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HIGH PERFORMANCE FORTRAN FOR AEROSPACEAPPLICATIONS*

PIYUSHMEItI_()TRAt ANDIIANSZIMA;

Abstract. This paper fi)cuses on the use of High Perfin'mance Fortran (HPF) for important ('lasses

of algorithms eml)loyed in aerospace applications. HPF is a set of Fortran extensions designed to provide

users with a high-level interface for programnfing data parallel scientific applications, while delegating to the

compiler/runtime systeln the task of generating exl)licitly parallel message-passing t)rograms. We [)egin 1)y

providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use

of HPF for at)plications involving nmltiple structured grids such as multiblock and adal)tive mesh refinement

(AMR) codes as well as unstructured grid codes. \_i' focus on the data structures and computational

structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally

exI)loit the paralMism in these algorithms.

Key words. (listributed memory multi)recessing, high-level language, distribution directives

Subject classification. Computer Science

1. Introduction. Exploiting the flfll potential of parallel architectures requires a cooperative effort

t)etween the user and the language system. There is a clear trade-off between the amount ()f information

the user has to provide and the amount of effort the (:onll)iler has t() exl)end to generate ()l)timal l)arallel

code. The Sl)ectrum ranges fronl low-level languages in which the user has to ext)licitly encode all the

t)arallelism while the compiler effort is minimal, to sequential languages where the comt)iler has the fifll

responsibility for extracting the paralMism. High Performance Fortran (HPF) takes the middle ground -

sharing the responsibility I)etween tim user and the compiler/runtiIne system. It does this Ily l)roviding

Fortran directives which allow the user to exl)ress the parallelism and control the data h)(:ality at a very

high level while utilizing a compiler which uses this information to generate the low-level details such as the

required colnmunication statelnents.

In this t)aper, we ti)cus on applications from Comt)utationa[ Fluid Dynamics (CFD) and show how HPF

(:an be used to express the t)arallelism for algorithms used in this area. As the requirements of the (:OInl)U-

rational aerodynamicists have increase<t, applications with single grids have given way to those employing

inultiple grids and even unstructured grids. We start by providing a brief overview of HPF and use some

simple single grid applications to show how HPF directives are used. In Section 3, we fi)cus on at)plications

which use multiI)le grids in order to generate flow solutions over complex bodies. Section 4 presents un-

structured grid at)l)lications, describing how the HPF directives can be used to control the data and work

distributions re(tuired for such codes. ConchMing remarks can be found in Section 5.

Note that in this paper we are not concerned with the physics of the computations in these algorithms.

Rather we focus on the data structures and the computational structures so that we can describe at a high

level the apt>roa(:hes that can be used when employing HPF for exploiting the parallelism in these codes.

*The work described in this paper was partially SUpl_orted by the National Aeronautics and Space Administration under

NASA Contract No. NASl-19480 an(t NAS1-97046, while the authors were in residence at ICASE, NASA Langley Research

(',enler, Hampton, \"A 23681.
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+*Institute for Software Science, University of Vienna, Liechtensleinstr. 22, A-1090 Vienna, Austria. (email:

zima(gpar.univie.ac.at). This research was also supported by' the Priorily Research Project F011 "AUflOIIA" tim(ted by

the Austrian Science Fund.



Also, we do not discuss the compiler optimizations required to generate low-level code from HPF code. ()ther

publications, including [13, 23], (:over the required analysis and transformations in great detail.

2. Overview of HPF. High Performance Fortran is a set of Fortran extensions designed to allow

specification of data parallel algorithms for a wide range of architectures. Tile user annotates the program

with distribution and alignment directives to specif,v the desired layout of data. The underlying programming

too(tel provides a global name st)ace and a single thread of control. Exl)licitly parallel constructs allow the

expression of fairly controlled forms of parallelisin, in i)articular data t)arallelism. Thus, the code is specified

in high level portable manner with no explicit tasking or communication statements. The goal is to allow

architecture specific compilers to generate efficient (:ode for a wide variety of architectures including SIMD,

MIMD shared and distributed-memory machines.

The key concept of HPF high level directives which allow the sharing of responsibility for exploiting

parallelism between the user and the (:omt)iler/runtinle systein is based on language research done by

several groups over the years including [2, 8, 11. 15. 16, 18, 22].

The HPF 2.0 language consists of three parts: a) the Base Language, b) the Approved Extensions,

and c) Recognized Extrinsic Interfaces. The base language defines the basic HPF features which each HPF

comt)iler must support. The Approved Extensions include advanced features that meet st)ecific needs t)ut

are not likely to be supported by the initial compilers. The Recognized Extrinsic Interfa(:es are a set of

interfaces approved by the HPF Forum but which have been designed by others to provide a service to the

HPF community.

In the next two subsections we provide a brief description of the base language and the approved

extensions, respectively. A more coml)lete description of the language can be found in the HPF Language

specification [12].

2.1. The Base Language. The HPF 2.0 Base Language supports the following features for sl)ecifying

the mapping of data and the parallelism in the code.

Data mapping directives. HPF provides an extensive set of directives to specify the mapping of

array elements to memory regions associated with "abstract processors." Arrays are first aligned relative to

each other and then the aligned group of arrays are distributed onto a rectilinear arrangement of abstract.

processors. The alignxnent directives support the mapping of a dimension of an array relative to the dimension

of another array. The following types of aligmnents are allowed: identical alignment, alignment with offset

and stride, collapsing, embedding, replication and permutation.

The distribution directives alh)w each dimension of an array to be independently distributed using the

block or cyclic distribution. The former partitions a dimension of the array into equal-sized contiguous

t)locks which are distributed across the target set of abstract processors while the latter distributes the

elements cyclically across the abstract processors.

Data parallel directives. The current version of HPF (version 2.0) is based on the Fortran 95 standard.

Thus. the array constructs of Fortran 90 can be used to specify the data parallelism in the code. Also, the

forall statement and construct (which were introdu(:ed in HPF version 1.1 and later adopted in Fortran 95)

t)rovide a more general mechanism to specie" such parallelism.

HPF itself provides the independent directive which asserts that iterations of a loop do not hay( any

loop-carried dependences and thus can be executed in parallel. A reduction clause can be used with this

directive to identify variables which are updated by different iterations using associative and commutative

operators.



