
Parallel incomplete factorizations with

pseudo-overlapped subdomains

Mardoch�ee Magolu monga Made a;1 Henk A. van der Vorst b

aUniversit�e Libre de Bruxelles, Service des Milieux Continus (CP 194/5), 50,
avenue F.D. Roosevelt, B-1050 Brussels, Belgium. magolu@ulb.ac.be

bUtrecht University, Mathematical Institute, Mailbox 80.010, 3508 Utrecht, The
Netherlands. vorst@math.uu.nl

Abstract

We address the hard question of e�cient use on parallel platforms, of incomplete
factorization preconditioning techniques for solving large and sparse linear systems
by Krylov subspace methods. A novel parallelization strategy based on pseudo-
overlapped subdomains is explored. This results in e�cient parallelizable precondi-
tioners. Numerical results give evidence that high performance can be achieved.

Key words: Large sparse linear systems; incomplete factorizations; preconditioned
conjugate gradient; multiprocessor computers; domain decomposition

1 Introduction

Combined with suitable preconditioners, Krylov subspace methods can be
powerful (iterative) methods for solving the large sparse linear systems that
arise in many scienti�c computations [6,23]. In particular, incomplete factor-
izations as preconditioning techniques are often e�cient [31,32]. Their major
drawback is that they are not easy to parallelize without seriously a�ecting
the convergence. Several attempts have been reported in the literature, in-
cluding reordering strategies, see, e.g., [1,4,8,11,16,20,21,30,38,45{47,49], do-
main decomposition type approaches [9,10,22,25,27,36,41,42], and truncated
Neumann series approaches, [44,3,48]. This re
ects the di�culty of the task.
Recent surveys of techniques for achieving parallelism may be found in [13,17].

1 Research supported by the Commission of the European Communities, within
ESPRIT IV project, under contract nr. 25009.

Preprint submitted to Elsevier Preprint 1 February 2000

We aim at designing a new and more e�cient parallelization strategy. We par-
ticularize an improved version of the parallel block method proposed in [27]
to the pointwise incomplete factorization preconditionings. Our approach may
be seen as a generalized domain decomposition (DD) method. If necessary, it
may be implemented as a (global) re-ordering technique. In contrast to clas-
sical DD methods, communication between adjacent subdomains is required
during the construction and during the application of the preconditioner. A
special treatment of the interface gridpoints allows to alleviate the signi�-
cant decrease of the convergence rate that is characteristic for DD methods
and for most of the orderings that have been suggested for general parallel
computations (see, e.g., [16,14]).

Our exposition is organized as follows. In Section 2, we give a brief overview of
our terminology and notation. Section 3 consists of background material, in-
cluding a description of the preconditioned conjugate gradient (PCG) method,
and a description of the generalized incomplete factorization preconditioner.
In Section 4, we introduce and motivate our parallelization approach. Results
of numerical experiments are reported in Section 5. Section 6 summarizes some
concluding remarks and future directions for investigation.

2 Terminology and notation

2.1 Stieltjes matrices

A real square matrixA is called a Stieltjes matrix (or equivalently, a symmetric
M-matrix) if it is symmetric positive de�nite and none of its o�diagonal entries
is positive (see, e.g., [43]).

2.2 Miscellaneous symbols

Our matrices will be real, square and nonsingular, and of order n. We use At

to denote the transpose of A, and diag(A) denotes the diagonal matrix whose
diagonal entries coincide with those of A.

Two gridpoints i and j are connected, with respect to the graph of A, if ai;j 6= 0
or aj;i 6= 0.

The symbol e represents the vector with all components equal to 1.

2

2.3 LPLt-factorization

By the LPLt factorization of a nonsingular Stieltjes matrix S we understand
the (complete) factorization S = LsPsL

t
s where Ps is a diagonal matrix while

Ls is a lower triangular matrix such that diag(Ls) = I.

3 Background

For illustration purposes, we consider the following self-adjoint second order
two-dimensional elliptic PDE

�p uxx � q uyy + t u= f(x; y) in
 = (0; 1)� (0; 1)

u =0 on � (1)

un=0 on @
n�

where � denotes a portion of the boundary @
 of
. We assume that if t = 0
then � 6= ;. The coe�cients p and q are positive, bounded and piecewise
constant, and t is nonnegative, bounded and piecewise constant. We discretize
(1) over a uniform rectangular grid of mesh size h in both directions with
the �ve-point point box integration scheme [34]. The mesh points are ordered
lexicographically in the (x; y)-plane, that is, starting from (or near) the origin
(x = 0; y = 0) and counting �rst in the x-direction. The matrix of the resulting
linear system

Au = b (2)

is a block-tridiagonal, irreducibly diagonally dominant, nonsingular Stieltjes
matrix. In this case, PCG with an incomplete factorization as preconditioning
is a popular solution method. For completeness, we represent the PCG algo-
rithm in Fig. 1. The preconditioning matrix B is selected as the generalized
relaxed incomplete LPLt factorization described in Fig. 2. The set D speci�es
where �ll-in entries have to be ignored, while the �j are the relaxation param-
eters: �j = �, �1 < � � 1. This corresponds to the relaxed method [5], which
includes the standard incomplete Cholesky factorization (� = 0) [31,32], as
well as the classical modi�ed variant (� = 1), for which Be = Ae [18,24]. The
variables �j encompass dynamically relaxed methods [7,35,28].

