
Node-disjoint paths in incomplete WK-recursive
networks

Ming-Yang Su a, Hui-Ling Huang b, Gen-Huey Chen c,*,
Dyi-Rong Duh d

a Department of Electronic Engineering, St. John's and St. Mary's Institute of Technology,

Taipei, Taiwan, ROC
b Department of Information Management, Southern Taiwan University of Technology,

Tainan, Taiwan, ROC
c Department of Computer Science and Information Engineering, National Taiwan University,

Taipei 10764, Taiwan, ROC
d Department of Computer Science and Information Engineering, National Chi Nan University,

Nantou, Taiwan, ROC

Received 23 July 1996; received in revised form 11 May 1998; accepted 19 April 2000

Abstract

The incomplete WK-recursive networks have been recently proposed to relieve the re-

striction on the sizes of the WK-recursive networks. In this paper, a maximal set of node-

disjoint paths is constructed between arbitrary two nodes of an incomplete WK-recursive

network. The e�ectiveness of the constructed paths is veri®ed by both theoretic analysis and

extensive experiments. A tight upper bound on the maximal length is suggested. On the other

hand, experimental results show that for arbitrary two nodes, the expected maximal length is

not greater than twice their distance and about equal to the diameter. When the two nodes are

the farthest pair, the maximal length is not greater than twice the diameter and the expected

maximal length is not greater than 1.5 times the diameter. Ó 2000 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The WK-recursive networks [23] own two attractive topological properties: ex-
pansibility and equal degree. A network is expansible if no changes to node con-
®guration and link connection are necessary when it is expanded, and of equal degree
if its nodes have the same degree no matter what its size is. A network with these two
properties will gain the advantages of easy implementation and low cost when it is
manufactured. A VLSI implementation of a 16-node WK-recursive network has
been realized at the Hybrid Computing Research Center [23]. This prototype net-
work was further extended to 64 nodes later [24]. Recently two variants of the WK-
recursive networks have been proposed in [5,6].

Although the WK-recursive networks own many favorable properties (see
[1,3,4,7±9,11,23,24]), there is a rigorous restriction on their sizes. As will become
clear in Section 2, the number of nodes contained in a WK-recursive network must
satisfy dt, where d > 1 is the size of the basic building block and t P 1 is the level of
expansion. Thus, as d � 4, extra 3� 47 � 49152 nodes are required to expand from a
7-level WK-recursive network to an 8-level one. Almost all announced networks
have su�ered from the same restriction. In order to relieve this restriction, some
incomplete networks have been proposed recently. Among them, incomplete hy-
percubes [12], incomplete star networks [14,17], clustered-star graphs [13], incom-
plete rotator graphs [16], and incomplete WK-recursive networks [19] are some
examples. Previously several results on the incomplete WK-recursive networks were
obtained; topological properties were investigated in [21], a shortest-path routing
algorithm appeared in [22], and a broadcasting algorithm was proposed in [20].

Given a network, it is both theoretically interesting and practically important to
®nd node-disjoint paths (disjoint paths for short) between any two of its nodes. With
disjoint paths, transmission rate can be accelerated and transmission reliability can
be enhanced. In the past, a maximal set of disjoint paths was constructed for many
(complete) networks, e.g., hypercubes [18], star graphs [2], and WK-recursive net-
works [3]. However, the same problem remained unsolved for all incomplete net-
works but the clustered-star graphs (see Ref. [10]). In this paper, a maximal set of
disjoint paths is constructed for the incomplete WK-recursive networks.

In the next section, the incomplete WK-recursive networks are ®rst reviewed. A
prerequisite step for constructing disjoint paths is presented in Section 3. By its aid a
maximal set of disjoint paths is constructed in Section 4. Moreover, a tight upper
bound on their maximal length is suggested. In Section 5, extensive experiments are
further made to verify their e�ectiveness. Finally, we conclude this paper with some
remarks in Section 6.

2. Incomplete WK-recursive networks

The WK-recursive networks can be built incrementally with basic building blocks.
Any complete graph can serve as a basic building block. Throughout this paper we
use graph and network interchangeably. Let K�d; t� denote a WK-recursive network
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of level t whose basic building block is a d-node complete graph, where d > 1 and
t P 1. K�d; 1�, which is the basic building block, is the d-node complete graph, and
K�d; t� for t P 2 is a d-supernode complete graph, where each supernode is a
K�d; t ÿ 1�. Each node of a K�d; t� is assigned with a unique identi®er which consists
of a d-ary sequence of length t. The following de®nition is due to Chen and Duh [1].

De®nition 2.1. The node set of a K�d; t� is denoted by fatÿ1atÿ2 � � � a1a0 j
ai 2 f0; 1; . . . ; d ÿ 1g for 06 i6 t ÿ 1g. Node adjacency is de®ned as follows:
atÿ1atÿ2 � � � a1a0 is adjacent to (1) atÿ1atÿ2 � � � a1b, where 06 b6 d ÿ 1 and b 6� a0, and
(2) atÿ1atÿ2 � � � aj�1ajÿ1aj

j if aj 6� ajÿ1 and ajÿ1 � ajÿ2 � � � � � a0 for some 16 j6 t ÿ 1,
where aj

j represents j consecutive ajs. The links of (1) are called substituting links, and
are labeled 0. The link of (2), if existing, is called j-flipping link (or simply flipping
link), and is labeled j. Besides, if atÿ1 � atÿ2 � � � � � a0, there is a link, called open
link, incident to node atÿ1atÿ2 � � � a1a0. The open link, which is labeled t, is reserved
for further expansion.