!HPF$ PROCESSORS P(NUMBER_OF-PROCESSORS())

REAL U(I:N, I:N), F(I:N, I:N)

!HPF$ ALIGN U :: F

!HPF$ DISTRIBUTE U (*, BLOCK)

FORALL (I=2:N-1, J = 2:N-1)

U(I, J) = 0.25 * (F(I, J) + U(I-1, J) + U(I+I, J) + U(I, .I-1) + U(I, J+l))

END FORALL

FIG. 2.1. III'F vcrswn of a simple .lacobi proccdurc

Intrinsic and library functions. HPF l)rovides a set of new intrinsic functions including system

flmctions to inquire about the underlying hardware, inquiry functions to inquire about the mapping of th(,

data structures and a few (:omt)utational intrinsic functions. A set of new library routines have also been

defined so as to provide a staiMard interface for highly useful pm'allel operations such as redu('tion flln('tiolls.

combining scatter flmctions, l)refix an(t suffix flmctions, and sorting functions.

Extrinsic procedures. HPF is well suited for data parallel programming. However, in order to a('-

conm_o(tate other programming paradigms, HPF provides extrinsic l)r(_cedures. These define an explicit

interface and allow codes exl)ressed using a different language, e.g., C, or a different t)aradigm, such as an

ext)licit message passing, to be called from an HPF prograin.

2.2. HPF Approved Extensions. HPF 2.0 At)I)roved Extensions include a(lvance(t fi_atures which

allow more eonq)lex al)l)lications t<) be expressed using HPF.

Extensions to data mapping directives. These extensions alh)w greater control of the mat)ping of

data objects. For exmnt)le, users can mat) pointers and components of (lerived types, and ('an map obje('ts

to subsets of processors directly. New (listribution formats allow irregular distributions. The gen_block

distribution generalizes the block distribution by allowing non-equal blocks and the indirect (tistrihution

allows each element of the data object to be mal)ped individually using a mapping array.

Another imt)ortant feature ix the support fi)r dynamic remapping of data. If an object has t)een declared

dynamic then it can be remapped at runtime using the the realign or redistribute (tirectives. In i)articular.

redistribution of an array implies that all other arrays aligned with it have to be remapped.

Extensions to data parallel directives. In addition to real)ping data, the on directive allows users

to nla I) comlmtation onto t)rocessors. The resident dire('tive allows the st)ecification of information about

a(:cesses to data objects within the scope of an associated on Mock.

The task_region directive extends HPF beyond the reahn of data paralMism hv alh)wing some forms

of control t)aralMism to be expressed within the language. This directive can t)e used to indicate regions of

code that can be executed in parallel on different subsets of processors. Even though this is a very restri('ted

form of task parallelisxn, sin(:e no comnmnication or synchronization is allowed within these regions, simI)h'

forms of control paralMism, such as t)it)elining, (:an be expresse(t.

2.3. Examples of HPF Codes. In this section we provide two code fragments using some of the

HPF features described above. The first is the Jacobi iterative algorithm and the second is the Modified

Gram-Schmidt algorithm.



TheHPFversionof theJacobiiterativeprocedurewhichmaybeusedto approximatethesolutionof
a partialdifferentialequationdiscretizedon a grid, is shownin Figure2.1. Suchanalgorithm,usinga
five-pointstencil,is typicalofmanyCFDapplications.

In this code fragment, the data objects are mapped as follows. The array F is aligned with the array

U using the identity aligmnent I. The array U is declared to distributed via the distribution clause (*,

BLOCK ), implying that the second dimension of the array is block distributed. That is, the columns of U

(an(I thus those of F because of the alignment) are distril)uted by block, t)y default, across the processor array

P. P has been declared to t)e an array of abstract processors whose size is determined t)y the svstem inquiry

flmction NUMBER_OF_PROCESSORS, which returns the number of processors being used to execute the

program at runtime. Using this inquiry flmction, allows the above code can be run on varying numbers of

processors without recompilation. The computation is expressed using a FORALL construct, where all the

right hand sides are evaluated using the old values of U before assignment to tile left hand side.

To reiterate, the computation is specified using a global index space and does not contain any explicit

data motion constructs such as explicit conlnmnication statements. Assume now that the fo,nll loop is

strip-mined by the compiler using tile owner computes rule, where the owner of a data object executes the

statements which (:omput(_ the value of the object. Since the underlying arrays are distributed by colunHls,

the edge columns will have to be (:ornnmnicated to neighboring processors. It is the compiler's rest)onsibility

to analyze the code and translate it into an explicitly parallel code with the apt)ropriate conmmnication

statements inserte(t to satisfy the data requirenmnts.

As another exaniple, consider the HPF version of tim Modified Gram-Sctunidt algorithm given in Fig-

ure 2.22:

Again, the first directive (teclares that the columns of the array I" are to be distributed by block across

the memories of the underlying processor set. The outer loop, I, is sequential and is thus executed by all

processors. Given the column distribution, in tile lth iteration of the outer loop, the first two K loops should

t)e execute(t by the processor owning the Ith cohmm.

The second directive declares the J loop to be independent, thus, the iterations of the J h)op can be

executed in parallel, i.e., each processor updates the columns that it owns in parallel. Since tile Ith colunm

is used for this update, it will have to be broadcast to all processors. Note that tile variables K and TMP

ark declare(l to be new variables. That is, they act as private variables for each iteration and thus do not

cause any inter-iteration dependences.

Since tile columns are distributed by contiguous blocks across the processors, as the comt)utation in

the parallel J loop progresses, the processors will beconm idle. A cyclic distribution of the columns wouhl

eliminate this problem. This can lie achieved by replacing the distribution directive with the following:

!HPF$ DISTRIBUTE V (*, CYCLIC)

This declares the columns to distributed cyclically across the i)rocessors, and thus will force tile work distri-

bution of the immr ,1 loop to be strip-mined in a cyclic rather than in a block fashion. Thus, all processors

will remain busy until the tail end of the computation. Note, that all that is required is a change in the

distribution directive. The code ret)resenting the computation itself is independent of the distribution and

1The Imlguage provides more complex mechanisms for aligning arrays to other objects including translation, dimension

collapsing, dimension exchange and replication.

2A Fortran 90 version of the code fragment, not shown here, would have used array construcls for the K loops. This would

make the parallelism in the inner loops explicit.



REAL V(N,N)
!HPF$DISTRIBUTEV (*, BLOCK)

DO I=I,N
TMP= 0.0
DO K=I,N

TMP= TMP+ V(K,I)*V(K,I)
ENDDO
XNORM=1.0/ SQRT(TMP)

DO K=I,N

V(K, I) = V(K, I) * XNORM

ENDDO

!HPF$ INDEPENDENT. NEW (K, TMP)

DO J = I+l, N

TMP = 0.0

DO K=I,N

TMP = TMP + V(K, I)*V(K, 3)

ENDDO

DO K=I.N

V(K, 3) = V(K, J) - TMP*V(K, 1)

ENDDO

ENDDO

ENDDO

|:i(:. 2.2. HPF version of Modified (;ram-,qchmidt algorithm with a one-dimensional distributum

hence does not need to be nlodified. Of course, tlle code needs to be recolnpiled so that the conq)iler can

generate the required communications taking into account the new distribution.

