arXiv:cs/0105004v1 [cs.CE] 2 May 2001

Parallel implementation of the TRANSIMS
micro-simulation

Kai Nagel! and Marcus Rickeft?

aDept. of Computer Science, ETHiZh, Switzerland
bsd&m AG, Troisdorf, Germany

Abstract

This paper describes the parallel implementation of the IBIMS traffic micro-simulation.
The parallelization method is domain decomposition, whiretans that each CPU of the
parallel computer is responsible for a different geogregharea of the simulated region.
We describe how information between domains is exchangetlhaw the transportation

network graph is partitioned. An adaptive scheme is usegtimize load balancing.

We then demonstrate how computing speeds of our parallelorsimulations can be
systematically predicted once the scenario and the compartkitecture are known. This
makes it possible, for example, to decide if a certain stesdgasible with a certain com-
puting budget, and how to invest that budget. The main ingresl of the prediction are
knowledge about the parallel implementation of the mignouation, knowledge about
the characteristics of the partitioning of the transpastanetwork graph, and knowledge
about the interaction of these quantities with the compsgystem. In particular, we in-
vestigate the differences between switched and non-sedttbpologies, and the effects of
10 Mbit, 100 Mbit, and Gbit Ethernet.

As one example, we show that with a common technology — 10@ $tbiched Ethernet
—one can run the 20 000-link EMME/2-network for Portlandd@n) more than 20 times
faster than real time on 16 coupled Pentium CPUs.

Key words: Traffic simulation, parallel computing, transportatioaming, TRANSIMS

1 Introduction

It is by now widely accepted that it is worth investigatinghe microscopic sim-
ulation of large transportation systems [6,42] is a useflditzon to the existing

I nagel@inf.ethz.ch. Postal: ETH Zentrum IFW B27.1, 809#¢i) Switzerland

2 marcus.rickert@topmail.de

Preprint submitted to Elsevier Preprint 26 October 2018

http://arxiv.org/abs/cs/0105004v1

set of tools. By “microscopic” we mean that all entities oé thystem — travelers,
vehicles, traffic lights, intersections, etc. — are repnése as individual objects in
the simulation [14,32,15,31,12,20,44].

The conceptual advantage of a micro-simulation is thatimcgple it can be made
arbitrarily realistic. Indeed, microscopic simulatioravk been used for many decades
for problems of relatively small scale, such as interseatiesign or signal phasing.
What is new is that it is now possible to use microscopic satioihs also for really
large systems, such as whole regions with several millibtraeelers. At the heart

of this are several converging developments:

(1) The advent of fast desktop workstations.

(2) The possibility to connect many of these workstationpdmallel supercom-
puters, thus multiplying the available computing powerisTis particularly
attractive for agent-based transportation simulationsesthey do not benefit
from traditional vector supercomputers.

(3) In our view, there is a third observation that is paramdarmake these ap-
proaches work: many aspects of a “correct” macroscopic\ehean be ob-
tained with rather simple microscopic rules.

The third point can actually be rigorously proven for somsesa For example, in
physics the ideal gas equatigryy = mR1T', can be derived from particles without
any interaction, i.e. they mowhrougheach other. For traffic, one can show that
rather simple microscopic models generate certain fluithdyical equations for
traffic flow [25].

In consequence, for situations where one expects that tldedjunamical repre-

sentation of traffic is realistic enough for the dynamicsdmg wants access to in-
dividual vehicles/drivers/..., a simple microscopic slation may be the solution.
In addition to this, with the microscopic approach it is ajwgossible to make it
more realistic at some later point. This is much harder amdesiones impossible
with macroscopic models.

