
grows in size (presumably because one is able to reduce the average amount of
work per graph vertex through coarsening). Moreover, it is clear from the first
example that in order to have any hope of balancing leaf meshes of the order
of a million elements, which are of a non-uniform density across the domain,
a root mesh of at least the magnitude used here is absolutely necessary.

When contrasting the performance of the different versions of PMetis on these
examples Table 4 appears to verify the conclusions drawn above, from Table 3,
that the remapping algorithms perform best. This is not evident from the re-
sults of Table 5 however, where PMetisl. performs best on 8 and 16 processors
and PMetisR does very badly in the 32 processor case. One observation that
does seem to hold from these latter examples however is that PMetisG does
not perform any better than the other versions in these cases, for which the
repartitioning problem is less demanding than the rather extreme situation of
example one. No conclusions can be drawn about the choice of graph reduction
threshold parameter in PJostle on the basis of these experiments. Finally, we
comment that the cumulative timings for each algorithm in Tables 2, 4 and
5 should be treated with great caution since if, for some other problem, the
amount of work per time step were significantly greater than for the explicit
scheme outlined in Section 2, the relative importance of the solution time over

17



SolT | RepT | RedT | MigTot | Mig# | MigAvg | Procs
Initial 1071.0 | 0.0 0.0 0 0 0
RCBO 758.5 | 14.4 | 78.4 | 413297 4 60987
RCB1 792.3 | 19.0 | 88.8 | 358331 5 31999
VKVO0 783.9 | 47.3 | 36.4 | 118507 3 14348
VKV1 785.3 | 12.7 | 25.5 | 107001 2 20056
VKV2 773.7 | 11.9 | 23.7 99744 2 22483 8
PMetisG | 747.2 5.3 35.8 | 162429 2 74278
PMetisL, 742.1 4.4 20.2 | 101219 2 8550
PMetisM | 750.6 5.1 29.8 | 219518 2 82192
PMetisR | 727.1 4.8 34.4 | 276733 2 102386
PJostle20 | 751.0 | 12.8 | 62.3 | 619664 3 196986
PJostle300 | 735.8 7.3 32.8 | 305270 2 112356
Initial 657.6 0.0 0.0 0 0 0
RCBO 458.2 | 12.0 | 84.5 | 540378 5 66013
RCB1 450.8 | 12.0 | 76.5 | 430972 5 38661
VKVO0 430.7 | 31.0 | 32.2 | 155247 4 13396
VKV1 426.7 | 22.1 | 29.8 | 151544 4 12975
VKV2 419.6 | 50.3 | 32.8 | 170581 4 17619 16
PMetisG | 391.8 9.0 25.5 | 151765 4 16855
PMetisl. 393.4 | 10.3 | 30.2 | 155621 5 11602
PMetisM | 371.5 5.8 33.0 | 431692 3 126033
PMetisR | 371.6 5.9 33.9 | 443908 3 127510
PJostle20 | 399.0 | 13.9 | 59.6 | 899040 4 217468
PJostle300 | 402.3 8.2 41.0 | 518883 3 168133
Initial 422.4 0.0 0.0 0 0 0
RCBO 244.7 | 37.7 | 108.7 | 718023 10 51524
RCB1 232.9 | 28.2 | 80.0 | 555659 10 33483
VKVO0 265.3 | 45.6 | 42.5 | 180421 6 10098
VKV1 238.0 | 324 | 34.6 | 194244 6 12934
VKV2 232.3 | 26.7 | 26.6 | 173236 5 11207 32
PMetisG | 206.1 8.1 25.0 | 186297 6 14779
PMetisl. 204.8 7.2 26.0 | 211560 6 15768
PMetisM | 189.4 6.6 28.0 | 703927 5 136388
PMetisR | 197.2 | 11.6 | 46.8 | 1044486 8 119427
PJostle20 | 207.0 | 14.2 | 40.4 | 1078759 5 210773
PJostle300 | 211.5 | 17.3 | 60.5 | 1184563 7 168059

Table 4
Performance statistics for 300 time steps using a rebalancing tolerance of 10% for
Example two.

the repartitioning and migration times would increase. Hence, for 8 processors
in Example 3, PMetisG would become more efficient than PMetisL. for a suf-
ficiently large amount of work per time step (although VKV2 would remain
most efficient). Similarly, for p = 32, PMetisM and PMetisR would become
more efficient than PJostle20 if the amount of work between each adaptation