The structures of K�4; 1� and K�4; 3� are illustrated in Fig. 1. The links within
basic building blocks are substituting links, and those connecting two embedded
K�d; j�s are j-¯ipping links. For example, the link between nodes 311 and 133 is a
2-¯ipping link, and the other links incident to node 311 are all substituting links. The
open links are incident to nodes 000, 111, 222, and 333.

De®nition 2.2. De®ne ctÿ1ctÿ2 � � � cm � K�d;m� to be the subgraph of a K�d; t� induced
by fctÿ1ctÿ2 � � � cmamÿ1 � � � a1a0 jaj 2 f0; 1; . . . ; d ÿ 1g for 06 j6mÿ 1g, where
16m6 t ÿ 1 and ctÿ1; ctÿ2; . . . ; cm are all integers from f0; 1; . . . ; d ÿ 1g.

For example, refer to Fig. 1(b), where 31 � K�4; 1� is the subgraph of K�4; 3� in-
duced by {310, 311, 312, 313}.

De®nition 2.3. Node atÿ1atÿ2 � � � a1a0 is a k-frontier if akÿ1 � akÿ2 � � � � � a1 � a0,
where 16 k6 t.

By de®nition a k-frontier is automatically an l-frontier for 16 l6 k ÿ 1. Both end
nodes of a k-¯ipping link are k-frontiers. For 16m6 t ÿ 1, an embedded K�d;m�
contains one �m� 1�-frontier and d ÿ 1 m-frontiers. These d frontiers are 2m ÿ 1
distant from each other.

The incomplete WK-recursive networks, which were originally de®ned in [19], are
induced subgraphs of the WK-recursive networks. If we number the nodes of a
K�d; t� according to their lexicographical order, then an N-node incomplete WK-
recursive network is the subgraph of the K�d; t� induced by the ®rst N nodes.
Throughout this paper we use IK�d; t� to denote an N-node incomplete WK-recur-
sive network, where dtÿ1 < N < dt and N is a multiple of d.

Associated with an N-node IK�d; t� is a coefficient vector (btÿ1; btÿ2; . . . ; b1), where
06 bj6 d ÿ 1 for all 16 j6 t ÿ 1 and N � btÿ1dtÿ1 � btÿ2dtÿ2 � � � � � b1d. It
means that an IK�d; t� with coe�cient vector (btÿ1; btÿ2; . . . ; b1) contains bj

M.-Y. Su et al. / Parallel Computing 26 (2000) 1925±1944 1927



embedded K�d; j�s: btÿ1btÿ2 � � � bj�10 � K�d; j�; btÿ1btÿ2 � � � bj�11 � K�d; j�; . . . ; btÿ1btÿ2

� � � bj�1�bj ÿ 1� � K�d; j�. For example, the structure of an IK�4; 3� with coe�cient
vector (3, 2) is shown in Fig. 2. It contains three embedded K�4; 2�s, i.e.,
0 � K�4; 2�; 1 � K�4; 2�, and 2 � K�4; 2�, and two embedded K�4; 1�s, i.e., 30 � K�4; 1�

Fig. 1. The structrue of: (a) K�4; 1� and (b) K�4; 3�. This ®gure also shows a heuristic routing path and the

shortest routing path between nodes 033 and 133.
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and 31 � K�4; 1�. In the rest of this paper, coe�cient vector (btÿ1; btÿ2; . . . ; b1) is
written as (btÿ1; btÿ2; . . . ; bi; �), provided bi 6� 0 and biÿ1 � biÿ2 � � � � � b1 � 0, where
16 i6 t ÿ 1. For example, (2, 0, 4, 0, 0) is written as (2, 0, 4, �).

Given an IK�d; t� with coe�cient vector (btÿ1; btÿ2; . . . ; bi; �), let Sm represent the
subgraph induced by the nodes of btÿ1btÿ2 � � � bm�10 � K�d;m�; btÿ1btÿ2 � � � bm�11�
K�d;m�; . . . ; btÿ1btÿ2 � � � bm�1�bm ÿ 1� � K�d;m�, where i6m6 t ÿ 1. For example,
given an IK�5; 7� with coe�cient vector (4, 2, 4, 3, 1, 4, �), S6 contains
0 � K�5; 6�; 1 � K�5; 6�; 2 � K�5; 6�, and 3 � K�5; 6�; S5 contains 40 � K�5; 5� and
41 � K�5; 5�, and so on. We note that the embedded K�d;m�s within Sm join one
another through m-¯ipping links. That is, Sm is a bm-supernode complete graph
with each supernode being a K�d;m�. If each Sm is regarded as a stage, then the
structure of the IK�d; t� forms a (t ÿ i)-stage graph, denoted by
Stÿ1 � Stÿ2 � � � � � Si. Refer to Fig. 3, where three examples are shown. For the
sake of simplicity, each embedded K�d;m� within Sm is drawn as a circle, and the
one btÿ1btÿ2 � � � bm�1j � K�d;m� is denoted by Cj

m, where 06 j6 bm ÿ 1. All the links
within Sm are omitted.

There are minfbm; bmÿ1g m-¯ipping links between Sm and Smÿ1 that connect Cj
m and

Cj
mÿ1 for all 06 j6 minfbm; bmÿ1g ÿ 1. Besides, there may exist a u-¯ipping link

Fig. 2. The structure of IK�4; 3� with coe�cient vector �3; 2�.
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between Su and Sv, where i6 v < u6 t ÿ 1 and uÿ v > 1. Such a link, if it exists, is
called a jumping u-flipping link. A necessary and su�cient condition for the existence
of jumping ¯ipping links is presented below.