The TRANSIMS (TRansportation ANalysis and SIMulation ®ys) project at
Los Alamos National Laboratory [42] is such a micro-simigatproject, with the
goal to use micro-simulation for transportation plannifigansportation planning
is typically done for large regional areas with several ionl§ of travelers, and
it is done with 20 year time horizons. The first means that, éf want to do a
micro-simulation approach, we need to be able to simulatgelanough areas fast
enough. The second means that the methodology needs tcete aidk up aspects
like induced travel, where people change their activities maybe their home lo-
cations because of changed impedances of the transporsggtem. As an answer,
TRANSIMS consists of the following modules:

e Population generation Demographic data is disaggregated so that we obtain
individual households and individual household membert) eertain charac-

teristics, such as a street address, car ownership, or inaldsacome [3].

e Activities generation. For each individual, a set of activities and activity loca-
tions for a day is generated [43,5].

e Modal and route choice For each individual, modes and routes are generated
that connect activities at different locations [18].

e Traffic micro-simulation . Up to here, all individuals have magians about
their behavior. The traffic micro-simulation executes htige plans simultane-
ously. In particular, we now obtain the resultinferactionsbetween the plans —
for example congestidf]

As is well known, such an approach needs to make the moduresstent with
each other: For example, plans depend on congestion, bgestion depends on
plans. A widely accepted method to resolve this is systemel@axation [12] — that
is, make preliminary plans, run the traffic micro-simulatiadapt the plans, run the
traffic micro-simulation again, etc., until consistencyvbeen modules is reached.
The method is somewhat similar to the Frank-Wolfe-algonith static assignment.

The reason why this is important in the context of this papehat it means that
the micro-simulation needs to be run more than once — in quergance about fifty
times for a relaxation from scratch [34,35]. In consequeaamputing time that
may be acceptable for a single run is no longer acceptableuicn a relaxation
series — thus putting an even higher demand on the technology

This can be made more concrete by the following arguments:

e The number of “about fifty” iterations was gained from sységicicomputational
experiments using a scenario in Dallas/Fort Worth. In fimetroute assignment
alone, about twenty iterations are probably sufficient334,but if one also al-
lows for other behavioral changes, more iterations areetkgIB]. The numbers
become plausible via the following argument: Since reliaxatmethods rely on
the fact that the situation does not change too much from tamation to the
next, changes have to be small. Empirically, changing mioaa t1L0% of the
travellers sometimes leads to strong fluctuations away felaxation [34,35].
A replanning fraction of 10% means that we need 10 iteratioosder to replan
each traveller exactly once; and since during the first amopliterations trav-
ellers react to non-relaxed traffic patterns, we will haveefglan those a second
time, resulting in 15-20 iterations. Nevertheless, futtggearch will probably
find methods to decrease the number of iterations.

e We assume that results of a scenario run should be availathie\a few days,

3 1t is sometimes argued that TRANSIMS is unnecessarily séalfor the questions it
is supposed to answer. Although we tend to share the sam&ant(see, for example,
our work on the so-called queue model [39]), we think thas tméeds to be evaluated
systematically. We also expect that the answer will depanthe precise question: It will
be possible to answer certain questions with very simpleatsod/hile other questions may
need much more realistic models.

say two. Otherwise research becomes frustratingly slod/vaawould assume
that the same is true in practical applications. Assumimnipér that we are inter-
ested in 24 hour scenarios, and disregarding computingfomether modules

besides the microsimulation, this means that the simulaig®ds to run 25 times
faster than real time.

We will show in this paper that the TRANSIMS microsimulatiomdeed can be
run with this computational speed, and that, for certainagibns, this can even
be done on relatively modest hardware. By “modest” we mealuster of 10-
20 standard PCs connected via standard LAN technology (Béaluster). We
find that such a machine is affordable for most universityimegying departments,
and we also learn from people working in the commercial sgohmstly outside
transportation) that this is not a problem. In consequeRRANSIMS can be used
without access to a supercomputer. As mentioned beforepiyond the scope of
this paper to discuss for which problems a simulation aslddtas TRANSIMS is
really necessary and for which problems a simpler approaghtrbe sufficient.

This paper will concentrate on the microsimulation of TRAMS. The other mod-
ules are important, but they are less critical for compu{sep also Sec. 10). We
start with a description of the most important aspects ofTRANSIMS driving
logic (Sec. 3). The driving logic is designed in a way thatlibwas domain de-
composition as a parallelization strategy, which is exmdiin Sec. 4. We then
demonstrate that thenplementeddriving logic generates realistic macroscopic
traffic flow. Once one knows that the microsimulation can baifi@ned, the ques-
tion becomes how to partition the street network graph. iBiescribed in Sec. 6.
Sec. 7 discusses how we adapt the graph partitioning to fferadit computa-
tional loads caused by different traffic on different stsedthese and additional
arguments are then used to develop a methodology for thecpoedof computing
speeds (Sec. 8). This is rather important, since with thesaan predict if certain
investments in one’s computer system will make it possibleih certain problems
or not. We then shortly discuss what all this means for cotegudies (Sec. 10).
This is followed by a summary.