Two basic strategies for accepting or discarding �ll-in have been developped.

3

1. r(0) := b� Au(0)

2. For i = 1; 2; : : : (until convergence)

3. Solve w(i) from

Bw(i) := r(i)

4.
i := (w(i); r(i))

5. �i :=

8><
>:
0 if i = 0

i

i�1

otherwise

6. p(i) := w(i) + �i p
(i�1)

7. w(i) := Ap(i)

8. �i :=

i

(p(i);w(i))

9. u(i+1) := u(i) + �i p
(i)

10. r(i+1) := r(i) � �iw
(i)

11. If satis�ed Stop

Fig. 1. Preconditioned conjugate gradient method.

(1) Level �ll. The level lev(lk;i) of the coe�cient lk;i of L is de�ned by (see
Fig. 2 for notation),

Initialization

lev(lk;i) :=

8><
>:
0 if lk;i 6= 0 or k = i

1 otherwise

Factorization

lev(lk;i) := minf lev(lk;i) ; lev(li;j) + lev(lk;j) + 1 g :

D = f (k; i) j lev(lk;i) > ` g :

where integer ` stands for a user speci�ed maximal �ll-in level [39].
(2) Drop-tolerance. Fill-in is ignored if it is \too small" according to some

prescribed tolerance (see, e.g., [33,13]).

Hybrid approaches that combine (1) and (2) are discussed in, a.o., [39]. There
is no generally accepted strategy that is a panacea for a wide class of prob-
lems of the type (1). An adequate choice of ` or the drop tolerance depends
on the speci�c problem at hand and the workspace available. Selection of

4

Compute P and L (B = LPLt with diag(L) = I)

Initialization phase

pi;i := ai;i , i = 1; 2; � � � ; n

li;j := ai;j , i = 2; 3; � � � ; n , j = 1; 2; � � � ; i� 1

Incomplete factorization process
do j = 1; 2; � � � ; n� 1

compute parameter �j

do i = j + 1; j + 2; � � � ; n

li;i := li;i �
l2i;j
lj;j

li;j :=
li;j
lj;j

do k = i + 1; i+ 2; � � � ; n

if (k; i) 62 D lk;i := lk;i � li;j lk;j
otherwise

8><
>:
li;i := li;i � �j li;j lk;j

lk;k := lk;k � �j li;j lk;j

end do
end do

end do

Fig. 2. Generalized relaxed incomplete factorization (GRIC).

these parameters is an art rather than a science. As is well known, potential
bottlenecks for PCG methods, as described above, are the construction of the
preconditioner B and the preconditioning step at each PCG iteration (Step 3),
see e.g. [46].

In our analysis, we shall make use of GRIC with level �ll ` which, according to
[31], is denoted by GRIC(`).Observe that any node j that is connected,
with respect to the graph of L, with two nodes i and k such that
j < i < k gives rise to a �ll-in element in position (k; i) of L, if ` � 1.

To solve a linear system of the form LPLtw = r, that occurs at each PCG
iteration (step 3 on Fig. 1), one may proceed with the two steps as described
in Fig. 3. The construction of GRIC(`) and the preconditioning step involve
recurrence relations that inhibit e�cient parallel computation, most notably
for lexicographical ordering.

5

Solve LPLtw = r for w

� Forward solve (v from Lv = r)

vi := ri , i = 1; 2; � � � ; n
do j = 1; 2; � � � ; n� 1

do i = j + 1; j + 2; � � � ; n
vi := vi � li;jvj

end do
end do

� Backward solve (w from Ltw = P�1v)

wi :=
1
pi;i

vi , i = 1; 2; � � � ; n

do j = n; n� 1; � � � ; 2
do i = j � 1; j � 2; � � � ; 1

wi := wi � lj;iwj

end do
end do

Fig. 3. Solution of the preconditioning system.

4 ParGRIC : A family of parallel incomplete factorizations

4.1 Motivation

We will �rst consider GRIC(0), in which the sparsity structure of A is pre-
served. In Fig. 4, the graph of A is depicted with a stencil graph notation [28] :
a diagonal entry ai;i is represented by circle number i; the edge fi; jg (here,
thin lines) corresponds to a nonzero o�diagonal entry ai;j. Oblique thick lines
represent the discarded level 1 �ll-in entries that determine the remainder ma-
trix R = B � A. The smaller kRk, the faster the convergence. The values nx

and ny denote the number of unknowns in x and y direction, respectively. In
Fig. 4, we have taken nx = ny = 5. Except for the boundary nodes where
a Dirichlet boundary condition holds, the graph of A relates directly to the
discretization grid.

For simplicity, the domain will be partitioned into stripes : p rectangular boxes
that are assigned to p processors as depicted in Fig. 5 for p = 6.

Let us consider now, in Fig. 6, a portion of the graph of A, in which two
adjacent subdomains are assigned to two processors (Ps and Ps+1). We will

6

-

6

ix

iy

1 2 3 : : : nx

1

2

3

...

ny

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

@
@

@
@@

@
@
@

@@

@
@

@
@@

@
@

@
@@

@
@
@

@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@
@

@@

@
@

@
@@

@
@

@
@@

@
@
@

@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

Fig. 4. Graph of matrix A (in thin lines). The jth node is j = (iy � 1)nx + ix. Thick (oblique) lines

correspond to level 1 �ll-in entries.