Theorem 2.1. Given an IK�d; t� with coefficient vector (btÿ1; btÿ2; . . . ; bi; �), one
jumping u-flipping link exists between Su and Sv if and only if bu > buÿ1 �
buÿ2 � � � � � bv�1 < bv, where i6 v < u6 t ÿ 1 and uÿ v > 1. Moreover, this jumping
flipping link connects Ce

u and Ce
v , where e � buÿ1 � buÿ2 � � � � � bv�1.

Fig. 3. Multistage graph representation of IK�6; 10� with coe�cient vector (4, 5, 5, 3, 5, 3, 1, 1, 4, �).
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Proof. (() According to the de®nition of IK�d; t�, there are e u-¯ipping links between
Su and Suÿ1 that connect Cj

u and Cj
uÿ1 for all 06 j6 buÿ1 ÿ 1. Besides, there exists one

jumping u-¯ipping link connecting Ce
u and Ce

v whose two end nodes are
btÿ1btÿ2 � � � bu�1ebu

u 2 Ce
u and btÿ1btÿ2 � � � bu�1bueu � btÿ1btÿ2 � � � bu�1buee � � � eev�1 2 Ce

v .
For buÿ1 < j6 bu ÿ 1, the jumping ¯ipping link �btÿ1btÿ2 � � � bu�1jbu

u; btÿ1btÿ2 � � �
bu�1buju) does not exist because btÿ1btÿ2 � � � bu�1buju is not a node of the IK�d; t�.

()) Without loss of generality, assume the jumping u-¯ipping link emits from Ca
u

to Sv for some 06 a6 bu ÿ 1. We ®rst show bu > buÿ1 by contradiction. Suppose
bu6 buÿ1. There is a u-¯ipping link between Cj

u and Cj
uÿ1 for all 06 j6 bu ÿ 1. Re-

garding Suÿ1 � Suÿ2 � � � � � Si as an embedded IK�d; u�, there are two u-¯ipping links
between Ca

u and the embedded IK�d; u�: one is between Ca
u and Ca

uÿ1 and the other is
between Ca

u and Sv. This is a contradiction because at most one u-¯ipping link may
exist between any two embedded K�d; u�s and an IK�d; u� is a subgraph of a K�d; u�.
Similarly, aP buÿ1 can be proved.

We continue to show that a � buÿ1; buÿ1 � buÿ2 � � � � � bv�1 < bv, and the jumping
u-¯ipping link connects Ca

u and Ca
v . According to the de®nition of u-¯ipping link, the

end node of the jumping u-¯ipping link in Su (actually in Ca
u) is btÿ1btÿ2 � � � bu�1abu

u. Thus
the other end node in Sv is btÿ1btÿ2 � � � bu�1buau. It is not di�cult to see that
btÿ1btÿ2 � � � bu�1buau does not belong to the IK�d; t� if a > buÿ1. Consequently, we have
a � buÿ1 and the end node in Sv is btÿ1btÿ2 � � � bu�1bubu

uÿ1 � btÿ1btÿ2 � � �
bu�1bubuÿ1buÿ1 � � � buÿ1�buÿ1�v�1

. The latter further implies that buÿ1 � buÿ2 � � � �
� bv�1 < bv and the end node is located in Ca

v � Cbuÿ1
v . �

In the rest of this paper we use J e
u;v to denote the jumping u-¯ipping link that

connects Ce
u and Ce

v (refer to Fig. 3 for illustration). Theorem 2.1 provides a fast way
to determine all jumping ¯ipping links from the coe�cient vector
�btÿ1; btÿ2; . . . ; bi; ��. We only need to examine �btÿ1; btÿ2; . . . ; bi; �� from the left to
the right so that J e

u;v exists if bu > buÿ1 � buÿ2 � � � � � bv�1 < bv, where uÿ v > 1 and
e � buÿ1 � buÿ2 � � � � � bv�1.

We note that for i6 n6m6 t ÿ 1; bm 6� 0, and bn 6� 0; Sm � Smÿ1 � � � � � Sn

forms an embedded IK�d;m� 1� with coe�cient vector �bm; bmÿ1; . . . ; bn; �� whose
each node has its identi®er pre®xed with btÿ1btÿ2 � � � bm�1. For example, refer to
Fig. 3(c), where S3 � S2 � S1 forms an embedded IK�5; 4� with coe�cient vector (3, 1,
4, �) whose each node has its identi®er pre®xed with 424. Theorem 2.1 can be applied
to Sm � Smÿ1 � � � � � Sn as well.

3. A prerequisite step

Suppose X and Y are arbitrary two nodes of an IK�d; t� with coe�cient vector
�btÿ1; btÿ2; . . . ; bi; ��. Without loss of generality, we assume X 2 Ca

m and Y 2 Cb
n ,

where i6 n6m6 t ÿ 1; 06 a6 bm ÿ 1 and 06 b6 bn ÿ 1. In this section, an algo-
rithm that groups stages Sm; Smÿ1; . . . ; Si into blocks is proposed. Each block contains
one or more consecutive stages, and every two adjacent blocks intersect with one
stage. The union of all blocks is the set of all stages. The algorithm will be invoked
when we construct disjoint paths between X and Y in Section 4.
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With input �bm; bmÿ1; . . . ; bi; �� and a, the algorithm produces a sequence of
integers m0;m1; . . . ;mk, where k P 0 and m P m0 > m1 > � � � > mk � i. These
integers de®ne k � 1 blocks, i.e., Sm � Smÿ1 � � � � � Sm0

; Sm0
� Sm0ÿ1 � � � � � Sm1

; � � � ;
Smkÿ1

� Smkÿ1ÿ1 � � � � � Smk . The algorithm, as shown below, takes O�m� time.