2 Related work

As mentioned above, micro-simulation of traffic, that i® thdividual simulation
of each vehicle, has been done for quite some time (e.g..[AG}jominent exam-
ple is NETSIM [14,32], which was developed in the 70s. Newedsis are, e.g.,
the Wiedemann-model [45], AIMSUN [15], INTEGRATION [31], NISIM [12],
HUTSIM [20], or VISSIM [44].

NETSIM was even tried on a vector supercomputer [22], withreoueal break-
through in computing speeds. But, as pointed out earliémately the inherent

structure of agent-based micro-simulation is at odds vghcomputer architecture
of vector supercomputers, and so not much progress was mabe supercomput-
ing end of micro-simulations until the parallel supercornt@ps became available.
One should note that the programming model behind so-c8illegle Instruction
Multiple Data (SIMD) parallel computers is very similar toetone of vector su-
percomputers and thus also problematic for agent-basadagions. In this paper,
when we talk about parallel computers, we mean in all casdipMulnstruction
Multiple Data (MIMD) machines.

Early use of parallel computing in the transportation comityuincludes paral-
lelization of fluid-dynamical models for traffic [9] and p#edization of assignment
models [17]. Early implementations of parallel micro-siations can be found
in [8,28,1].

It is usually easier to make an efficient parallel implemgatafrom scratch than
to port existing codes to a parallel computer. Maybe for teason, early traffic
agent-based traffic micro-simulations which used parakehputers were com-
pletely new designs and implementations [6,42,1,28]. Athese use&lomain de-
compositionas their parallelization strategy, which means that theitpar the
network graph into domains of approximately equal size, thieth each CPU of
the parallel computer is responsible for one of these dosnéins maybe no sur-
prise that the first three use, at least in their initial innpémtation, some cellular
structure of their road representation, since this singglilomain decomposition,
as will be seen later. Besides the large body of work in thesjgsycommunity
(e.g. [46]), such “cellular” models also have some traditio the transportation
community [16,10].

Note that domain decomposition is rather different from racfional parallel de-
composition, as for example done by DYNAMIT/MITSIM [12]. Aufictional de-
composition means that different modules can run on diftecemputers. For ex-
ample, the micro-simulation could run on one computer, &hih on-line rout-
ing module could run on another computer. While the funetia@®composition is
somewhat easier to implement and also is less demandingdratiware to be ef-
ficient, it also poses a severe limitation on the achievaied-up. With functional
decomposition, the maximally achievable speed-up is thabau of functional
modules one can compute simultaneously — for example nsionodation, router,
demand generation, ITS logic computation, etc. Under nbamaumstances, one
probably does not have more than a handful of these fundtinndules that can
truly benefit from parallel execution, restricting the speg to five or less. In con-
trast, as we will see the domain decomposition can, on cenidware, achieve a
more than 100-fold increase in computational speed.

In the meantime, some of the “pre-existing” micro-simulas are ported to paral-
lel computers. For example, this has recently been done /diSVN2 [2] and for

DYNEMO [38,29][7] and a parallelization is planned for VISSIM [44] (M. Fellen-
dorf, personal communication).

3 Microsimulation driving logic

The TRANSIMS-199P] microsimulation uses a cellular automata (CA) technique
for representing driving dynamics (e.g. [25]). The roadiigdid into cells, each
of a length that a car uses up in a jam — we currently use 7.5rm&tecell is ei-
ther empty, or occupied by exactly one car. Movement takasgdbyhoppingfrom
one cell to another; different vehicle speeds are repreddmy different hopping
distances. Using one second as the time step works well\{peca reaction-time
arguments [21]); this implies for example that a hoppingespef 5 cells per time
step corresponds to 135 km/h. This models “car followinky&; tules for car follow-
ing in the CA are: (i) linear acceleration up to maximum spiéex car is ahead;
(i) if a car is ahead, then adjust velocity so that it is pnapmal to the distance
between the cars (constant time headway); (iii) sometiragatdomly slower than
what would result from (i) and (ii).