18



SolT | RepT | RedT | MigTot | Mig# | MigAvg | Procs
Initial 4698.7 | 0.0 0.0 0 0 0
RCBO 3114.7 | 13.3 | 146.1 | 389363 2 159028
RCB1 3114.7 | 13.3 | 146.1 | 389363 2 159028
VKVO0 3582.5 | 50.9 | 121.9 | 245974 2 156163
VKV1 3162.5 | 20.5 | 82.7 | 233785 2 146840
VKV2 2911.3 | 20.0 | 57.3 | 206932 2 129671 8
PMetisG | 2925.1 | 29.9 | 102.5 | 255669 3 83759
PMetisl. | 2956.4 | 11.8 | 54.5 | 169189 2 76520
PMetisM | 3073.5 | 13.9 | 83.4 | 531560 2 394234
PMetisR | 3014.9 | 13.2 | 120.2 | 843478 2 669131
PJostle20 | 3074.6 | 18.8 | 123.5 | 1182777 2 957086
PJostle300 | 2963.8 | 18.1 | 114.1 | 698202 2 505288
Initial 3383.2 | 0.0 0.0 0 0 0
RCBO 1757.9 | 19.0 | 226.4 | 808593 3 266133
RCB1 1750.3 | 21.4 | 235.7 | 780810 3 252242
VKVO0 1706.6 | 52.5 | 121.8 | 434778 3 159860
VKV1 1659.6 | 24.6 | 50.2 | 275744 2 163126
VKV2 1795.1 | 45.3 | 58.9 | 319976 2 202253 16
PMetisG | 1684.0 | 16.9 | 126.8 | 513631 3 206216
PMetisl. | 1547.8 | 17.7 | 81.2 | 380822 3 135804
PMetisM | 1843.9 | 8.7 68.0 | 658804 2 479178
PMetisR | 1692.4 | 7.8 65.5 | 830448 2 641559
PJostle20 | 1696.6 | 21.3 | 160.5 | 1966020 3 859692
PJostle300 | 1607.4 | 10.8 | 73.4 | 1085660 2 903043
Initial 1452.2 | 0.0 0.0 0 0 0
RCBO 956.8 | 87.7 | 580.3 | 1705189 10 161209
RCB1 932.6 | 61.9 | 399.3 | 1532089 10 141975
VKVO0 996.0 | 60.8 | 117.0 | 434747 4 101605
VKV1 991.7 | 68.4 | 142.5 | 453395 5 80956
VKV2 978.9 | 34.1 | 71.8 | 359088 3 115340 32
PMetisG | 802.0 9.8 58.0 | 403526 3 145563
PMetisl. 797.3 9.9 53.5 | 458810 3 163044
PMetisM | 776.5 9.1 61.2 | 1247821 3 544723
PMetisR | 761.3 | 41.0 | 295.7 | 5109665 10 544574
PJostle20 | 783.9 8.3 39.8 | 926074 2 690407
PJostle300 | 827.3 | 28.2 | 189.2 | 3300839 5 781158

Table 5
Performance statistics over 300 time steps using a rebalancing tolerance of 10% for
Example three.

of the mesh were to go up by a sufficient amount.

19



6 Conclusions and Future Work

In this paper we have attempted to make some simple comparisons between
a variety of different dynamic load-balancing algorithms with respect to one
particular application. In such a series of tests one cannot hope to reach any
general conclusions concerning these dynamic load-balancing heuristics since
it is well-known that different techniques are likely to perform best for different
problems. Nevertheless, it is possible to make a number of specific observations
about the heuristics when restricted to the class of problem considered here:
with moderate graph sizes (5000 to 35000 vertices) and highly variable vertex
weights.

Any reasonable dynamic load-balancing algorithm yields a significant improve-
ment in the performance of the solver and permits good scalability of the solver
as the number of processors increases. For small numbers of processors (eight
or less), the simple recursive bisection algorithms (especially VKV2) are gen-
erally quite competitive with PMetis and PJostle. Furthermore, the use of
RCBI1 rather than RCBO significantly reduces the amount of data migration
required for the two smaller problems but makes a less significant reduction
for the largest problem considered. This reduction does not always result in a
better overall solution time though, since, on some occasions, the solver time

(SolT) is higher than for the partitions produced by RCBO.