The above distributions only exploit paralMism in one dimension, whereas the inner /_" loops can also

run in parallel. This can be achieved l)3, distritmting both the dimensions of I" as shown in Figure 2.3.

Here, tit(, processors are presumed to be arranged in a two-dimensional mesh and the array is distributed such

that the elements of a column of the array are distributed by block across a cohmm of processors whereas the

cohunns as a whole are distributed cyclically. Thus, the first K loop becomes a paralM reduction, indica.ted

by the reduction clause over the variable TMP. of the Ith cohmm across the set of processors owning the

Ith cohmm. Similarly, the second K loop can also be declared to be independent and executed in parallel

by the column of processors which owns the Ith column. The second set of K loops, inside the d loop, can

be similarly parallelized.

In this section, we have provided a brief overview of the HPF language and illustrated the use of the

basic directives through two siml)le examples. In the next two sections we discuss more complex examples

and show how the HPF directives can be used t.o describe the data layout necessary for these codes.

3. HPF-Based Algorithms for Grid Collections. This section deals with HPF-based algorithms

that operate on grid collections. More specifically, we define a grid collection as a set of structured grids

all of which are defined over a given discretized domain in d-dimensional Cartesian space. A structured

(regular) grid is a contiguous rectilinear arrangement of equal-sized cells in d-dimensional space. It can be



!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

REAL V(N,N)
!HPF$DISTRIBUTEV (BLOCK, CYCLIC)

DO I=I,N
TMP= 0.0
INDEPENDENT,REDUCTION(TMP)
DO K=I,N

TMP= TMP+ V(K,I)*V(K,I)
ENDDO
XNORM= 1.0/ SQRT(TMP)

INDEPENDENT

DO K=I,N

V(K, I) = V(K, I) * XNORM

ENDDO

INDEPENDENT, NEW (K, TRIP)

DO .I =I+I,N

TMP = 0.0

INDEPENDENT, REDUCTION (TMP)

DO K=I,N

TMP = TMP + V(K, I)*V(K, 3)

ENDDO

INDEPENDENT

DO K=I,N

V(K, J) = \:(K, J) - TMP*V(K, I)

ENDDO

ENDDO

ENDDO

FI(;. 2.3. Second HPF version of Modified (lram-Schmidt algorithm with a two-dimensional distribution

characterized by its origin, and two vectors, the meshsize and tile extent, which respectively specify the size

of each (:ell and the number of cells in each dimension. Different grids in a collection may have different

mesh sizes and different extents.

We will deal in some detail with grid collections of two different types, multiblock grid collections in

Section 3.1, and AMR (adat)tive nmsh refinement) grids in Section 3.2. In Section 3.3, we discuss a range of

HPF-based approaches for both types of grids.

The fi'amework developed here can also be used for senti-coarsening nmltigrid algorithms as proposed by

Overnmn and Van Rosendale [17]. Such algorithms operate on a hierarchical grid structure; nmltiple grids

at any level of this hierarchy can be processed in parallel using the distribution strategies outlined in Section

3.3.

3.1. Multlbloek Codes. Geometrically complex obje(:ts, such as aircraft, cannot be easily modeled

using a single structure(t grid. A uniform mesh with a spatial resolution small enough to resolve the localized

features in the solution, is often impractical due to the size of the required mesh and the wasted resources

away from the region of interest. This section discusses a class of applications called block-structured

or multiblock codes which operate on a set of interacting structured grids connected in an irregular man-



program PROCESSING A MULTIBLOCK GRID COLLECTION

begin

read.Jmmber_of_grids

read _grid _paramet ers

allot ate_and _set u p _gri ds ! allocat.e and initialize: all grids in G

do while (not done(G))

boundary_upttate(G)

for every g E G do

solve_grid(g)

end for

end do while

end program

1,'1(;. 3.1. t)seudocodc for p_vccss*ng a multiblock grid collection

ner [21]. Using multitfle grids t.o diseretize the domain, allows the individual grids in the collection to be

tailored. Thus, title grids can be used in areas of greater interest near the body while coarse grids, re(tuiring

less comtmtation, can be used in the far field regions. Multiblock applications, used in grand-challenge ap-

plications such as conlputational fluid mechanics, aircraft sinmlation, galaxy formation, large-scale climate

modeling, and computational eonlbustion dynanfics, can be characterized as follows:

• The data domain is partitioned into subdomains that are called blocks. Blocks are structured grids

representing a self-contained region for computatioll that can, except for boundary conditions, be

<>perated on indet>endently of the other t)lo<:ks.

• The number of blo(:ks is relatiwqy small (usually between 10 and 100) and may not be known until

runtime, hi general, the sizes of blocks are deternlined at runtime, an<l <lifferent lflocks may have

widely different sizes and shapes.

• The processing of individual blocks uses regular data access schenles. The flulctions apl)lied to

different blocks may be different. We assume that tile amount of processing to be done for each

block is proportional to the size of the block.

• Blocks need to interact. The interaction pattern is in general determined at runtime.

3.1.1. Processing of Multiblock Grid Collections. All grids in a multiblock grid collection can be

processed independently. As a consequence, a decentralized approach can I)e taken to (tetermine a sohltion

for tile multiblock problem: tile equation is not solved over the whole domain, but for each grid separately

mid in parallel to the solution for the other grids. Boundary updates between grids that abut ea('h other

handle the infornlation flow t)e, tween grids.

We will define a generic algorithm which exploits the level of t)aralMisnl across the conlponent grids of

a nmltibloek grid collection, G, as well as the l)arallelism inherent in solvers for tile individual grids. An

abstract pseudocode version for such an algorithm is given in Figure 3.1.

We assume a dynanfie scenario in which the number of grids in the collection as well as the parameters

of the individual grids (i.e., their origins, nlesh sizes, and extents) are determined at runtime. The algoritIHn



reads these parameters and allocates and initializes the individual grids in tile collection as well as tile data

structures required to represent tile topology of the collection and its boundaries. In this scenario, once the

grid collection is set up it remains invariant.

The core of the algorithm consists of a do-while loop, which is executed until a ternfination condition

is satisfied. Such a condition could either depend on the properties of the solution such as its precision,

or could just count the number of iterations performed up to a pre-defined lilnit. This loop is inherently

sequential; each iteration begins with a boundary update phase, in which the boundary information between

abutting grids is exchanged, followed by a call to the solver for each component grid in the collection G.