Lane changing is done as pure sideways movement in a substapebefore the
forwards movement of the vehicles, i.e. each time-stepbslisided into two sub-
time-steps. The first sub-time-step is used for lane changrhile the second sub-
time-step is used for forward motion. Lane-changing rulasTTRANSIMS are
symmetric and consist of two simple elements: Decide thatwant to change
lanes, and check if there is enough gap to “get in” [37]. A s@ato change lanes”
is either that the other lane is faster, or that the driverte/ammake a turn at the end
of the link and needs to get into the correct lane. In thelatise, the accepted gap
decreases with decreasing distance to the intersectianisththe driver becomes
more and more desperate.

Two other important elements of traffic simulations are algred turns and unpro-
tected turns. The first of those is modeled by essentiallyrmua “virtual” vehicle
of maximum velocity zero at the end of the lane when the tréiffiat is red, and
to remove it when it is green. Unprotected turns get modei@tigap acceptance”:

4 DYNEMO is not strictly a micro-simulation — it has individusavelers but uses a macro-
scopic approach for the speed calculation. Itis mentioeed because of the parallelization
effort.

5 There are two versions of TRANSIMS with the number “1.0”: Grean 1997, “TRAN-
SIMS Release 1.0” [4], which we will refer to as “TRANSIMSQ®, and one from 1999,
“TRANSIMS—LANL-1.0" [41], which we will refer to as “TRANSVS-1999”. From 1997
to 1999, many features were added, such as public transitanifferent driving logic, or
the option of using continuous corrections to the cellutexcsure. For the purposes of this
paper, the differences are not too important, except thaipatational performance was
also considerably improved.

There needs to be a large enough gap on the priority stre¢hdocar from the
non-priority street to accept it [33].

A full description of the TRANSIMS driving logic would go bewd the scope of
the present paper. It can be found in Refs. [27,41].

4 Micro-simulation parallelization: Domain decomposition

An important advantage of the CA is that it helps with the gesif a parallel
and local simulation update, that is, the state at time sted depends only on
information from time step, and only from neighboring cells. (To be completely
correct, one would have to consider our sub-time-stepsg Means that domain
decomposition for parallelization is straightforwardi@ one can communicate
the boundaries for time steépthen locally on each CPU perform the update friom
tot + 1, and then exchange boundary information again.

Domain decomposition means that the geographical regaecsmposed into sev-
eral domains of similar size (Fig. 1), and each CPU of theljgh@omputer com-
putes the simulation dynamics for one of these domainsfidisifmulations fulfill
two conditions which make this approach efficient:

e Domains of similar size: The street network can be partg#gbmto domains of
similar size. A realistic measure for size is the accumdl#eagth of all streets
associated with a domain.

e Short-range interactions: For driving decisions, theagtisé of interactions be-
tween driversis limited. In our CA implementation, on lirddsof the TRANSIMS-
1999 rule sets have an interaction rang80©§ meters £ 5 cells) which is small
with respect to the average link length. Therefore, the agtwasily decomposes
into independent components.

We decided to cut the street network in the middle of linkeeathan at intersec-
tions (Fig. 2); THOREAU does the same [28]. This separatesrdific complexity
at the intersections from the complexity caused by the |edicadtion and makes
optimization of computational speed easier.

In the implementation, each divided link is fully represshin both CPUs. Each
CPU is responsible for one half of the link. In order to maimteonsistency be-
tween CPUSs, the CPUs send information about the first five oélitheir” half of
the link to the other CPU. Five cells is the interaction ranfjall CA driving rules
on a link. By doing this, the other CPU knows enough about whiaappening on
the other half of the link in order to compute consistenfficaf

The resulting simplified update sequence on the split linkssifollows (Fig. 3]

e Change lanes.

e Exchange boundary information.

e Calculate speed and move vehicles forward.
e Exchange boundary information.

The TRANSIMS-1999 microsimulation also includes vehicdlest enter the simu-
lation from parking and exit the simulation to parking, andit for public transit
such as buses. These additions are implemented in a wayaffiatther exchange
of boundary information is necessary.