-

6

x

y

6

?

P0

P1

P2

P3

P4

P5

Fig. 5. Partitioning of the grid into stripes for 6 subdomains, Pi, i = 0; 1; : : : ; 5. Vertical arrows indicate

the
ow of computation within each subdomain.

impose the following �ve conditions (see Figs. 6 and 7 for illustration):

(c1) processor Ps+1 starts its computations at gridpoints \?" (the \bottom layer"
of Ps+1) skipping the correction from gridpoints \�" (the \top layer" of Ps);

(c2) immediately after the computations at the bottom layer gridpoints of Ps+1

7

have been completed, the relevant corrections from Ps+1 for the top layer
gridpoints of Ps can be sent to Ps (but these points have to wait for the
�nal update when all other points of Ps have been completed);

(c3) the actual computations start from two sides: for the subdomains in the
upper side of the physical domain the bottom layer and the top layer reverses
(see Fig. 5);

(c4) for each subdomain the computation starts at the bottom layer gridpoints
(and they have been handled before any other gridpoint) and �nishes at the
top layer grid points;

(c5) the numbering decreases or increases in the same way for neighbouring
points, for the bottom layer gridpoints of Ps+1 and the top layer gridpoints
of Ps (compatible nunbering). This facilitates the implementation (commu-
nication). Each gridpoint at the top layer has \to know" where corrections
come from.

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

-

-

top layer
gridpoints

bottom layer
gridpoints

_ _ _ _ _

...
...

...
...

...

...
...

...
...

...

Ps

Ps+1

� � � � �

? ? ? ? ?
6

?

h

Fig. 6. Part of graph of matrix A assigned to two di�erent processors (Ps and Ps+1); the pseudo-overlap

width is equal to h.

Condition (c1) means that, according to some implicit global ordering, all the
bottom layer gridpoints \?" have to be handled (numbered) prior to all the
neighbouring gridpoints: so these must wait for the contribution from bottom
layer gridpoints before being updated.

We introduce the following terminology.

De�nition 1 Since communication only involves the gridpoints in the bottom
and top layer, we will call the union the pseudo-overlap. Equivalently, we will

8

say that Ps is pseudo-overlapped by Ps+1.

The trouble with any parallelization technique, that (implicitly) resorts to a re-
ordering strategy like ours, is that the convergence properties of PCG usually
deteriorate as the number of subdomains increases, see, e.g., [25,27,36,37]. In
order to get some feeling why this happens, let us examine the remainder
matrix R. For this purpose, we add the (rejected) level-1 �ll-in entries to the
partial graph of Fig. 6. This gives Fig. 7, where the part relative to the original
graph of A, as well as level-1 �ll-in entries that are not signi�cantly di�erent
from the case of one subdomain (Fig. 4) are drawn in thin lines. Thick lines
(the arcs), that connect top layer gridpoints to gridpoints marked with \�",
correspond to the (neglected) �ll-in entries that are mainly responsible for
the degradation of the convergence. Observe that the number of such entries
increases with the number of subdomains.

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

�������������������������
top layer

gridpoints

_ _ _ _ _

� � � �

^ ^ ^ ^ ^

�������������������������

bottom layer

gridpoints

...
...

...
...

...

...
...

...
...

...

Ps

Ps+1

� � � � �

? ? ? ? ?

� � � � �

� � � � �

6

?

h

? ?

6

6

2h

3h

z }| {

pseudo-overlap
width

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

Fig. 7. Part of graph of matrix A assigned to two di�erent processors (Ps and Pt). Oblique lines and

thick lines are (neglected) level 1 �ll-in entries.

Accepting all the �ll-in entries (of any level) that are induced by the parallel
ordering will avoid to deteriorate the PCG convergence, but unfortunately,
this will also prevent the processors from performing e�ciently in parallel.
Going back to the incomplete factorization philosophy [31], we will content
ourselves with weakening the in
uence of the neglected �ll-in by increasing
the pseudo-overlap width ($), as well as the �ll-in level inside the pseudo-
overlapping region. In Fig. 7, this means that the gridpoints marked with \�"
are included in the bottom layer for Ps+1 (in which case $ = 2h). The bottom
layer should comply with our requirements (c1)-(c4). In the terminology of Doi

9

and Lichnewsky [12] (see also Doi and Washio [14]), we make an attempt to
reduce the number of incompatible nodes (marked with \?" in Fig. 7).

De�nition 2 Any GRIC preconditioner combined with our parallelization strat-
egy is denoted by ParGRIC(`;$; `$), which reads as parallel generalized re-
laxed incomplete Cholesky factorization with pseudo-overlap width $; `$ stands
for the �ll-in level in the pseudo-overlapping regions, and ` stands for the �ll-in
level in the remaining part of subdomains.

In the speci�cation of $, the actual mesh size h will be dropped, say, k will
stand for kh, in order to include variable mesh size problems and (graphs of)
matrices that do not arise from discretized PDEs.

Remark 1 Under Condition (c5), and in contrast to the level zero parallel
preconditionings discussed in [25,36], we are able to easily consider any �ll-in
level in the incomplete factorization schemes:

1. during the symbolic incomplete factorization phase, neighbouring subdo-
mains may readily determine the (same) quantity and structure of informa-
tion that they need to send or receive;

2. during the numeric incomplete factorization phase, each pseudo-overlapping
subdomain should pack the information needed, �ll-in contributions in-
cluded, in a vector whose length has been computed during the symbolic
incomplete factorization step.