A key assumption we make here is that the for every loop is parallel, so that solve_grid(g) can be

executed independently for all grids in G. Since each .q is a structured grid, any method for solving such

a grid can he used here. As a consequence, the algorithm exploits two levels of parallelism: the inter-grid

parallelism expressed by the for every loop, and the intra-grid parallelism of the solve_grid routine. During

pre-proeessing, the boundary of each grid is updated. This involves an explicit assigmnent of solutions.

For an internal boundary, solution vectors fi'om neighboring grids are transferred. External boundaries are

defined using local knowledge about the boundary of the global domain. The details of this approach depend

on the specifies of the algorithm and the structure of the grid collection.

3.2. Adaptive Mesh Refinement (AMR). A(laptive mesh refinelnent techniques are useflfl for re-

ducing the computational resources required for solving a system of hyperl)olic PDEs. As in the ease of

multil)lock codes, a collection of grids is used to discretize the flow-field. The adaptive mesh refinement

algorithm, introduced by Berger and Oliger [6], starts with a structured coarse mesh and adaptively places a

finer grid on regions which require a finer resolution. This is continued reeursively giving rise to a hierarchy

of levels with multiple grids at. each level. The comtmtation then consists of using standard finite-difference

techniques to approximate the solutioll on each grid with interpolation and projection operators being used

to trans%r data between grids at different levels of the hierarchy. Since these codes focus on tinle-dependent

phenomena, such as tracking a shock, the hierarchy of grids are modified an(t reconstructed dynamically to

match the underlying changing phenomena.

Similar to the multiblock codes of the last subection, these algorithms exhibit a fair degree of t)aralMism

since the grids are resolved independently and hence the sohltions on all the grids at a level can be computed

simultaneously. Also, if the grids are large enough, parallelism (;all be exploited to speed up the computation

within each grid. Exploiting such parallelism adds to the overall complexity of the code. As indicated b(4ore,

the issue is that even though the grids themselves are structured, the hierarchy of grids is irregular leading

to irregular l)atterns of communication. Also, since the grid hierarchy is dynamic here, in order to effectively

parallelize these codes, not only do the grids have to be dynamically distributed so as to maximize the

parallelism, but also the irregular inter-grid conmmnieation patterns have to be generated each time th( , grid

hierarchy is modified.

The SAMR algorithm. The structured adaptive mesh algorithm (:an t)e described at an abstract

level as follows. The algorithm starts with a structured coarse mesh representing a discretization of the

physical domain under consideration and places finer grids over regions which need better resolution. This

is continued recursively, as depicted by the recursive routine amr in Figure 3.2. Here, G t represents the

set of grids at level 1 while G represents the union of all the grids across all levels. Thus, at each level,

first the solution on each of the grids at the level is computed. Then, the decision to regrid is made based

on the error estilnates. If there exists a finer level l+1, then the grids on the finer level are initializ(,d by

interpolating values from the coarser level l and the routine amr is recursively executed on the finer level.



amr( G, 1)

do i = 1, r t

for every g G G ! do

solve_grid (g)

end for

if ( r'egridding required)

adapt_grids( G, 1)

endif

if exists level l+l

interpolate( G, l, 1+1)

amr( G, l+l)

project( G, 1+1. l)

endif

end do

end am.r

! solve for every grid g at level 1

.t initialize levc, l 1+1

.t call ann" recursively for level 1+1

.t update values on level 1

FIG, 3.2. An abstract representation of the adapliv_ _.mesh, refinement algorithm.

root:

level headers

grid headers

data

FIG, 3.3. The grid h,ierarehy .for an AMR algorithm

Once the solution on the finer level has been computed, it is 1)rojected up to update the values at the current

level.

As in the case of multiblock codes in the last subsection, the algorithm, as described, exhibits at least.

two levels of paralMism. First, on any given level, the computation on each of the grids at the level can I)e

executed independently and in paralM. Second, the computation internal to each grid exhibits the tyt)ical

loosely syn(:hronous data parallelism of structured finite-difference grid codes. An effi('ient execution of such

a code wouhl require that the work is spread evenly across the target machine; this means that the total

mlmber of grid points on each processor, from each level in the hierarchy, should 1)e roughly the same,

independent of the number of grids and their shapes and sizes.



In Figure 3.3, we show a picture of the data structures required to maintain a grid hierarchy. This

structure has been designed keeping in view tile t)otential parallelism in the algorithm. In the next subsection,

we explore how tile HPF directives can I)e used to control the locality of such a collection of grids.

3.3. Processing of Grid Collections in HPF. In this section we study the application of HPF to

grid collections. We focus on the algorithm introduced in the context of multiblock problems (Figure 3.1),

which in fact I)rovides a generic framework for dealing with arbitrary grid collections. Thus, the ideas

described here are also at)plieable to the AMR codes except that in the latter ease the grid hierarchy is

dvnamic and thus grid interactions have to be reconstructed everytime the grid structure changes.

A Fortran 90 version of the algorithm for two-dimensional grids is given in Figure 3.4. We introduce

the data structures required for the representation of the grid collection and outline the grid construction as

well as the algorithnl processing the grid collection. We (to not explicitly describe the algorithm used by the

solve_grid routine or the boundary_update routine.

The fact that we operate on a parallel grid collection may suggest a representation of G as a linked list

of grids. However, neither Fortran nor HPF provides a construct for expressing tile parallel evaluation of all

elements of a linked list. As a consequence, wc choose to represent a grid collection as a one-dimensiolml

array, each element of which represents an individual grid in the collection. The type of ttle array elenmnts

is sl)ecified as a derived type, GRID_TYPE. which we describe in a prototyt)ical form. For each class of

algorithms, fields may |lave to be added to this type. In the algorithm of Figure 3.4, GRID_TYPE contains

the following fields explicitly:

• extent of the grid

• a pointer to an array of grid data

Depending on the particular application, other fields may be required, such as for storing t)oundary and

topology information. However, we arc not concerned about such fields here since they are specific t() the

t)articular type of algorithm and do not directly affect the parallelism. Also, for the AMR algorithm, this

would ret)resent the grids at one level. Additional data structures would be needed to keel) track of the

different levels and the relationships (parents, children and sibling) between the levels.

The array GRID_COLL, whose elements are of tyl)e GRID_TYPE, represents the grid collection. Since

we assume that tile tmmber of grids in the collection is determined at runtime, this array must I)e declared as

allocatable. After reading n_grids and alh)cating GRID_COLL accordingly, the algorithms reads the extent

of each grid, which determines the dimensions of the associated two-dimensional array data_array which is

allocated dynamically. Following this, the activation of the procedure set_up sets up the grid collection for

further processing. This includes defining the boundary of each grid and initializing its data.