The implementation uses the so-called master-slave agiprddaster-slave ap-
proach means that the simulation is started up by a mastehwpawns slaves,
distributes the workload to them, and keeps control of theegd scheduling.
Master-slave approaches often do not scale well with istnganumbers of CPUs
since the workload of the master remains the same or evegaiges with increas-
ing numbers of CPUs. For that reason, in TRANSIMS-1999 thsterdas nearly
no tasks except initialization and synchronization. Evendutput to file is done in
a decentralized fashion. With the numbers of CPUs that we tested in practice,
we have never observed the master being the bottleneck patladielization.

The actual implementation was done by defining descendentdlasses of the
C++ base classes provided in a Parallel Toolbox. The undgrigommunication
library has interfaces for both PVM (Parallel Virtual Manki[30]) and MPI (Mes-
sage Passing Interface [24]). The toolbox implementagamoit specific to trans-
portation simulations and thus beyond the scope of thismpapare information

can be found in [34].

5 Macroscopic (emergent) traffic flow characteristics

In our view, it is as least as important to discuss the rasyltraffic flow char-
acteristics as to discuss the details of the driving logar. that reason, we have
performed systematic validation of the various aspecte@®émerging flow behav-
ior. Since the microsimulation is composed of car-follogyilane changing, unpro-
tected turns, and protected turns, we have correspondlittatians for those four
aspects. Although we claim that this is a fairly systematggraach to the situation,
we do not claim that our validation suite is complete. Fomepke, weaving [40] is
an important candidate for validation.

It should be noted that we do not only validate our drivingidpgput we validate

6 Instead of “split links”, the terms “boundary links”, “steat links”, or “distributed links”
are sometimes used. As is well known, some people use “edgtad of “link”.

Master

CPUO CPUO

o e intersection ——= edge (O CPU CPUlink
------ tile boundary ===== boundary edge

Fig. 1. Domain decomposition of transportation netwdudt: Global view.Right: View of
a slave CPU. The slave CPU is only aware of the part of the mktwhich is attached to
its local nodes. This includes links which are shared witlytmeor domains.

active Range [0.0, 0.5]
Q | - | Q
local ; remote

: 4 local

remote + ;
: active Range [0.5, 1.0]
1.0

0.0 0.5

Fig. 2. Distributed link.

the implementatiorof it, including the parallel aspects. It is easy to add ukrea
istic aspects in a parallel implementation of an otherwiae/l#ss driving logic;
and the authors of this paper are sceptic about the feagibilformal verification
procedures for large-scale simulation software.

We show examples for the four categories (Fig. 4): (i) Traffia 1-lane circle, thus
validating the traffic flow behavior of the car following ingshentation. (ii) Results
of traffic in a 3-lane circle, thus validating the additionarfe changing. (iii) Merge
flows through a stop sign, thus validating the addition of gegeptance at unpro-

At beginning of time step:

® O
CPU1
® O
CPU 2
After lane changes:
@)
CPU1)
® O
CPU 2
After boundary exchanges (parallel implementation):
@)
CPU1) IT\
¢ !
o CPU 2
After movements:
CPU1)
O
o CPU 2
After 2nd exchange of boundaries:
CPU1) 1\
i/ O
[CPU 2

Fig. 3. Example of parallel logic of a split link with two lageThe figure shows the general
logic of one time step. Remember that with a split link, onéJd®responsible for one half
and another CPU is responsible for the other half. These alx®h are shown separately
but correctly lined up. The dotted part is the “boundary oefi which is where the link
stores information from the other CPU. The arrows denotevitii@rmation is transferred
from one CPU to the other via boundary exchange.

tected turns. (iv) Flows through a traffic light where vebgheed to be in the cor-
rect lanes for their intended turns — it thus simultaneousliglates “lane changing

10

for plan following” and traffic light logic.

In our view, our validation results are within the range ofdfimeasurements that
one finds in the literature. When going to a specific study,aaed depending on
the specific question, more calibration may become neggssain some cases
additions to the driving logic may be necessary. For morermftion, see [27].