We stress that in most realistic problems, level zero incomplete factorization
methods are seldomly e�cient. In particular, on parallel architectures, classical
overlapping (or non-overlapping) domain decomposition methods, that com-
bine ingredients of both direct methods (as local solver) and iterative methods
(as global solver), are in general more competitive. See, e.g., [39,40,15].

4.2 Illustration

We assume, for ease of presentation, that the number p of subdomains Pj,
j = 0; 1; : : : ; p � 1, is even. The two-sided handling of the subdomains is
indicated in Fi.g 8 by arrows at the left. Within each subdomain, row-wise
numbering is used. The pseudo-overlapping regions are marked with \� � � ��".
To sum up :

� Pi pseudo-overlaps Pi�1 for i = 1; 2; : : : ; p
2
� 1;

� Pj pseudo-overlaps Pj+1 for j =
p

2
; p
2
+ 1; : : : ; p� 2;

� P p

2
is pseudo-overlapped by P p

2
�1 with $ = 1.

10

-

6

x

y

-

g pseudo-overlapping
region

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

6

6

6

6

?

?

?

?

P0

P1

P2

P3

P4

P5

P6

P7

top layers

Fig. 8. Speci�cation of pseudo-overlapping regions for p = 8. Vertical arrows indicate the progressing

direction of subdomain local numbering along the y-axis. Within each horizontal line, grid points are ordered

rightwards.

All the processors contain (approximately) the same number of horizontal
(grid) lines. It is obvious that for all the tasks involving preconditioning, data
dependency occurs only at the interfaces between the subdomains.

Remark 2 The partitionings depicted in Figs. 5 and 8 are not the optimal
ones whenever the number of subdomains is larger than three, unless the orig-
inal physical domain is elongated in the y-direction, or equivalently, when the
number of unknowns along the y-direction is fairly larger than the number of
unknowns along the x-direction. As already mentioned, our stripe partition-
ings are only used for simplicity, in order to illustrate how pseudo-overlapping
could improve the convergence rate. For more or less symmetric regions, it
would be better to split domains also in the x-direction.

5 Numerical results

As illustrative examples, we consider the following three problems that are
particular cases of PDE (1):

11

Problem 1 p = q = 1, t = 0, � =
 and u(x; y) = x(x � 1)y(y � 1)exy;
h = 1=(ny + 1).

Problem 2 � = f(x; y); 0 � x � 1; y = 0g, t = 0,

p = q =

8>>>>><
>>>>>:

100 in (1=4; 3=4)� (1=4; 3=4)

1 elsewhere

f(x; y) =

8>>>>><
>>>>>:

100 in (1=4; 3=4)� (1=4; 3=4)

0 elsewhere

Here h = 1=ny, where ny is a multiple of 4 (in order to avoid problems at
discontinuities of the PDE coe�cients).

Problem 3 � = ;, the coe�cients p, q, and t are speci�ed in Fig. 9. One has
h = 1=(ny � 1). For simplicity ny � 1 is taken as a multiple of 8. The right-
hand side of the linear system is chosen such that the function u0(x; y) =
x(1� x)y(1� y)exy generates the solution on the grid.

-

6

x

y

0 1
8

2
8

3
8

4
8

5
8

6
8

7
8 1

0

1
8

2
8

3
8

4
8

5
8

6
8

7
8

1

3
2

1

region p q

1

2

3

1 1

1

1103

103

t

0

0

1

Fig. 9. Problem 3. Con�guration and speci�cation of the PDE coe�cients.

The PCG algorithm is executed with the zero vector as initial approximation,
and the relative residual error kr(i)k2 = kr

(0)k2�10�6 as convergence criterion.
To save computer time, we �rst work with the preconditioned residual, tillq

i=
0 � 10�6 is satis�ed (see Fig. 1 for the de�nition of
i); then we start

checking whether the true residual is also su�ciently reduced. This check re-
quires computing an additional inner product. We have opted for non blocking
communications, which enables us to overlap computations with communica-
tions, whenever possible [13,17]. The computations are carried out in double

12

precision Fortran on a 16-processor SGI Origin 2000 (4 Gbytes memory, 32
KBytes Data Cache, 195 MHz MIPS Processor), using the MPI library for
interprocessor communications. The preconditionings include :

(1) ParIC(`;$; `$) : the standard incomplete Cholesky (`$ � $ � 1);
(2) AS(`;$) : The additive Schwarz with overlap ([40]). Each local problem

is handled with one IC(`) solve, ` denotes the �ll-in level. $ stands here
for the actual overlap width. We use $ = h0; h; 2h, where h0 means
that only one line of nodes is shared by the neighbouring subdomains.

For simplicity, no global coarse grid correction has been added to improve the
performance of the preconditionings involved (such global corrections have
been advocated in [37,40]). It is worthwhile to note that ParMIC(`;$; `$),
that is the parallel version of the classical modi�ed incomplete Cholesky fac-
torization, should not be used without perturbations to the diagonal. This is
necessary to avoid singular preconditioners [16,19]. These perturbations (of
low order in the gridsize) are discussed in [18,24,7].