The remainder of the algorithm follows directly from the pseudocode as given in Figure 3.1.
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TYPE GRID_TYPE

INTEGER tl, t2

REAL, POINTER :: grid_data(:_ :)

END TYPE GRID_TYPE

/ eTtent of grid

TYPE (GRID_TYPE)_ ALLOCATABLE::GRID_COLL(:) ! GRID_COLL represents G

READ (*, *) n_grids .t read number of grids in the grid collection

ALLOCATE (GRID_COLL(n_grids))

DO I = 1, a4_rids

READ (*, *) GRID_COLL(I)%tl, GI_ID_COLL(I)_/_t2

END DO

h'ead grid extents

DO I = 1, it_grids

! allocate individual grids in the grid collection:

ALLOCATE (GRID_COLL(I)%grid_data(GRID_COLL(I)'Z t 1+ 1, GR ID-COLL(I)(Z:t 2+ 1))

END DO

CALL set_up(GRID_COLL) / define bouT_daries and initialize grid data

DO WHILE ( .NOT. termination(GRID_COLL))

CALL boundary _update(GRID _COLL)

DO I = 1, n_grids

CALL solve_grid(GRID_COLL(I))

END DO

END DO WHILE

SUBROUTINE solve_grid(G)

TYPE (GRID_TYPE), POINTER :: G

DO I = 1, G%tl

DO .I = 1, G%t2

G%grid_data(I, J) ....

END DO

END DO

END SUBROUTINE solve_grid

FIG. 3.4. Fortran 90 program for processin 9 a grid collection

tl



3.3.1. Distributing the Grids Using HPF. Starting with the Fortran 90 version of the algorithm for

processing a grid collection, we will now develop parallel versions using HPF. Three variants will be discussed

which use different approaches for distributing tile grids of tile collection, with different consequences for tile

degree of parallelism in the resulting HPF program.

The three apt)roaches call be characterized as follows:

D1 : distribute the grid collection, mapping each component grid to exactly one processor

D2 : mat) each coInponent grid to all processors

D3 : map different component grids to disjoint subsets of processors.

The first two distribution strategies are likely to be inefficient, particularly on machines with a large

number of processors. Both strategies can only exploit one level of parallelism. The third approach permits

grids to be individually distrit)uted to a suitably sized subset of the available processors. This allows both

levels of l)arallelism inherent in the algorithm to be exploited while providing the opportunity to balance

the workload. The distributions require one or more of tile following features fl'om the approved extensions:

mapping of pointers, mapping of comp(ments of derived types, mapping to subsets of processors, indirect

distributions, and the dynamic redistritmtion of data.

\_,_ will now discuss these metho(ts in more detail separately.

Distributing Each Component Grid to Exactly One Processor. In our first approach, we dis-

tribute G such that each component grid is mapped to exactly one processor. Note that we do not exclude

the possibility that different coinponent grids are mat)ped to the same processor. That is, a processor owns

several grid components. This strategy implies that only the outer level of parallelism in the code the

parallelism across G can be exploited.

We consider two options for expressing such a distribution in HPF. The simplest way would be to

distrii)ute G t)v block (which is the initial distribution chosen in the algorithm). In this approach, some

processors may remain idle; furthermore, the sizes of grids which may radically differ are not taken into

account which may lead to an unbalanced computational load. In order to have finer control over the load

l)alance, the algorithm in Figure 3.5 uses an INDIRECT distribution. Such a distribution is controlled by

a mapping array, MAP, which is (if the same size as GRID_COLL and can be used to explicitly contr(d the

distribution of GRID_COLL. This is done in such a way that for each element, i, in the index domain of

GRID_COLL, the index of the associated processor is placed into MAP(i). The mapping array will in general

be defined dynamically, depending (m data determined at runtime. Here, the COMPUTE_MAPPING routine

is called to deterinine a suitable mapt)ing and to initialize MAP appropriately. The REDISTRIBUTE

directive is then used to remap GRID_COLL using the computed mapping array. Once the array is remapped,

the individual grids can be allocated. Note that tile GRID_COLL has to I)e declared DYNAMIC (with an

initial block distribution) in order to allow its final distribution to determined at runtime.

We assume here that the number of grids in the collection is relatively small; therefore MAP is not

distributed but would be replicated across all the processors.

As mentioned al)ove, the distribution strategy discussed here can only exploit the parallelism across

the set of component grids. This can be expressed in HPF by declaring the loop iterating over the grids

of the collection as parallel using the INDEPENDENT directive. However, just declaring the loop to be

independent is not enough in this case. This is because the INDEPENDENT directive asserts that there

are no loop-carried dependences but does not prohibit the routine to read the same distributed global data

through common blocks or modules. In such a situation the processors owning the global data have to

be executing tile call to the routine since they have to send the data to the processors executing the code

12



!HPF$ PROCESSORS P(NUMBER_OF_PR()CESSORS())

TYPE GRID_TYPE

INTEGER tl, t2

REAL, POINTER :: grid_data(:, :)

END TYPE GRID_TYPE

! extent of grid

TYPE (GRID_TYPE), ALLOCATABLE::GRID_COLL(:) ! GRID_COLL represents G

!HPF$ DYNAMIC, DISTRIBUTE ( BLOCK ) :: GRID_COLL

READ (*, *) n_grids t read numbe.r of grids in the grid colleetzou

ALLOCATE (GR ID_COLL(n_grids))

CALL COMPUTE_MAPPING (GRID_COLL, MAP) ! defim_ MAP

DO I = 1, n_grids

READ (*, *) GRID_COLL(I){/(:tl. G1R]D_COLL(I)_:t2 r.read grid extents

END DO

DO I = 1, n_grids

ALLOCATE (GR ID_COLL (I)%grid_dat a( GRID_C()LL (I)_X,t 1+ 1, GR ID_COLL(I)%t2+ 1))

END DO

CALL set_up(GRID_COLL) t. define boundaries and initialize grid data

DO WHILE ( .NOT. termination(GRID_COLL))

CALL boundary_updat(_(GRID_COLL)

!HPF$ INDEPENDENT

DO I = 1, n_grids

!HPF$ ON (HOME (GRID_COLL(I))), RESIDENT

CALL solve_grid(GRID_COLL(I))

END DO

END DO WHILE

SUBROUTINE solve_grid(G)

TYPE (GRID_TYPE), POINTER :: G

DO I = 1, G%tl

DO J = 1, G(Zt2

G %grid_dat a(I, J) ....

END DO

END DO

END SUBROUTINE solve_grid

FIG. 3.5. Grid Collection Processing: First HPF version
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within the routine 3. The code within the solve_grid routine can be set up such that it does not access any

global data, however the compiler cannot determine this without aggressive (and expensive) interprocedural

analysis. This Call be avoided by using the declarations shown in Figure 3.5. The ON directive indicates

that the call to solve_grid is to be executed only on the processor owning grid GRID_COLL(I). Along with

this, the RESIDENT directive asserts that the r<>utine accesses data resident only on this processor and

does not access any data resident on other processors.