1-lane freeway 3-lane freeway
2500 . . . : 2500 . . . \ ! . .
TRANSIMS Mar 1998 + TRANSIMS Mar 1998
2000 r 2000 |
))
g s
T 1500 - T 1500
2 g
= =
[[}
2. 1000 r i =, 1000 |
g ; : g
H E
500 ¢ 500
£
b
O - L L L L L L L L L 0 L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90
density [veh/km/lane] density [veh/km/lane]
stop from minor into 2-lane major
— 2000 ! . Time ~ Flow Diagram for traffic light controlled T-intersection
@ TRANSIMS Mar 1998 + 1200 ‘ ‘ ! :
8 HCM -~
=
E 1150+
£ 1500 H
1%} %1100*
£ £
5 g \ i
= 10501 I - i
° =)
1] 8 PR
g 1000 r, g §1000f 1
S % 950
c e :
S 500 | T ﬁ};* R 900
=1 ey
o TR
IS + ++;‘+~~ttx\n7\ 850}
= f bt gx%#&l’;"?r-»
2 TN sec= s et F))))
= 0 L + P *‘*‘ﬁmﬁ%ﬁ 800 5 10 15 20 25
0 500 1000 1500 2000 Time fmin)

flow of opposing lane(s) [veh/h/lane]

Fig. 4. TRANSIMS macroscopic (emergent) traffic flow chagaistics. (a) 1-lane freeway.
(b) 3-lane freeway. (c) Flow through stop sign onto 2-laredieay. (d) Flow through traffic
signal that is 30 sec red and 30 sec green, scaled to hourlydles.

6 Graph partitioning

Once we are able to handle split links, we need to partitiewthole transporta-
tion network graph in an efficient way. Efficient means seieoapeting things:
Minimize the number of split links; minimize the number ohet domains each
CPU shares links with; equilibrate the computational loadnaich as possible.

One approach to domain decomposition is orthogonal reeiisirsection. Al-
though less efficient than METIS (explained below), orthwagjdi-section is useful
for explaining the general approach. In our case, since W& the middle of links,

11

the first step is to accumulate computational loads at thesiaehch node gets a
weight corresponding to the computational load of all ofatsached half-links.
Nodes are located at their geographical coordinates. Teheartical straight line
is searched so that, as much as possible, half of the congnahtoad is on its
right and the other half on its left. Then the larger of the pieces is picked and
cut again, this time by a horizontal line. This is recurspgbne until as many do-
mains are obtained as there are CPUs available, see Figsminediately clear
that under normal circumstances this will be most efficientaf number of CPUs
that is a power of two. With orthogonal bi-section, we obt@mpact and localized
domains, and the number of neighbor domains is limited.

Another option is to use the METIS library for graph partitiog (see [23] and
references therein). METIS uses multilevel partitionidghat that means is that
first the graph is coarsened, then the coarsened graph iquead, and then it is
uncoarsened again, while using an exchange heuristic at emeoarsening step.
The coarsening can for example be done via random matchimghwneans that
first edges are randomly selected so that no two selectesidlmkre the same vertex,
and then the two nodes at the end of each edge are collapsedniat Once the
graph is sufficiently collapsed, it is easy to find a good ofrogt partitioning for
the collapsed graph. During uncoarsening, it is systemiftitried if exchanges of
nodes at the boundaries lead to improvements. “Standardl'IBlEses multilevel
recursive bisection: The initial graph is partitioned itwm pieces, each of the two
pieces is partitioned into two pieces each again, etc.| thvetie are enough pieces.
Each such split uses its own coarsening/uncoarsening segueMETIS means
that all £ partitions are found during a single coarsening/uncoangesequence,
which is considerably faster. It also produces more cossistind better results for
largek.

METIS considerably reduces the number of split linkg,;, as shown in Fig. 6.
The figure shows the number of split links as a function of thenber of domains
for (i) orthogonal bi-section for a Portland network with@@0O0 links, (ii)) METIS

decomposition for the same network, and (iii) METIS decosifon for a Port-

land network with 20 024 links. The network with 200 000 lingslerived from the
TIGER census data base, and will be used for the Portlandstadg for TRAN-

SIMS. The network with 20 024 links is derived from the EMMHE@twork that

Portland is currently using. An example of the domains gateelrby METIS can be
seen in Fig. 7; for example, the algorithm now picks up the tlaat cutting along
the rivers in Portland should be of advantage since thidteeisua small number of
split links.