Experiment 1 : In order to see how pseudo-overlapping reduces the negative
in
uence of parallel orderings on the convergence rate, we run ParIC(0;$;$�
1), and we let $ vary from 1 to 8. It appears that, the more di�cult the
problem is (or the larger its size), the bigger is the advantage of increased
pseudo-overlap. By way of illustration, we report in Fig. 10 the case of 8
subdomains, for Problem 1 with h�1 = 129, Problem 2 with h�1 = 128 and
Problem 3 with h�1 = 128.

Experiment 2 : For both preconditioners, we have observed that �ll-in level
` = 4 is in general e�cient, in the sense that it minimizes the overall elapsed
time on a quiet system (only one user). We collect in Tables 1{3, and Fig. 11,
the performances for ParIC(0; 1; 0), ParIC(4; 5; 4), and AS(4;$). We use the
parallel speed-up, which is de�ned as the ratio between the execution time
of the parallel algorithm on one processor and the time taken by the same
algorithm on p processors. For p = 1 the parallel code is, except for some
negligible overhead for checking of parameters, equivalent to the serial process
with incomplete Cholesky preconditioning.

Note that in the context of parallel incomplete factorization based methods,
the preconditioning changes with the number of subdomains. This together
with our de�nition of speed-up, may explain why in some cases, the actual
speed-up observed is larger than the number of processors. The following
trends are evident.

(1) ParIC(4; 5; 4) is in general twice as fast as ParIC(0; 1; 0), but the latter
exhibits a slightly better speed-up. In our experiments, it has proved to
be advantageous to take into account (some) �ll-in entries induced by the
parallelization (reordering) strategy. In this respect, we emphasize that

13

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

nu
m

be
r

of
 p

cg
 it

er
at

io
ns

pseudo-overlap width

Problem 1 (n=16384)
Problem 2 (n=16256)

Problem 3 (n=16641)

Fig. 10. E�ects of pseudo-overlap width $ on the number of pcg iterations, for 8 processors and

ParIC(0;$;$ � 1). Horizontal (non grid) lines display the number of pcg iterations for IC(0) on 1 pro-

cessor.

Table 1
Problem 1. h�1 = 513; n = 262144. Number of PCG iterations (iter.); elapsed time in seconds for: the
computation of the preconditioning matrix (fact.), the solver, and overall time; speed-up, for np processors.

Time overall

Precond. np iter. fact. pcg overall speed-up

1 398 0.16 191.31 192.40 1.00

2 398 0.14 93.50 94.13 2.04

ParIC(0;1,0) 4 435 0.07 41.64 41.95 4.57

8 437 0.03 17.87 18.05 10.66

16 440 0.02 9.46 9.65 19.94

1 122 4.76 80.59 86.20 1.00

2 122 2.48 42.84 45.82 1.88

ParIC(4;5,4) 4 128 1.24 19.30 20.78 4.15

8 131 0.65 8.50 9.32 9.24

16 137 0.37 4.26 4.80 17.96

2 171 1.98 62.56 65.09 1.32

AS(4,h0) 4 179 0.94 26.85 28.01 3.08

8 180 0.48 11.38 11.98 7.19

16 197 0.24 6.24 6.57 13.12

2 163 1.90 52.85 55.15 1.56

AS(4,h) 4 167 0.94 23.06 24.20 3.56

8 172 0.48 10.54 11.14 7.38

16 181 0.24 5.40 5.75 14.99

2 161 1.89 52.41 54.71 1.58

AS(4,2h) 4 164 0.96 23.04 24.21 3.56

8 165 0.52 11.18 11.82 7.29

16 175 0.25 5.17 5.57 15.46

14

Table 2
Problem 2. h�1 = 512; n = 262656. Number of PCG iterations (iter.); elapsed time in seconds for: the
computation of the preconditioning matrix (fact.), the solver, and overall time; speed-up, for np processors..

Time overall

Precond. np iter. fact. pcg overall speed-up

1 628 0.25 254.88 255.73 1.00

2 628 0.13 128.52 129.01 1.98

ParIC(0;1,0) 4 638 0.07 53.80 54.06 4.73

8 641 0.03 23.13 23.27 10.99

16 644 0.02 12.83 13.01 19.66

1 185 4.84 106.17 111.61 1.00

2 187 2.48 60.60 63.45 1.76

ParIC(4;5,4) 4 200 1.22 27.48 28.88 3.86

8 205 0.62 12.60 13.33 8.37

16 219 0.33 6.49 7.01 15.92

2 257 1.88 83.48 85.66 1.30

AS(4,h0) 4 257 0.95 36.59 37.68 2.96

8 274 0.49 16.70 17.27 6.46

16 300 0.24 8.81 9.14 12.21

2 252 1.88 82.37 84.55 1.32

AS(4,h) 4 248 0.96 34.79 35.89 3.11

8 258 0.50 16.52 17.10 6.53

16 277 0.25 8.99 9.33 11.96

2 245 1.89 80.53 82.71 1.35

AS(4,2h) 4 249 0.97 35.13 36.24 3.08

8 256 0.51 18.69 19.30 5.78

16 268 0.25 8.71 9.10 12.26

Table 3
Problem 3. h�1 = 512; n = 263169. Number of PCG iterations (iter.); elapsed time in seconds for: the
computation of the preconditioning matrix (fact.), the solver, and overall time; speed-up, for np processors.