Given these declarations, the loop iterations (and in turn tile call to the solve_grid routine) can be

executed in parallel, without communication. Thus, all component grids of the grid family are processed

in parallel, however, c,ach individual execution of solve_grid is strictly sequential. All conmmnication occurs

only in the boundary_update routine when two grids which abut each other (and thus have to exchange

boundary information) are mapped to different processors.

Along with only exploiting the outer level of parallelism, this approach has several other drawbacks. In

many applications, the number of grids in a collection is not large and may be significantly smaller than the

immber of processors of a massively parallel machine, thus restricting the amount of parallelism that can

be effectively utilized. Also, the grids may vary greatly in size, resulting in an uneven workload on those

processors which are involved in the computation. Thus, processors with the large grids become a bottleneck

while others are idle.

Distributing Each Component Grid to All Processors. Our second strategy does not distribute

tile array GRID_COLL as above, but maps each individual grid separately. That is, rather than constructing

a single distribution which inaps each grid as a whole to exactly one processor we independently distribute

the data arrays of each inetividual grid.

The HPF version of this code is giw_n in Figure 3.6. The mapt)iilg is expressed by declaring the pointer,

grid_data, in the derived type GRID_TYPE to be distributed by (*, BLOCK) ONTO P, where P is the

set of all processors available to tile program. The array GRID_COLL is not distributed, resulting in its

replication across all processors.

This approach exph)its the parallelism within each grid, but not the parallelism across the grids of a

collection. Each processor Inay own a part of each grid, leading to a more even workload; however, some of

the grids may not be large enough to effectively exploit all the, processors ill the system.

The parallelism in the code is made explMt by using the INDEPENDENT directive to declare both

levels of the nested loop ill the solver routine to be parallel.

Note that the loop which calls sob_e_grid is executed sequentially by all processors, and all proc,,ssors

sinmltaneously call the. solver routine on each grid. Here, the communication required for solve_grid is

similar to that necessary for a typical structured grid code and can be generated by the compiler in a similar

fashion. The comnmnication required filr the boundary update routine is more complicated here since the

actual pattern of data to be transferred between neighboring grids is not known until runtilne.

Distributing Each Component Grid to a Subset of Processors. Given the drawbacks of tile

previous two approaches, a more optimal approach is to map each grid of the collection separatel3 to a

suitably sized COlgiguous subset of processors; different grids are nlapped to disjoint subsets. This allows

both levels of parallelism in the algorithm to be exploited while providing the opportunity to balance tile

workload.

3This is under the assumption that the underlying system does not support one-sided communication since in that case the

processor owning the data does not nee(l to be involved in the communication.
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?HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())

TYPE GRID_TYPE

INTEGER tl, t2 / extent of grid

REAL, POINTER :: grid_data(:, :)

!HPF$ DISTRIBUTE grid_data(*, BLOCK) ONTO P

END TYPE GRID_TYPE

TYPE (GRID_TYPE), ALLOCATABLE::GRID_COLL(:) ! GRID_COLL reprt_scnt.s G

READ (*, *) n_grids ! read number of grid.s in the grid collr_ctzon

ALLOCATE (GR ID_COLL(n_grids) )

DO I = 1, n_grids

READ (*, *) GRID_COLL(I)%tl, GRID_COLL(I)(/t2 .trcad grid eztent.s

END DO

DO I = 1, n_grids

! allocat_ zndividual flrid,s according to .statically .sp_cified (*, BLOCK) distribution

ALLOCATE (GRID_COLL(I)'Z, grid_data(GRID_COLL(I)_,tl+ I, GRID_COLL(1)(Zt2+I))

END DO

CALL srt_up(GRID_COLL) ! define boundarie.s and initialize grid data

DO WHILE ( .NOT. termination(GRID_COLL))

CALL boun(lary_update(GR ID_COLL)

DO I = 1, n_grids

CALL solvc_grid(GRID_COLL(I) )

END DO

END DO WHILE

SUBROUTINE solve_grid(G)

TYPE (GRID_TYPE), POINTER :: G

?HPF$ INDEPENDENT, NEW .I

DO I = l, G(/¢tl

!HPF$ INDEPENDENT

DO ,I = 1, GCZ,t2

GC/,grid_data(I, ,J) ....

END DO

END DO

END SUBROUTINE solve_grid

I:TG. 3.6. (;rid Collcclion Processing: Second IIPF version
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!HPF$PROCESSORSP(NUMBER_OF_PROCESSORS())
TYPE GRID_TYPE

INTEGER tl, t2 ! ex,tcnt of grid

INTEGER 1o, hi ! lower and upper bounds for the target processor subset

REAL, POINTER :: grid_data(:, :)

!HPF$ DYNAMIC grid_data

END TYPE GRID_TYPE

TYPE(GRID_TYPE), ALLOCATABLE::GRID_COLL(:) ! GRID_COLL represents G

READ (*, *) n_grids ! read number of grids in the' grid collection

ALLOCATE (GRID_COLL(n_grids))

DO I = 1. n_grids

READ (*, *) GRID_COLL(I)C_tl, GRID_COLL(I)_)t2 !read grid extents

END DO

CALL COMPUTE_PROCS-SUBSET (GRID_COLL) .t compute processor subset (lo, hi) for each grid

DO I = 1, n_grids

ALLOCATE (GRID_COLL(I)(_grid_data(GRID-COLL(I)C/(,tl+I, GRID-COLL(I)C/, t2+1))

!HPF$ REDISTRIBUTE G(*, BLOCK) ONTO P(G%lo:G%hi)

END DO

CALL set_up(GRID_COLL) ! define boundaries and initialize grid data

DO WHILE ( .NOT. termination(GRID_COLL))

CALL boundary_update(GRID_COLL)

!HPF$ INDEPENDENT

DO I=l, l%ngrids

!HPF$ ON (HOME (GRID_COLL(I))), RESIDENT

CALL solve_grid (GRID_COLL (I))

END DO

END DO WHILE

SUBROUTINE solve_grid(G)

TYPE (GRID_TYPE), POINTER :: G

!HPF$ INDEPENDENT_ NEW J

DO I = 1, G_,tl

!HPF$ INDEPENDENT

DO J = 1, G_t2

G_)grid_data(I, J) ....