Algorithm (Stage_Grouping��bm; bmÿ1; . . . ; bi; ��; a�: =� 06 a6 bm ÿ 1 �=.
(1). Scan �bm; bmÿ1; . . . ; bi; �� from the left to the right and determine in sequence

J x1
y1;z1

; J x2
y2;z2

; . . . ; J xc
yc ;zc

, so that a > x1 > x2 > � � � > xc. That is, J x1
y1;z1

is the ®rst jumping
¯ipping link encountered in the scanning which has x1 < a. Each J e

u;v between J xj
yj;zj

and J
xj�1
yj�1;zj�1 has e P xj, where 16 j < c, and each J e

u;v after J xc
yc;zc

has e P xc. Let
L � fx1; x2; . . . ; xcg. If no feasible jumping ¯ipping link is found in the scanning, L is
empty.

For example, refer to Fig. 3(c) again. If X 2 C3
6 , then (4, 2, 4, 3, 1, 4, �) and 3 are

taken as input. Since J 2
6;4 and J 1

3;1 are found in the scanning, L � f2; 1g. Similarly, if
X 2 C2

6 , only J 1
3;1 is found and thus L � f1g. On the other hand, if X belong to C1

6 or
C0

6 ; L is empty because no feasible jumping ¯ipping link can be found. We also note
that m P y1 > z1 P y2 > z2 P � � � P yc > zc P i. By the aid of Theorem 2.1, this step
can be completed in O�m� time.

(2). Determine m0 � minfr jbr > a and bj P a for all m P j > rg. If L is not
empty, determine m1;m2; . . . ;mc sequentially as follows: m1 � minfr jbr > x1 and
bj P x1 for all m0 > j > rg, m2 � minfr jbr > x2 and bj P x2 for all m1 > j > rg; . . . ;
mc � minfr jbr > xc and bj P xc for all mcÿ1 > j > rg.

By examining �bm; bmÿ1; . . . ; bi; �� from the left to the right, this step can be
completed in O�m� time. For example, refer to Fig. 3(c) again. If a � 3, we have
m0 � 6; m1 � 3, and m2 � 1. If a � 2, we have m0 � 3 and m1 � 1. If a � 1 or 0, we
have m0 � 1. We note that m P m0 P yl > z1 P m1 P y2 > z2 P � � � P mcÿ1 P
yc > zc P mc P i.

(3). Output m0;m1; . . . ;mk�� i�, where k � c or c� 1, according to the following
four cases:

Case 1. L is empty and m0 � i. Output m0.
Case 2. L is empty and m0 > i. Set m1 � i and output m0;m1.
Case 3. L is not empty and mc � i. Output m0;m1; . . . ;mc.
Case 4. L is not empty and mc > i. Set mc�1 � i and output m0;m1; . . . ;mc;mc�1.
Refer to Fig. 3(c) again. The algorithm will output (6, 3, 1), (3, 1), (1), and (1) if

a � 3; 2; 1, and 0, respectively. The output �m0;m1; . . . ;mk� de®nes k � 1 blocks,
denoted by B0;B1; . . . ;Bk, where B0 � Sm � Smÿ1 � � � � � Sm0

and Bl � Smlÿ1
� Smlÿ1ÿ1

� � � � � Sml for all 16 l6 k. Every two adjacent blocks Blÿ1 and Bl contain one
common stage Smlÿ1

.

Lemma 3.1 [22]. Let J x1
y1;z1

; J x2
y2;z2

; . . . ; J xc
yc;zc

and m0;m1; . . . ;mc be defined as in Algorithm
Stage_Grouping. Then, for all 16 j6 c,
1. mjÿ1 P yj;
2. if mjÿ1 > yj, then bmjÿ1

> �xjÿ1 P �bmjÿ1ÿ1
P � � � P byj ;

3. zj P mj;
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4. if zj > mj, then bzj > xj; bmj > xj, and bq P xj for all zj > q > mj;
5. xj � minfbmjÿ1

; bmjÿ1ÿ1; . . . ; byj ; . . . ; bzj ; . . . ; bmjg;where x0 � a is assumed.

This lemma is illustrated in Fig. 4, where mjÿ1 > yj and zj > mj are assumed.
According to Lemma 3.1, J x1

y1;z1
; J x2

y2;z2
; . . . ; J xc

yc;zc
are the leftmost and upmost jumping

¯ipping links in B1;B2; : . . . ;Bc, respectively (the smaller the value xj is, the upper J xj
yj;zj

is). That is, for any J e
u;v in Bj we have u6 yj and e P xj (actually u6 zj if J e

u;v 6� J xj
yj;zj ).

We note that B0 may or may not contain jumping ¯ipping links and Bc�1, if it
exists, does not contain any jumping ¯ipping link. For Bc�1 we have bmc >
�xc P �bmcÿ1 P � � � P bmc�1

�mc�1 � i�. We also note that B0 contains at least one
stage, Bj for 0 < j6 c contains at least three stages, and Bc�1, if it exists, contains at
least two stages.

4. Construction of disjoint paths

In this section, disjoint paths are constructed between arbitrary two nodes X
and Y of an IK�d; t� with coe�cient vector �btÿ1; btÿ2; . . . ; bi; ��. Without loss of
generality, we assume X 2 Ca

m and Y 2 Cb
n , where i6 n6m6 t ÿ 1; 06 a

6 bm ÿ 1; and 06b6 bn ÿ 1. The disjoint paths have maximal length not greater
than 2m�1 � 2m ÿ 1. The construction time is O�d � Dm�, where Dm � 2m ÿ 1 is the
diameter of a K�d;m�.