Time overall

Precond. np iter. fact. pcg overall speed-up

1 1075 0.25 438.21 439.30 1.00

2 1076 0.13 224.85 225.47 1.95

ParIC(0;1,0) 4 1381 0.04 116.97 117.22 3.74

8 1386 0.03 51.01 51.20 8.58

16 1638 0.03 33.93 34.04 12.91

1 325 4.77 187.52 193.12 1.00

2 328 2.47 106.26 109.22 1.77

ParIC(4;5,4) 4 456 1.21 62.73 64.19 3.01

8 541 0.61 32.68 33.46 5.77

16 692 0.34 18.50 19.02 10.15

2 634 1.88 202.17 204.45 0.94

AS(4,h0) 4 731 0.94 100.72 101.87 1.90

8 900 0.47 53.91 54.51 3.54

16 1201 0.23 33.41 33.75 5.72

2 595 1.89 193.92 196.19 0.98

AS(4,h) 4 688 0.94 95.42 96.57 2.00

8 838 0.48 50.34 50.94 3.79

16 1091 0.24 30.51 30.88 6.25

2 567 1.88 183.68 185.95 1.04

AS(4,2h) 4 651 0.95 90.65 91.79 2.10

8 787 0.49 48.00 48.61 3.97

16 1008 0.24 28.60 29.07 6.64

15

0

50

100

150

200

2 4 6 8 10 12 14 16

o
v
e
ra

ll
 t
im

e

processors

Problem 1 (n=262144)

IC(4)
IC(0)
AS2h

ASh
ASho

0

50

100

150

200

250

2 4 6 8 10 12 14 16

o
v
e
ra

ll
 t
im

e

processors

Problem 2 (n=262656)

IC(4)
IC(0)
AS2h

ASh
ASho

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16

o
v
e
ra

ll
 t
im

e

processors

Problem 3 (n=263169)

IC(4)
IC(0)
AS2h

ASh
ASho

Fig. 11. Overall computational time for ParIC(0;1,0), ParIC(4;5,4), AS(4,h0), AS(4,h) and AS(4,2h).

ParIC(4; 1; 4), which applies locally the same level of �ll as ParIC(4; 5; 4)
but discards any induced �ll-in entry, gives rise to a poor performance
(not reported here).

(2) In order to remain competitive with ParIC, the AS method must be ap-
plied with a su�ciently large overlap width, which dramatically increases
the computational complexity. For Problem 3, $ = 2h is no longer ap-
propriate.

(3) For our test problems, ParIC(4; 5; 4) emerges as the most e�cient choice.

Experiment 3 : The rather low \optimal" �ll-in level observed (in our
case: 4) accounts for the fact that the linear system is solved only once. In
the case of time-dependent PDEs, nonlinear problems, or strongly inde�nite
linear systems, higher �ll-in levels may be better [40,15,29]. In such cases, the
increase of the (incomplete) factorization cost is amortized by the decrease of

16

the number of iterations. Even in this case, ParIC should be preferred over AS,
as can be seen from Fig. 12. There we show the performance of AS(1;$) and
ParIC(1;$max;1) for 8 and 16 processors. By $max we mean that all �ll-in
entries induced by the parallelization (renumbering) strategy are accepted,
except those that connect any couple of mesh nodes that belong to two non-
adjacent layers. In the case of Problem 3, the convergence su�ers from the
presence of many well separated eigenvalues near the origin, [28]. We note
that for 2 processors, as well as for the VDV 4-processor orderings (see, [16],
[45]), ParIC(1;$max;1) becomes a direct solver, whereas AS remains an
iterative one.

6 Conclusions

We have �rst identi�ed reasons why the performance of parallel incomplete
factorizations deteriorates with increasing number of subdomains. To remedy
this, we have designed a new family of robust variants, that compare favor-
ably with the popular additive Schwarz (AS) method. A salient feature of
our approach is that no overlap seems necessary. The performance may be
improved by a proper choice of the (possibly variable) relaxation parameters
�i. Preliminary numerical experiments indicate that optimal values depend on
the number of subdomains, in agreement with [36].

Our approach may be adapted to unstructured grids as well. This is rela-
tively easy when the domain is (approximately) partitioned into stripes, or
in such a way that each subdomain has a limited number of neighbours. In
other cases, care should be taken to de�ne some logical hierarchy between
neighbouring subdomains. For instance, if there holds i < j then proces-
sor i pseudo-overlaps processor j, or vice-versa. By \logical" we mean that
deadlocks have to be avoided (that is when two or more processors wait for
information from each other). A variant of our approach, with an ordering
induced pseudo-overlapping strategy, that will help to tackle intricate geome-
tries and partitionings, will be published elsewhere (after completion of all
experiments).

Acknowledgement

Part of this work was done while the �rst author was holding a postdoc-
toral position at the Mathematical Institute of Utrecht University, under the
Commission of the European Communities HCM Contract No. ERB-CHBG-
CT93-0420.