END DO

END DO

FIG. 3.7. Grid Collection Processing: Third HPF version
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TileHPFprogramembodyingthisapproach,is shownin Figure3.7. TilearrayGRID_COLL is not

(listritmted, while the pointer grid_data in the derived type GRID_TYPE is declared dynamic. After (leter-

mining the extent of each grid, the routine COMPUTE_PROCS_SUBSET is called to compute the subset

of processors to which each grid should be mapl)ed, storing the indices of the lower an(t upper bound of

the processor subset ill the coinponents lo and hi. These bounds are then used to distritmte the data array

associated with each grid at tile time of allocation.

Both loops the one iterating over the component grids and the nested loop in solve_grid have to

be declared parallel. Note that one still requires the ON and RESIDENT directives on the first loop,

otherwise the calls to the solver routines would be sequentialized.

The mapt)iilg of the grids in the collection here is controlled by the user through the routine COAI-

PUTE_PROCS_SUBSET. When mat)l)ed t)roperly, multiple grids can be l)rocessed in parallel by sul)sets of

t)rocessors. This allows tile parallelism to be exploited at both h,vels while having a much better control on

the overall load balance of the computation. The communicatioll re(luired for this strategy is similar to that

for the second strategy.

Before oh)sing the discussion on multiblock codes, we briefly describe the eomI)iler analysis require(t

to generate the conununication required for the different distribution strategies. Sin(:e each of the gri(ls

in the collection is bh)ek-structured, the eonq)iler can easily analyze the solve_grid routine and insert tile

required COnlmunication statenlents. Note that not knowing the target subset of processors for a grid in the

third strategy is siInilar to not knowing tile (:omt,lete set of pro('essors ;it COml)ile time an(t just re(tuires the

(:ompiler to generate message passing statements 1)arameterized by the lower and Ut)l)er boun(ts of the target

t)roeessor sul)set.

Tile situation is a little more complicated for the eonummication require(l for the boun(larv update

routine. The issue here is that not only that the (listribution is known only at runtime but also the actual

boundary portions that abut each other is det)endent on the grid structure, i.e., is data del)en(tent, and

hence is also not known at comt)ile time. Thus, the conlpiler needs to generate (:ode which will at runtime

determine the required eonmmnieations based on the t)ortions of the distributed arrays to be exchanged. The

comtmtation is generally (tuite simple and experience with su(:h applications has shown that the generated

(:odes achieve reasonable l)erformance [1, 19].

4. Unstructured Grid Applications. Unstructured grid (:odes provide several advantages in model-

ing the flow over complex geometries. In particular, the), provide added flexibility in generating an(t adapting

meshes for complex configurations. However, such codes generally require inore computational resour('es and

are inore difficult to parallelize.

Unstructure(t grid flow solvers generally use a fnite element at)l)roach to spatially discretize the (tomain

using l)ie(:ewise linear flux flmctions over each individual t riailgle in 2D or tetrahedra in 3D. One approach is

to use a conlpact vertex based scheme, with all edge based data structure. The flow variables are stored at

each vertex in the mesh while the residuals are constructed I)3' h)ot)ing ()vet edges that (tefine the connectivity

of the vertices.

Tile logical simplicity of regular grids where the coordinates of one gridpoint can be used to imnmdiately

(tetermine the coordinates of all its neighbors is lost for unstructured grids: the numbering of the vertices

in such a grid reflects properties of the grid generation algorithm, the object geometry, and tile r(,finement

strategy. In general, it. cmmot be assumed that tile associated order is cori-elated with the physical location

of gridpoints. As a consequence, the imighborhood relation must be explicitly represented and access to

values inherently requires using indirection via index arrays. This complicates the parallelization of such
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codes since the pattern of data accesses are now dependent oil the data values, i.e., the grid connectivity,

and hence are known only at runtime and cannot be analyzed at compile time.

Another conse(tuence of the structure of the underlying data structures in such codes is that simple

data (tistril)utions strategies, such as block and cyclic do not work. In fact, the l)artitioning of such grids

for parallel execution is a complex problem. There exist several grid partitioning packages which atteml)t

to subdivide tim grid into contiguous, mutually disjoint regions to lie mappe(l onto the 1)rocessors of the

underlying parallel machine. The overall criterion for partitioning is the minimization of the total execution

time. which depends on many parameters, including the degree of parallelism in the algorithm, the ainount

of comnmnication which would be generated by the partition, the amount (if processing at each node, and

the overall load balance. The issue in this paper is not how we partition the mesh but how the generated

partitioning is represented in a generic manner using HPF directives.

Consider an abstraction of a two-dimensional unstructured mesh Euler solver in which the mesh is

represente(t by triangles and the flow variables are stored at. the vertices of the mesh. Figure 4.1 shows one

way in which this coml)utation niay be specified. The mesh is represented t)y the array GRID of NODEs

each of which represents a vertex. Along with other fiehts such as the x-y coordinates (not shown here), the

derived tyt)e for each node also contains the flow variables represented by 1"1 and I'2. The connectivity of

the overall mesh is represented by the array EDGE such that EDGE(I, 1) and EDGE(I, 2) are the node

numbers at the two ends of the Ith edge.

We reproduce only the main colnputational kernel of the code, an edge-based residual construction loop

which updates the values at. the end vertices of each edge based on cal(:utation of flux across the edge. This

is represented by the ,I loop in Figure 4.1 which uses array indirection to extract and store values of the flow

varial)les at the two vertices of each edge.

Since the partitioning of the mesh is to be det.ermined at runtime, the arrays constituting the mesh,

GRID and EDGE, are declared to be DYNAMIC. As indicated above, the irregularity of the w,rtex

nuInl)ering implies that the INDIRECT distril)ution is needed to map the vertices to the processors. Thus,

the routine GRID_PARTITIONnot only partitions the grid but also returns the mapping array NODEMAP

such that the value of its ith element represents the index of the processor on which the ith element of the

GRID array is to be mat)ped.

Once the partitioning of the vertices has been determined, we can also determine the mapping of array

representing the edges. Given the structure of tile computation, it would be usefifi to distribute EDGE

in such a way that the values at one or both of its nodes are on the same processor. We have chosen to

distribute the elements of EDGE to the processor which owns the values for the first of its nodes. We again

use the INDIRECT distribution for this, assuming that the GRID_PARTITIONroutine will also setup the

EDGEMAP array based on tile values in the EDGE array.

Note that the inapping arrays are as large as the unstructured mesh itself and hence have to be distril _uted

themselves. This is in contrast to the mapping array used with multil)hlck codes in the last section which

was used to map the grids in a collection and hence was sainll and could be replicated across the processors.

Tile computation is specified using a INDEPENDENT loop, with an ON clause to specify where each

iteration is to be performed. Thus the iterations of the loop, over the edges in this case, (:an be executed in

parallel. In Figure 4.1, the ON clause specifies that the Ith iteration should be performed on the processor

that owns the (I, 1)th element of EDGE.