First we consider a trivial case of m � n and a � b. Since X and Y belong to the
same embedded K�d;m�; d ÿ 1 disjoint paths between X and Y can be obtained by
Duh and Chen's work [3]. These d ÿ 1 paths are all within Ca

m�� Cb
n �, and their

Fig. 4. Illustration of Lemma 3.1.
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maximal length is not greater than 3Dmÿ1 � 2 � 2m � 2mÿ1 ÿ 1. It should be men-
tioned that there may exist one more disjoint path between X and Y that goes outside
Ca

m. This path, if it exists, is much longer than those d ÿ 1 paths within Ca
m. We

exclude this path from our discussion.
In the rest of this section, a maximal set of disjoint paths between X and Y is

constructed within Sm � Smÿ1 � � � � � Si for: (i) m � n and a 6� b and (ii) m > n. It is
still possible that there exists one additional disjoint path going outside
Sm � Smÿ1 � � � � � Si. This path, if it exists, is excluded from our discussion because it
is too long as compared with those within Sm � Smÿ1 � � � � � Si.

To begin, we have to review Vecchia and Sanges' routing algorithm [23] for a
K�d; t� because it is necessary to the construction of the disjoint paths. Suppose A
and B are arbitrary two nodes of a K�d; t�. We de®ne A �r B if they belong to the
same embedded K�d; r�, and A 6�r B otherwise, where 16 r6 t. For example, refer to
Fig. 1(b), where 033 �3 133, but 033 6�2 133. A routing path from A to B within a
K�d; t� can be obtained by the following procedure.
1. Determine the level r so that A �r B but A 6�rÿ1 B, where 16 r6 t.
2. Determine the ¯ipping link, say (W ; Z), so that A �rÿ1 W and Z �rÿ1 B.
3. Determine a routing path from A to W and a routing path from Z to B, recursively.

A routing path from A to B is obtained by concatenating the routing path from A
to W, the ¯ipping link (W ; Z), and the routing path from Z to B. For example, a
routing path from node 033 to node 133 within K�4; 3� is shown with bold lines in
Fig. 1(b). When a message is transmitted from A to B, it is ®rst routed to the nearest
�r ÿ 1�-frontier, say Z, with Z �rÿ1 B, then routed to the nearest �r ÿ 2�-frontier, say
Z 0, with Z 0 �rÿ2 B, and so on. In other words, when the message is going along the
routing path, the identi®ers of the traversed nodes are gradually equalized with B
from the left to the right. For example, let us consider the routing path from node
033 to node 133 that is indicated with bold lines in Fig. 1(b). The left digit is
equalized at node 100, the middle digit is equalized at node 130, and ®nally all the
three digits are equalized at the destination node 133. The following observation is
immediate.

Observation 4.1. When routing a message according to Vecchia and Sanges' algo-
rithm, the identi®ers of the traversed nodes are gradually equalized with B from the
left to the right.

Vecchia and Sanges' algorithm, although simple, does not guarantee the shortest
path. For example, the shortest path from node 033 to node 133 is shown with
dashed lines in Fig. 1(b). Let p�A;B� denote the routing path from node A to node B
within a K�d; t� that is produced by Vecchia and Sanges' algorithm. The following
two lemmas have been proved in [3].

Lemma 4.1 [3]. Suppose A and B are arbitrary two nodes of a K(d; t). If A �r B and
either of them is an r-frontier, then p�A;B� is the shortest, where 16 r6 t. Moreover, it
takes at most O�Dt� time to determine p�A;B�, where Dt � 2t ÿ 1 is the diameter of the
K�d; t�.
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Lemma 4.2 [3]. Suppose A is an arbitrary node of a K�d; t�, and let Vl;0; Vl;1; . . . ; Vl;dÿ1

be the dl-frontiers of an embedded K�d; l� that contains A, where 16 l6 t. Then, the d
paths p�A; Vl;0�; p�A; Vl;1�; . . . ; p�A; Vl;dÿ1� are mutually disjoint, exclusive of A.

By Lemma 4.1, p�A; Vl;0�; p�A; Vl;1�; . . . ; p�A; Vl;dÿ1� are all the shortest and they can
be determined in O�d � Dl� time. Now we are ready to construct disjoint paths
between X 2 Ca

m and Y 2 Cb
n . First we consider the situation of m � n and a 6� b.

Within Sm there are bm ÿ 1 disjoint paths between X and Y. Besides, there may exist
one more disjoint path that passes through the embedded IK�d;m� formed by
Smÿ1 � Smÿ2 � � � � � Si. These bm paths are pictorially expressed in Fig. 5, where
a 62 f0; bm ÿ 1g; b 62 f0; bm ÿ 1g, and a < b are assumed. In Fig. 5, each thin line
represents a ¯ipping (or jumping ¯ipping) link and each bold line represents a
subpath obtained by Vecchia and Sanges' algorithm. According to Lemmas 4.1 and
4.2, these bm paths are mutually disjoint (exclusive of X and Y) and they can be
determined in O�bm � Dm�6O�d � Dm� time.