17

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1

0 10 20 30 40 50 60 70

re
la

tiv
e

 n
o

rm
 o

f
re

si
d

u
a

l

number of pcg iterations

(Problem 1 , h=1/129 , 8 processors)

ParIC

AS(ho)AS(h)AS(2h)

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1

0 20 40 60 80 100

re
la

tiv
e

 n
o

rm
 o

f
re

si
d

u
a

l

number of pcg iterations

(Problem 1 , h=1/129 , 16 processors)

ParIC

AS(ho)

AS(h)AS(2h)

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1

1e+02

0 10 20 30 40 50 60 70

re
la

tiv
e

 n
o

rm
 o

f
re

si
d

u
a

l

number of pcg iterations

(Problem 2 , h=1/128 , 8 processors)

ParIC

AS(ho)

AS(h)
AS(2h)

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1

1e+02

0 20 40 60 80 100

re
la

tiv
e

 n
o

rm
 o

f
re

si
d

u
a

l

number of pcg iterations

(Problem 2 , h=1/128 , 16 processors)

ParIC

AS(ho)

AS(h)AS(2h)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

0 50 100 150 200 250 300 350

re
la

tiv
e

 n
o

rm
 o

f
re

si
d

u
a

l

number of pcg iterations

(Problem 3 , h=1/128 , 8 processors)

ParIC AS(ho)AS(h)AS(2h)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

0 100 200 300 400 500

re
la

tiv
e

 n
o

rm
 o

f
re

si
d

u
a

l

number of pcg iterations

(Problem 3 , h=1/128 , 16 processors)

ParIC AS(ho)AS(h)AS(2h)

Fig. 12. Evolution of the relative residual error for 8 and 16 processors. The �ll-in level ` =1 (locally)

for each preconditioner involved.

References

[1] C.C. Ashcraft and R.G. Grimes, On vectorizing incomplete factorization and
SSOR preconditioners, SIAM J. Sci. Stat. Comput. 9 (1988), 122{151.

[2] O. Axelsson, Iterative Solution Methods (Cambridge University Press,
Cambridge, 1994).

[3] O. Axelsson and V. Eijkhout, Vectorizable preconditioners for elliptic di�erence
equations in three space dimensions, J. Comput. Appl. Math. 27 (1989) 299{321.

18

[4] O. Axelsson, G. Carey and G. Lindskog, On a class of preconditioned iterative
methods on parallel computers, Int. J. Numer. Meth. Engng. 27 (1989) 637{654.

[5] O. Axelsson and G. Lindskog, On the eigenvalue distribution of a class of
preconditioning methods, Numer. Math. 48 (1986) 479{498.

[6] R.F. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J.J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the
Solution of Linear Systems : Building Blocks for Iterative Methods (SIAM,
Philadelphia, 1994).

[7] R. Beauwens, Modi�ed incomplete factorization strategies, in : O. Axelsson and
L. Kolotilina, eds., Preconditioned Conjugate Gradient Methods (Lectures Notes
in Mathematics No. 1457, Springer-Verlag, Berlin, 1990) 1{16.

[8] R. Beauwens, L. Dujacquier, S. Hitimana and M. Magolu monga Made, MILU
factorizations for 2-processor orderings, in : I.T. Dimov, Bl. Sendov and
P.S. Vassilevski, eds., Advances in Numerical Methods and Applications O(h3)
(World Scienti�c, Singapore, 1994) 26{34.

[9] E. Brakkee, C. Vuik and P. Wesseling, An investigation of Schwarz domain
decomposition using accurate and inaccurate solution of subdomains, Report
95-18, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, 1995.

[10] G. Radicati di Brozolo and Y. Robert, Parallel conjugate gradient like
algorithms for solving sparse nonsymmetric linear systems on a vector
multiprocessor, Parallel Comput. 11 (1989) 223{239.

[11] E.M. Daoudi and P. Manneback, Implementation of ICCG algorithm on
distributed memory architecture, in : R. Beauwens and P. de Groen, eds.,
Iterative Methods in Linear Algebra (North-Holland, Amsterdam, 1992) 339{
347.

[12] S. Doi and A. Lichnewsky: A graph-theory approach for analyzing the e�ects
of ordering on ILU preconditioning. INRIA report 1452, INRIA-Rocquencourt,
France, 1991.

[13] J.J. Dongarra, I.S. Du�, D.C. Sorensen and H.A. van der Vorst, Numerical
Linear Algebra for High-Performance Computers (SIAM, Philadelphia, 1998).

[14] S. Doi and T. Washio, Ordering strategies and related techniques to overcome
the trade-o� between parallelism and convergence in incomplete factorizations,
Parallel Comput. 25 (1999) 1995{2014.

[15] I.S. Du�, Direct methods, Technical Report RAL-TR-1998-054, Rutherfore
Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK, 1998.

[16] I.S. Du� and G.A. Meurant, The e�ect of ordering on preconditioned conjugate
gradients, BIT 29 (1989) 635{657.

[17] I.S. Du� and H.A. van der Vorst, Developments and Trends in the Parallel
Solution of Linear Systems, Parallel Comput. 25 (1999) 1931{1970.

19

[18] T. Dupont, R.P. Kendall, and H.H. Rachford, An approximate factorization
procedure for solving self-adjoint elliptic di�erence equations, SIAM J. Numer.
Anal. 5 (1968) 559{573.

[19] V. Eijkhout, Beware of unperturbed modi�ed incomplete factorizations, in
Iterative Methods, in : R. Beauwens and P. de Groen, eds., Iterative Methods
in Linear Algebra (North-Holland, Amsterdam, 1992) 583{591.