We also show data fits to the METIS curveg,, = 250 p®* for the 200 000 links
network andN,,, = 140 p®% — 140 for the 20024 links network, whereis the
number of domains. We are not aware of any theoretical argtifoe the shapes
of these curves for METIS. It is however easy to see that, fibtrogonal bisection,
the scaling ofN,, has to be~ p®°. Also, the limiting case where each node is on

12

a different CPU needs to have the sanig, both for bisection and for METIS.
In consequence, it is plausible to use a scaling formpfvith o« > 0.5. This

is confirmed by the straight line for largein the log-log-plot of Fig. 6. Since for
p = 1, the number of splitlinksV;,; should be zero, for the 20 024 links network we
use the equatiod p*— A, resulting inN,,; = 140 p°*?—140 . For the 200 000 links
network, the resulting fit is so bad that we did not add the tieggerm. This leads
to a kink for the corresponding curves in Fig. 13.

Such an investigation also allows to compute the theoletifiziency based on
the graph partitioning. Efficiency is optimal if each CPU gyekactly the same
computational load. However, because of the granularith@gntities (nodes plus
attached half-links) that we distribute, load imbalancesumnavoidable, and they
become larger with more CPUs. We define the resulting thieatedfficiency due

to the graph partitioning as

load on optimal partition (1)
Cdmn ‘= —
¢ load on largest partition

where the load on the optimal partition is just the total ldadded by the number
of CPUs. We then calculated this number for actual partiigs of both of our
20024 links and of our 200000 links Portland networks, seg 8i The result
means that, according to this measure alone, our 20 024 ietrgork would still

run efficiently on 128 CPUs, and our 200 000 links network wlauin efficiently

on up to 1024 CPUs.

7 Adaptive Load Balancing

In the last section, we explained how the street networkiistjgened into domains

that can be loaded onto different CPUs. In order to be effictbe loads on differ-

ent CPUs should be as similar as possible. These loads dosbodepend on the
actual vehicle traffic in the respective domains. Since veedaing iterations, we
are running similar traffic scenarios over and over againugéethis feature for an
adaptive load balancing: During run time we collect the exien time of each link

and each intersection (node). The statistics are outpuetd-frr the next run of the
micro-simulation, the file is fed back to the partitioningalithm. In that iteration,

instead of using the link lengths as load estimate, the hettexution times are
used as distribution criterion. Fig. 9 shows the new domaites such a feedback
(compare to Fig. 5).

To verify the impact of this approach we monitored the executimes per time-
step throughout the simulation period. Figure 10 depiatsrésults of one of the
iteration series. For iteration 1, the load balancer usedink lengths as criterion.
The execution times are low until congestion appears ar@ud@ am. Then, the

13

Fig. 5. Orthogonal bi-section for Portland 20 024 links nativ

execution times increase fivefold from 0.04 sec to 0.2 sedetation 2 the exe-
cution times are almost independent of the simulation tiNeate that due to the
equilibration, the execution times for early simulatiouh®increase from 0.04 sec
to 0.06 sec, but this effect is more than compensated later on

The figure also contains plots for later iterations (11, I5,a@hd 40). The improve-
ment of execution times is mainly due to the route adaptgirocess: congestion
is reduced and the average vehicle density is lower. On tlohimasizes where we
have tried it (up to 16 CPUs), adaptive load balancing lecetbgpmance improve-
ments up to a factor of 1.8. It should become more importariafger numbers of
CPUs since load imbalances have a stronger effect there.

8 Performance prediction for the TRANSIMS micro-simulation

It is possible to systematically predict the performancepafallel micro-simu-
lations (e.g. [19,26]). For this, several assumptions atfmicomputer architecture
need to be made. In the following, we demonstrate the désivaf such predictive
equations for coupled workstations and for parallel supmguters.