We also note that the path passing the embedded IK�d;m� exists only if the two
nodes btÿ1btÿ2 � � � bm�1bmam and btÿ1btÿ2 � � � bm�1bmbm belong to the embedded
IK�d;m� (refer to Fig. 5). According to Observation 4.1, p�btÿ1btÿ2 � � � bm�1bmam;
btÿ1btÿ2 � � � bm�1bmbm�, which is constructed within btÿ1btÿ2 � � � bm�1bm � K�d;m�, can be
expressed as follows:

btÿ1btÿ2 � � � bm�1bmam ! � � � ! btÿ1btÿ2 � � � bm�1bmabmÿ1;

! btÿ1btÿ2 � � � bm�1bmbamÿ1 ! � � � ! btÿ1btÿ2 � � � bm�1bmbabmÿ2;

! btÿ1btÿ2 � � � bm�1bmb2amÿ2 ! � � � ! btÿ1btÿ2 � � � bm�1bmb2abmÿ3;

! ..
.

! btÿ1btÿ2 � � � bm�1bmbmÿ2a2 ! btÿ1btÿ2 � � � bm�1bmbmÿ2ab;

! btÿ1btÿ2 � � � bm�1bmbmÿ1a! btÿ1btÿ2 � � � bm�1bmbm:

Each node in the subpath from btÿ1btÿ2 � � � bm�1bmam to btÿ1btÿ2 � � � bm�1bmabmÿ1

has leading digits btÿ1btÿ2 � � � bm�1bma, each node in the subpath from
btÿ1btÿ2 � � � bm�1bmbamÿ1 to btÿ1btÿ2 � � � bm�1bmbabmÿ2 has leading digits
btÿ1btÿ2 � � � bm�1bmba, and so on. That is, every node in p�btÿ1btÿ2 � � � bm�1bmam;
btÿ1btÿ2 � � � bm�1bmbm� precedes btÿ1btÿ2 � � � bm�1bmbm lexicographically if a < b,
and precedes btÿ1btÿ2 � � � bm�1bmam lexicographically if a > b. Hence,
p�btÿ1btÿ2 � � � bm�1bmam; btÿ1btÿ2 � � � bm�1bmbm� is entirely contained in the embedded
IK�d;m�, provided the two end nodes are contained in the embedded IK�d;m�.

Then we consider the situation of m > n. With input �bm; bmÿ1; . . . ; bi; �� and
a, Algorithm Stage_Grouping is ®rst executed to produce m0;m1; . . . ;mk so
that B0 � Sm � Smÿ1 � � � � � Sm0

, B1 � Sm0
� Sm0ÿ1 � � � � � Sm1

; . . . ;Bk � Smkÿ1
� Smkÿ1ÿ1
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� � � � � Smk , where k P 0 and mk � i. Suppose Y 2 Cb
n belongs to Bl, where 06 l6 k.

If Y 2 Sml , we consider Y 2 Bl but 62 Bl�1. Two cases are discussed below.

Case 1 (l� 0). We have m > n P m0. Let j � minfbm; bmÿ1; . . . ; bng if
minfbm; bmÿ1; . . . ; bng � bm or bn and j � minfbm; bmÿ1; . . . ; bng � 1 else. There are j
disjoint paths between X and Y, denoted by P0; P1; . . . ; Pjÿ1, where Pr passes
Ca

m;C
r
m;C

r
mÿ1; . . . ;Cr

n;C
b
n in sequence for all 06 r6 jÿ 1�Ca

m � Cr
m as a � r, and

Cr
n � Cb

n as r � b). Besides, there is an additional disjoint path, denoted by Pj, if
j � bn < bm and there is a jumping ¯ipping link, say J bn

u;v, under Sn, where
m > u > n > v. It is still possible that Pj contains other jumping ¯ipping links

Fig. 5. bm Disjoint paths between X and Y, where a 62 f0; bm ÿ 1g; b 62 f0; bm ÿ 1g, and a < b are

assumed.
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between Sm and Su. Without loss of generality, we assume Pj contains only J bn
u;v, and

so Pj passes Ca
m;C

j
m;C

j
mÿ1; . . . ;Cj

u ;C
j
v ;C

b
v ;C

b
v�1; . . . ;Cb

n , in sequence. According to
Lemmas 4.1 and 4.2, these Pj paths are mutually disjoint (exclusive of X and Y) and
they can be determined in O�j� Dm�6O�d � Dm� time.

For example, let us consider X 2 C2
6 and Y 2 C1

5 in an IK�5; 7� with coe�cient
vector (4, 2, 4, 3, 1, 4, �) (refer to Fig. 6). The execution of Algorithm
Stage_Grouping produces B0 � S6 � S5 � S4 � S3 and B1 � S3 � S2 � S1. We have
j � minf4; 2g � 2. Since j � b5 < b6 and one jumping ¯ipping link goes under
S5, there are j� 1 � 3 disjoint paths between X and Y. These three paths are
shown in Fig. 6, where each thin line represents a ¯ipping (or jumping ¯ipping)
link and each bold line represents a subpath obtained by Vecchia and Sanges'
algorithm.

Case 2 (0 < l6 k). We have mlÿ1 > n P ml. Let �a >�x1 > x2 > � � � > xc be de-
®ned as in Algorithm Stage_Grouping, where c � k or k ÿ 1. Recall the discussion
in the last paragraph of Section 3. There is at least one jumping ¯ipping link in
Bl unless l � c� 1. We ®rst assume l < c� 1 and let J xl

yl;zl
represent the leftmost

and upmost jumping ¯ipping link in Bl. Three subcases have to be discussed
below.