The variables N1, N2 and DELTAI" are private variables for each iteration and hence are declared in

the NEll" clause. Thus assignments to these variables do not cause flow dependences between iterations
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!HPF$ PROCESSORS P(NUMBER_()F_PR()(IESSOR S())

INTEGER :: N

INTEGER :: M

TYPE NODE

REAL :: V1, V2

END TYPE NODE

! number of _pt_rtit:es

T number of t dges

! flow variabbs

!HPF$

_HPF$

!HPF$

TYPE(NODE), ALLOCATABLE :: GRID(:)

REAL, ALLOCATABLE :: EDGE(:, :)

INTEGER, ALLOCATABLE :: NODEMAP(:), EDGEMAP(:) ! mappmq arrays

DYNAMIC, DISTRIBUTE(BLOCK) :: GRID

DYNAMIC, DISTRIBUTE(BLOCK, *) :: EDGE

DISTRIBUTE (BLOCK) :: NODEMAP, EDGEMAP

! R_ad N. M. allocate arrays GRID, EDGE. NODEMAP and EDGEMAP

ALLOCATE (GRID(N))

ALLOCATE (N()DEMAP(N))

ALLOCATE (EDGEMAP(N))

ALLOCATE (EDGE(M, 2))

! Code for initialization of GRID and EDGE

! Partition the grid, setting up the mapping ar_nys

CALL GRID_PARTITIONER(GRID, NODEMAP, EDGE, EDGEMAP)

! Redistribute the GRID and EDGE arrays based on the valut_s returned by the. partitioner

!HPF$ REDISTRIBUTE GRID(INDIRECT(NODEMAP))

!HPF$ REDISTRIBUTE EDGE(INDIRECT(EDGEMAP))

! Sweep over the edges of the grid

!HPF$ INDEPENDENT, ON HOME(EDGE(J, 1)), NEW(N1 N2, DELTAV), REDUCTION (GRID)

DO .I = 1, M

N1 = EDGE(J, 1); N2 = EDGE(J, 2)

DELTAV = F(GRID(N1)%V1, GRID(N2)%V1)

GRID(N1)_,V2 = GRID(N1)%V2 - DELTAV

GRID(N2)'Y(V2 = GRID(N2)¢/,V2 + DELTA\:"

ENDDO

Fi(: 4 1. Sweep ow'r edges o,f an unstructured grid
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of tile loop. For each edge, the value of the flow variable I'1 at the two incident nodes are read and used

to compute the flux contribution DELTAI" for the edge. This contribution is then accumulated into the

residual 1"2 for the two nodes.

Since each vertex has multiple edges incident upon it, multiple iterations wilt accumulate I"2 values

at each node. Thus, the GRID array is declared as a reduction allowing the compiler to generate correct

colnputation for the accumulations.

In most cases, the two vertices of an edge are in the same partition and hence are lnapped to the same

processor. However, for cross-partition edges, the two vertices will be mapped to different processors. In

this case the values have to be gathered before the loop body and the updates have to be scattered after the

loop body. The compiler has to analyze the code and generate the conmmnication required to gather and

scatter these values. The prot)lem is that the values of tile flow variables tbr each node are accessed via the

edges. Thus a level of indirection is involved in each access. Given that the data distribution of each of the

arrays is <letermined at run time, the compiler cannot detect whMl references are h/cal and which are not.

One of the techniques used to generate the conmnmication in such situations is called the iT_spec-

toT/_:r_('.'utor strategy [14, 20]. For each parallel loop, the compiler generates two loops: the first called

tile i'uspcctor utilizes the distribution and the edge connectivity to generate the conmmnication schedule;

the second, (:ailed the executor, uses this schedule to gather the node values before the loop execution and

scatter the updates after tim execution. Note that this confines the communication among the processors to

the scatter/gather phase allowing the body of the loop to be executed completely in parallel. The overhead

associated with the inspector loop is generally fairl.v large. However, ulany of the unstructured codes make

several sweeps over the same mesh allowing the cost. of the inspector to be amortized across the sweeps [1, 3].

5. Conclusion. HPF is a well-designed la.nguage that allows a reasonably efficient and concise for-

mulation of most algorithms used in aerospace applications. HPF programs are much higher level than

equivalent algorithms tha.t use explicit message passing primitives such as those offered by MPI or PVM.

and are thus easier to develop and less error-prone. On the other hand, HPF calmot in all cases provide the

salne degree of control ov(_r the parallelism of an application as an MPI program can, resulting in a potential

performance penalty. Over the past few years, much research in language design, compilers, and rut,time

systelns was devoted to deleting or inininfizing this effect, in particular for programs with irregular data and

work distributions. Although some t_rotflems reinain, it has been shown that for many relevant benchmarks

HPF can achieve almost the same perfilrnmnce as MPI programs [9, 4, 5].

The data parallel paradigm represented by HPF supports the "loosely synchronous" execution of a

set of identical processes working on different segments of the same problem. Some applications, such as

multidisciplinary optimization, need a more flexible way to express parallelism. They can be generally

chmacterized by the fact. that tasks may be created dynamically in an unstructured way, different tasks Inay

have diff,'rent resource requirements and priorities, and that the structure and volume of the comnmnication

between a pair of tasks may vary dramatically.

HPF is not designed to deal with such problems adequately. However, a numher of methods have been

proposed to address this issue in the context of the language. One important approach uses coarse-grain

tasks, each comprising an entire HPF program. In effect, HPF is wrapped in a coordination language.

Proposals ahmg this line have been made in the Fortran M [10] and Opus languages [7]. ()pus encapsulates

HPF programs as object-oriented modules, passing data bet.ween them by accessing shared abstractions

(SDAs) which are monitor-like constructs.

In recent years, a new generation of high perfornmnce architectures has become commercially available.
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Manyof thesemachinesareeithersymmetricshared-nmmoryarchitectures(SMPs)or clustersof SMPs,

where an interconnection network connects a tmniber of nodes, each of which is an SMP. Thus, these

machines display a hybrid structure integrating shared-memory with distributed-memory parallelism. One

of their dominating characteristics is their use of a deep memory hierarchy, often involving multiph' levels

of cache. As a consequence, these architectures have not only to deal with tile locality problem typical fi)r

distributed-memory machines which is addressed by HPF , but also with cache locality. A cache miss in

a program executing eli a cluster of SNIPs may be more expensive than a non-local memory access. HPF

and its compilers currently are not designed to deal with such issues. The flmlre will show whether the

(possibly extended) HPF paradigm will be able to efficiently Col)e with such architectures, or whether other

progralmning methods will prove nLore adequate.
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