The algorithm that is most robust in terms of always delivering reasonably
well-balanced final partitions is PMetisGG, which is based upon diffusion but
still makes use of global information to ensure that a good partition is ob-
tained. This is not usually the best algorithm in any given situation however.
Although the Metis remapping algorithms (PMetisM and PMetisR) frequent-
ly produce the best solver times (SolT) (because they typically delivered the
best new partitions), overall no one algorithm comes out as being better than
the rest. (For each of VKV2, PMetisL, PMetisM, PMetisR and PJostle20 we
encountered at least one example in which that version gave the smallest over-
all solution time.) As the number of levels of refinement increases the actual
migration time (RedT) tends to become more significant than the time taken
to calculate the new partitions (RepT).

It is more informative to assess the quality of the different load-balancers over
an entire sequence of mesh refinements rather than just to consider simple met-
rics, such as cut-weight or migration volume, at a single repartitioning step.
The number of repartitions required over a sequence of refinements appears to
be the most important single factor in determining the overall performance of
each algorithm. This is something that is very hard to predict in advance, how-
ever it is clear that algorithms which generally produce quite poorly-balanced
loads will be penalized the most in this respect (e.g. RCB0 and RCB1 in these

20



examples).

Although no one algorithm comes out as being better than the rest, it is rea-
sonable to conclude that both of the packages, PMetis and PJostle, performed
better than the relatively simple recursive bisection codes that we implement-
ed ourselves, especially with larger numbers of processors. For root meshes at
the larger end of the spectrum considered here it is advisable that some form
of multilevel algorithm, based upon graph coarsening, is used.

In view of the observation that the number of repartitions required appears
to be the most important single factor, a key issue that must be addressed in
any future work is that of determining precisely when repartitioning should
take place. This issue is already beginning to receive significant attention, as
in [13] for example. An essential ingredient required to make such decisions
would appear to be the use of a metric which includes both migration costs
and communication/halo costs for a given partition.

For example, [1], consider the partitioning problem after the (n 4 1)th remesh
with just two processors. Let L™*! be the weighted Laplacian matrix of the
weighted dual graph of the coarsest level mesh after the (n+1)th remesh (see,
for example, [5]) and let 2™ be the latest partition vector (2 = +1 according to
which subdomain coarse element ¢ belongs to). The communication/halo over-
head at the next step of the solver is therefore proportional to (z")T L *1z".
Conversely, if repartitioning were to take place (leading to a new partition
vector ") before the next step of the solver, the new communication/halo
overhead plus the movement cost would be proportional to

(£n+1)T Ln+1 £n+1 _I_ /\(£n+1 . £'rL)T(g'rL-I-l o xn)

for some constant A (the ratio of moving cost to communications costs). With
a suitable choice of this constant, this expression could be used to decide
whether or not to accept a possible new partition, obtained using one of the
algorithms considered above for example. Alternatively, this quadratic form
could be minimized by solving the equations:

(Ln—}-l +)\[) £n+1 — /\zn

for a new partition vector z"*!, thus yielding an alternative dynamic load-
balancing heuristic. This approach therefore provides an explicit mechanism
not only for deciding whether or not it is worthwhile migrating data to a
possible new partition from the existing partition, but also for taking into
account the migration costs in obtaining a possible new partition.

21



Acknowledgements

We thank Bruce Hendrickson and the anonymous referees for their valuable
suggestions which have significantly influenced the final form of the paper.
We are grateful to Jason Lander, Joanna Schmidt and Jasbinder Singh for
their advice and assistance concerning the Origin 2000. NT would like to
acknowledge the financial support of the UK and Pakistan governments in
the form of ORS and COTS scholarships respectively. The work of PS was
undertaken as part of EPSRC grant GR/J84919.

References

[1] M. Berzins, Private Communication, 1999.

[2] G. Cybenko, “Dynamic Load Balancing for Distributed Memory Multiprocess-
ors”; J. of Parallel and Distributed Computing, 7, 279-301, 1989.

[3] P. Diniz, S. Plimpton, B. Hendrickson and R. Leland, “Parallel Algorithms for
Dynamically Partitioning Unstructured Grids”, Proc. of Tth SIAM Conf. on
Parallel Proc. for Sci. Comp., STAM, 1995.

[4] C.M. Fiduccia and R.M. Mattheyses, “A Linear_Time Heuristic for Improving
Network Partitions”, Proceedings of the Nineteenth IEEE Design Automation
Conference, IEEE, 175-181, 1982.