Subcase 1 (mlÿ1 > n P yl). There are bn disjoint paths between X and Y, denoted
by P0; P1; . . . ; Pbnÿ1, where Pr passes Ca

m;C
r
m;C

r
mÿ1; . . . ;Cr

n;C
b
n in sequence for all

Fig. 6. Disjoint paths between X and Y for Case 1.
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06 r6 bn ÿ 2 and Pbnÿ1 passes Ca
m;C

a
mÿ1; . . . ;Ca

m0
; Cx1

m0
;Cx1

m0ÿ1; . . . ;Cx1
m1
;Cx2

m1
;Cx2

m1ÿ1; . . . ;
Cx2

m2
;Cx3

m2
; . . . ;Cxlÿ1

mlÿ1
;Cbnÿ1

mlÿ1
;Cbnÿ1

mlÿ1ÿ1; . . . ;Cbnÿ1
n ;Cb

n in sequence.
For example, refer to Fig. 7, where an IK�5; 7� with coe�cient vector (4, 2, 4, 3, 1,

4, �) is shown. Suppose X 2 C3
6 and Y 2 C1

3 . The execution of Algorithm
Stage_Grouping produces B0 � S6;B1 � S6 � S5 � S4 � S3, and B2 � S3 � S2 � S1.
There are b3 � 3 disjoint paths between X and Y as shown in Fig. 7(a).

Subcase 2 (yl > n P ml and bn � xl). There are bn � 1 disjoint paths between X
and Y. Since bn � xl � minfbmlÿ1

; bmlÿ1ÿ1; . . . ; bmlg (by Lemma 3.1), bmlÿ1
> xlÿ1 > xl,

and bml > xl, there exists a jumping ¯ipping link under Sn, say J bn
u;v, where

mlÿ1 P u > v P ml. We use P0; P1; . . . ; Pbn to denote the bn � 1 disjoint paths, where Pr

passes Ca
m;C

r
m;C

r
mÿ1; . . . ;Cr

n;C
b
n in sequence for all 06 r6 bn ÿ 1 and Pbn passes

Ca
m;C

a
mÿ1; . . . ; Ca

m0
; C x1

m0
;Cx1

m0ÿ1; . . . ;Cx1
m1
; Cx2

m1
;Cx2

m1ÿ1; . . . ;Cx2
m2
; Cx3

m2
; . . . ;Cxlÿ1

mlÿ1
; Cxl

mlÿ1
;

Cxl
mlÿ1ÿ1; Cxl

mlÿ1ÿ2; . . . ;Cxl
u ; Cxl

v ; Cb
v ;C

b
v�1; . . . ;Cb

n in sequence.
For example, suppose X 2 C3

6 and Y 2 C0
2 belong to the same IK�5; 7�. There are

b2 � 1 � 2 disjoint paths between X and Y as shown in Fig. 7(b).
Subcase 3 (yl > n P ml and bn > xl). Actually we have zl P n P ml and bn > xl

because bylÿ1 � bylÿ2 � � � � � bzl�1 � xl can be assured by Theorem 2.1. There are
xl � 1 disjoint paths between X and Y, denoted by P0; P1; . . . ; Pxl , where Pr passes

Fig. 7. Disjoint paths between X and Y for Case 2. (a) mlÿ1 > n P yl; (b) yl > n P ml and bn � xl ÿ 1;

(c) yl > n P ml and bn P xl.
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Ca
m;C

r
m;C

r
mÿ1; . . . ;Cr

n;C
b
n in sequence for all 06 r6 xl ÿ 1 and Pxl passes

Ca
m;C

a
mÿ1; . . . ;Cm0

a; Cx1
m0
;Cx1

m0ÿ1; . . . ;Cx1
m1
; Cx2

m1
;Cm1ÿ1

x2 ; . . . ;Cx2
m2
; Cx3

m2
; . . . ;Cxlÿ1

mlÿ1
; Cxl

mlÿ1
;

Cxl
mlÿ1ÿ1;C

xl
mlÿ1ÿ2; . . . ;Cxl

yl
; Cxl

zl
; . . . ;Cxl

n ;C
b
n in sequence.

For example, suppose X 2 C3
6 and Y 2 C2

1 belong to same IK�5; 7�. There are
xl � 1 � 2 disjoint paths between X and Y as shown in Fig. 7(c).

On the other hand, if l � c� 1, we have bmc > �xc P �bmcÿ1
P � � � P bn P � � � P

bmc�1
�mc�1 � i�. There are bn disjoint paths between X and Y whose construction is

similar to Subcase 1.
According to Lemmas 4.1 and 4.2, the paths obtained for Case 2 are mutually

disjoint (exclusive of X and Y), and they can be determined in O�maxfbn � 1;
xl � 1g � Dm�6O�d � Dm� time.

The following theorem holds as a consequence of our discussion above.

Theorem 4.1. Suppose X 2 Ca
m and Y 2 Cb

n belong to an IK�d; t� with coefficient vector
�btÿ1; btÿ2; . . . ; bi; ��, where i6 n6m6 t ÿ 1; 06 a6 bm ÿ 1, and 06 b6 bn ÿ 1. Then
the disjoint paths between X and Y can be determined in O�d � Dm� time.

Let len�X ; Y � be the maximal length of the disjoint paths between X and Y. In the
following we show that len�X ; Y � has an upper bound of 2m�1 � 2m ÿ 1.

Theorem 4.2. Suppose X 2 Ca
m and Y 2 Cb

n belong to an IK�d; t� with coefficient vector
�btÿ1; btÿ2; . . . ; bi; ��, where i6 n6m6 t ÿ 1; 06 a6 bm ÿ 1, and 06 b6 bn ÿ 1. Then
len�X ; Y �6 2m�1 � 2m ÿ 1.