[20] H. Elman and E. Agr�on, Ordering techniques for the preconditioned conjugate
gradient method on parallel computers, Comput. Phys. Comm. 53 (1989) 253-
269.

[21] S. Fujino and S. Doi, Optimizing multicolor ICCG methods on some
vectorcomputers, in : R. Beauwens and P. de Groen, eds., Iterative Methods
in Linear Algebra (North-Holland, Amsterdam, 1992) 349{358.

[22] M. B. van Gijzen, An analysis of element-by-element preconditioners for
nonsymmetric problems, Comput. Methods Appl. Mech. Engrg. 105 (1993) 23{
40.

[23] G.H. Golub and C.F. van Loan, Matrix Computations (third ed.) (The John
Hopkins University Press, Baltimore, Maryland, 1996).

[24] I. Gustafsson, A class of �rst order factorization methods, BIT 18 (1978) 142{
156.

[25] G. Haase, Parallel incomplete Cholesky preconditioners based on the
nonoverlapping data distribution, Parallel Comput. 24 (1998) 1685{1703.

[26] M. Magolu monga Made, Ordering strategies for modi�ed block incomplete
factorizations, SIAM J. Sci. Comput. 16 (1995) 378{399.

[27] M. Magolu monga Made, Implementation of parallel block preconditionings on
a transputer-based multiprocessor, Future Generation Computer Systems 11
(1995) 167{173.

[28] M. Magolu monga Made, Taking advantage of the potentialities of dynamically
modi�ed block incomplete factorizations, SIAM J. Sci. Comput. 19 (1998) 1083{
1108.

[29] M. Magolu monga Made, R. Beauwens and G. Warzee. Preconditioning by
moving the spectrum of discrete Helmholtz operators along the imaginary axis.
Technical Report, Service des Milieux Continus, Universit�e Libre de Bruxelles,
June 1999.

[30] M. Magolu monga Made and B. Polman, E�cient planewise like preconditioners
to cope with 3D problems, Numer. Linear Algebra Appl. 6 (1999) 379{406.

[31] J.A. Meijerink and H.A. van der Vorst, An iterative solution method for linear
systems of which the coe�cient matrix is a symmetric M-matrix, Math. Comp.
31 (1977) 148{162.

20

[32] J.A. Meijerink and H.A. van der Vorst, Guidelines for the usage of incomplete
decompositions in solving sets of linear equations as they occur in practical
problems, J. Comp. Physics 44 (1981) 134{155.

[33] N. Munksgaard, Solving sparse symmetric sets of linear equations by
preconditioned conjugate gradient method, ACM Trans. Math. Softw. 6 (1980)
206-219.

[34] S. Nakamura, Computational Methods in Engineering and Science (J. Wiley &
Sons, New York, 1977).

[35] Y. Notay, DRIC : A Dynamic Version of the RIC Method, Numer. Linear
Algebra Appl. 1, 511{532, 1994.

[36] Y. Notay, An e�cient Parallel Discrete PDE Solver, Parallel Comput. 21 (1995)
1725{1748.

[37] Y. Notay and A. Van de Velde, Coarse grid acceleration of parallel incomplete
preconditioners, in : S. Margenov and P. Vassilevski, eds., Iterative Methods in
Linear Algebra II (IMACS series in Computational and Applied Mathematics
3, 1996) 106{130.

[38] T. Oppe and W. Joubert, Improved SSOR and incomplete Cholesky solution of
linear equations on shared and distributed memory parallel computers, Numer.
Linear Algebra Appl. 1 (1994) 287{311.

[39] Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publishing, Co.,
Boston, MA, 1996).

[40] B.F. Smith, P.E. Bj�orstad and D. Gropp, Domain Decomposition : Parallel
Multilevel Methods for Elliptic Partial Di�erential Equations (Cambridge
University Press, Cambridge, 1996).

[41] E. de Sturler, Incomplete block LU preconditioners on slightly overlapping
subdomains for a massively parallel computer, Technical Report CSCS-TR-
94-03, Swiss Scienti�c Computing Center, ETH, Zurich, 1994.

[42] K.H. Tan, J. Groeneweg and M.J.A. Borsboom, Locally optimized block
preconditioners based on domain decomposition, Preprint 880, Department of
Mathematics, Utrecht University, 1994.

[43] R.S. Varga, Matrix Iterative Analysis (Prentice Hall, Englewood Cli�s, 1962).

[44] H.A. van der Vorst, A vectorizable variant of some ICCG methods, SIAM J.
Sci. Statist. Comput. 3 (1982) 350{356.

[45] H.A. van der Vorst, Large tridiagonal and block tridiagonal linear systems on
vector and parallel computers, Parallel Comput. 5 (1987) 54{54.

[46] H.A. van der Vorst, High performance preconditioning, SIAM J. Sci. Statist.
Comput. 10 (1989) 1174{1185.

[47] H.A. van der Vorst, ICCG and related methods for 3D problems on vector
computers, Computer Physics Communications 53 (1989) 223{235.

21

[48] T. Washio and K. Hayami, Parallel block preconditioning based on SSOR and
MILU, Numer. Linear Algebra Appl. 1 (1994) 533{553.

[49] Y.G. Zhong, X.Y. Kong, G.M. Xu, and G.H. Kuang, Multiple sequential staging
of tasks : A new approach to parallel computations, Comm. Numer. Meth.
Engng. 15 (1999) 367{373.

22