[5] D.C. Hodgson and P.K. Jimack, “A Domain Decomposition Preconditioner for
a Parallel Finite Flement Solver on Distributed Unstructured Grids”, Parallel
Computing, 23, 1157-1181, 1997.

[6] G. Horton, “A Multi-Level Diffusion Method for Dynamic Load Balancing”,
Parallel Computing, 19, 209-218, 1993.

[7] Y.F. Hu and R.J. Blake “An Optimal Dynamic Load Balancing Algorithm”,
Preprint DL-P-95-011 of The Central Laboratory for the Research Councils,
Daresbury Lab., Cheshire WA4 4AD, UK, 1995.

[8] G. Karypis and V. Kumar, “A Coarse-Grain Parallel Formulation of Multilevel
k-way Graph Partitioning Algorithm”, Proc. of 8th SIAM Conf. on Parallel Proc.
for Scientific Computing, STAM, 1997.

[9] G. Karypis, K. Schloegel and V. Kumar, “ParMetis: Parallel Graph Partitioning
and Sparse Matriz Ordering Library. Version 2.0”, Department of Computer
Science, University of Minnesota, 1998.

[10] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs”, Bell System Technical Journal, 29, 209-307, 1970.

22



[11] R. Lohner, R. Camberos and M. Merriam, “Parallel Unstructured Grid
Generation”, Comp. Meth. in Apl. Mech. Eng., 95, 343-357, 1992.

[12] Message passing Interface Forum, “MPI: A Message Passing Interface
Standard”; Int. J. of Supercomputer Applications, 8, no. 3/4, 1994.

[13] L. Oliker and R. Biswas, “PLUM: Parallel Load Balancing for Adaptive
Unstructured Meshes”, J. Parallel and Distributed Computing, 52, 150-177, 1998.

[14] P.M. Selwood and M. Berzins, “Portable Parallel Adaptation of Unstructured
Tetrahedral Meshes”, accepted by Concurrency, 1999.

[15] P.M. Selwood, M. Berzins and P.M. Dew, “3D Parallel Mesh Adaptivity: Data-
Structures and Algorithms”, in Proc. of 8th SIAM Conf. on Parallel Proc. for
Scientific Computing, STAM, 1997.

[16] P. Selwood, M. Berzins J. Nash and P.M. Dew, “Portable Parallel Adaptation
of Unstructured Tetrahedral Meshes”, Solving Irregularly Structured Problems
in Parallel — Proc. of Irregular 98 Conference (ed. A.Ferreira et al.), Springer
Lecture Notes in Computer Science, 1457, 56-67, 1998.

[17] H.D. Simon, “Partitioning of Unstructured Problems for Parallel Processing”,
Computing Systems in Engineering, 2, 135-148, 1991.

[18] W. Speares and M. Berzins, “A 3-D Unstructured Mesh Adaptation Algorithm
for Time-Dependent Shock Dominated Problems”, Int. J. Num. Meth. in Fluids,
25, 81-104, 1997.

[19] N. Touheed, “Parallel Dynamic Load-Balancing for Adaptive Distributed
Memory PDE Solvers”, Ph.D. Thesis, Univesity of Leeds, 1998.

[20] N. Touheed and P.K. Jimack, “Dynamic Load-Balancing for Adaptive PDE
Solvers with Hierarchical Meshes”, Proc. of 8th SIAM Conf. on Parallel Proc.
for Sci. Comp., STAM, 1997.

[21] A. Vidwans, Y. Kallinderis and V. Venkatakrishnan, “Parallel Dynamic Load-
Balancing Algorithm for Three-Dimensional Adaptive Unstructured Grids”,
ATAA Journal, 32, 497-505, 1994.

[22] C. Walshaw and M. Berzins, “Dynamic Load-Balancing For PDE Solvers On
Adaptive Unstructured Meshes”, Concurrency, 7, 17-28, 1995.

[23] C. Walshaw, M. Cross and M.G. Everett, “Dynamic Load-Balancing for Parallel
Adaptive Unstructured Meshes”, Proc. of 8th SIAM Conf. on Parallel Proc. for
Sci. Comp., STAM, 1997.

[24] C. Walshaw, M. Cross and M.G. Everett, “Parallel Dynamic Graph Partitioning
for Adaptive Unstructured Meshes”, J. Par. Dist. Comput., 47, 102-108, 1997.

23