Proof. If m � n, there are at most bm disjoint paths between X and Y. By the aid
of Lemma 4.1, the path passing the embedded IK�d;m� has length at most
Dm � 1� Dm � 1� Dm � 2m�1 � 2m ÿ 1, and the others each have length at most
Dm � 1� Dm � 1� Dm � 2m�1 � 2m ÿ 1. Hence, len�X ; Y �6 2m�1 � 2m ÿ 1. In the
rest of the proof, we assume m > n and Y 2 Bl for some 06 l6 k.

If l � 0, there are at most j� 1 disjoint paths P0; P1; . . . ; Pj between X and Y. The
path Pj, if it exists, has length at most Dm � 1� Dm � 1� Dmÿ1 � 1� � � � � Du�1

�1� Du � 1� Dv � 1� Dv �1� Dv�1 � 1� � � � � Dn < 2m�1 � 2m ÿ 1, and the oth-
ers each have length at most Dm � 1� Dm �1� Dmÿ1 � 1� Dmÿ2 � 1� � � � �
Dn�1 � 1� Dn � 1� Dn � 2m�1� 2m ÿ 1. Hence, len�X ; Y �6 2m�1 � 2m ÿ 1.

If 0 < l6 k, there are bn or bn � 1 or xl � 1 disjoint paths between X and Y, ac-
cording to three subcases. Similarly, len�X ; Y �6 2m�1 � 2m ÿ 1. �

5. Experiments and results

In this section the e�ectiveness of the disjoint paths is veri®ed by extensive ex-
periments. The following two algorithms were implemented for the need of our
experiments.
· Su, Chen, and Duh's algorithm that computes the diameter of an IK�d; t� [21].
· Su, Chen, and Duh's algorithm that computes the shortest path between arbitrary

two nodes of an IK�d; t� [22].
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Remarks. Adopting the prune-and-search technique [15], the algorithm of Su et al.
[21] can compute the diameter of an IK�d; t� and the farthest pair of nodes in O�t�
time. Although the diameter of an IK�d; t� can be computed by Su, Chen, and Duh's
algorithm, no formula is available for computing it.

First we compare len�X ; Y � with dis�X ; Y �, where dis�X ; Y � is the distance between
X and Y. Fig. 8 shows the average ratios of len�X ; Y � to dis�X ; Y � for IK�d; t�s with
46 d 6 6 and 26 t6 10. The values of dis�X ; Y � were computed by the algorithm of
Su et al. [22]. For each pair of d and t; 106 random instances were run and their
average ratio was computed. The averages got stable after running as many as 106

instances. A randomly generated coe�cient vector combined with two nodes, also
randomly generated, of an IK�d; t� forms an instance. Experimental results showed
that len�X ; Y � is not greater than twice dis�X ; Y � in average.

Then we compare len�X ; Y � with the diameter. Fig. 9 shows the average ratios of
len�X ; Y � to the diameter for IK�d; t�s with 46 d 6 6 and 26 t6 10. The diameters
were computed by the algorithm of Su et al. [21]. Like Fig. 8, the average ratio for
106 random instances was taken for each pair of d and t. Experimental results
showed that len�X ; Y � is smaller than the diameter in average both as d � 4 and
t P 2 and as d � 5 and t P 5. Besides, len�X ; Y � tends to the diameter as d � 6 and t
increases.

When X and Y were selected to be the farthest pair of nodes (i.e., dis�X ; Y � is equal
to the diameter of the IK�d; t�), the average ratios of len�X ; Y � to the diameter were
shown in Fig. 10. The farthest pair of nodes can be determined by the algorithm of
Su et al. [21]. The average ratios each were obtained by running 105 random in-
stances because the averages got stable after running as many as 105 instances.

Fig. 8. Average ratios of len�X ; Y � to dis�X ; Y � for IK�d; t�.
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Experimental results showed that most of the averages fall in the range of 1.2±1.3.
The maximal average ratio does not exceed 1.5.

It is worth mentioning that for the experiments of Fig. 10, no instance has
len�X ; Y � exceeding twice the diameter. The distributions of the 105 ratios obtained
for an IK�4; 8�, an IK�5; 8�, and an IK�6; 8� were shown in Figs. 11(a)±(c), respec-
tively. For example, for the IK�4; 8� there are 54,566 ratios (about 54%) fall in the
range of 1.0±1.1 and there are 4044 ratios (about 4%) fall in the range of 1.1±1.2.

Fig. 10. Average ratios of len�X ; Y � to dis�X ; Y � for IK�d; t�, where X and Y are the farthest pair nodes.

Fig. 9. Average ratios of len�X ; Y � to diameter for IK�d; t�.
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6. Concluding remarks

In this paper, we have constructed a maximal set of disjoint paths between X and
Y, which are arbitrary two nodes of an IK�d; t�. The construction time is bounded by
O�d � Dt�. We have shown that the disjoint paths have maximal length not greater
than 2m�1 � 2m ÿ 1, where X 2 Ca

m; Y 2 Cb
n , and i6 n6m6 t ÿ 1 are assumed. The

e�ectiveness of the disjoint paths was further veri®ed by extensive experiments.
Experimental results showed that the disjoint paths have expected maximal length
not greater than twice their distance and about equal to the diameter. Besides, when
X and Y are the farthest pair, the disjoint paths have maximal length not greater than

Fig. 11. Distribution of ratios over 105 instances for t � 8. (a) d � 4; (b) d � 5; (c) d � 6.
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twice the diameter and expected maximal length not greater than 1.5 times the di-
ameter.
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