The method for this is to systematically calculate the wialtk time for one time
step of the micro-simulation. We start by assuming that ithe for one time step

14

100000 ¢ . — — - . - .
: orth. bisec. (200k links) ~
250*x**0.59
METIS (20k links)
&
> 10000 .
°
2 L
=
(%]
©
B +
o) +
€ 1000 F . -
c [
100 L 5 1 L 1 L 1 L 1 L 1
1 4 16 64 256 1024

number of CPUs

Fig. 6. Number of split links as a function of the number of GPThe top curve shows the
result of orthogonal bisection for the 200 000 links netwdrke middle curve shows the
result of METIS for the same network — clearly, the use of METésults in considerably
fewer split links. The bottom curve shows the result for tleetl@nd 20 024 links network
when again using METIS. The theoretical scaling for orth@jdisection iV, ~ /p,
wherep is the number of CPUs. Note that for— N5, N Needs to be the same for
both graph partitioning methods.

has contributions from computatidf,,,,,, and from communicatior,,,,,,. If these
do not overlap, as is reasonable to assume for coupled vabidkss, we have

T(p) = Tcmp(p) + Tcmm (p) 5 (2)

wherep is the number of CPUS]
Time for computation is assumed to follow
T
Tenp(p) = -+ (L4 Jour (P) + famn () - 3)
Here,T; is the time of the same code on one CPU (assuming a problerthsizis

7 For simplicity, we do not differentiate between CPUs and potational nodes. Compu-
tational nodes can have more than one CPU — an example is ankedfvcoupled PCs
where each PC has Dual CPUs.

15

+ +
AT
+

+

Fig. 7. Partitioning by METIS. Compare to Fig. 5.

on available computer memory);is the number of CPUsf,,,. includes overhead
effects (for example, split links need to be administeredbth CPUS); f4,, =
1/eq4mn — 1 includes the effect of unequal domain sizes discussed in6Sec

Time for communication typically has two contributions:téacy and bandwidth.
Latency is the time necessary to initiate the communicaaod in consequence it
is independent of the message size. Bandwidth describesithber of bytes that
can be communicated per second. So the time for one message is

Smsg

Tmsg =Ty + b

whereT}, is the latencyS,,,, is the message size, ahts the bandwidth.

However, for many of today’s computer architectures, badtiwis given by at

least two contributions: node bandwidth, and network badthwNode bandwidth
is the bandwidth of the connection from the CPU to the netwibtivo computers

communicate with each other, this is the maximum bandwidly tan reach. For
that reason, this is sometimes also called the “point-tothbandwidth.

The network bandwidth is given by the technology and topploigthe network.
Typical technologies are 10 Mbit Ethernet, 100 Mbit Ethé&ridDI, etc. Typ-
ical topologies are bus topologies, switched topologies;dimensional topolo-
gies (e.g. grid/torus), hypercube topologies, etc. A tradal Local Area Network

16

1 ¥ ’ T BN

OB
* x ook X e:sw:-é

0 9 | ﬁiv}w

+ qik ” -1
3 A
5 08) ® |
£ 07} _]
o e2 network (20k links)
s 06 i
S OB ~
05 r .
METIS (k-wa .
0-4 L < y.) 1 L 1 L 1 L 1
1 4 16 64 256 1024
1 number of CPUs
09 r .
>
2 08l i
2 '
£ 07 | |
o allstr network (200k links)
s 06 .
S OB ~
05 r .
METIS (k-wa *
0-4 L < y.) 1 L 1 L 1 L 1
1 4 16 64 256 1024

number of CPUs

Fig. 8.Top: Theoretical efficiency for Portland network with 20 024 knBottom:Theoret-
ical efficiency for Portland network with 200 000 links. “OB&fers to orthogonal bisection.
“METIS (k-way)” refers to an option in the METIS library.

(LAN) uses 10 Mbit Ethernet, and it has a shared bus topollvgg shared bus
topology, all communication goes over the same mediumjshédtseveral pairs of
computers communicate with each other, they have to shateathdwidth.

For example, in our 100 Mbit FDDI network (i.e. a network basdth of b,,.; =
100 Mbit) at Los Alamos National Laboratory, we found node baiuiias of about
b.q = 40 Mbit. That means that two pairs of computers could commuaica
full node bandwidth, i.e. using 80 of the 100 Mbit/sec, whilleee or more pairs
were limited by the network bandwidth. For example, five pafrcomputers could
maximally getl00/5 = 20 Mbit/sec each.

A switched topology is similar to a bus topology, except thatnetwork bandwidth
is given by the backplane of the switch. Often, the backplaaredwidth is high
enough to have all nodes communicate with each other at &werbandwidth,
and for practical purposes one can thus neglect the netwanividth effect for
switched networks.

If computers become massively parallel, switches with ghooackplane band-

17

* %

Fig. 9. Partitioning after adaptive load balancing. CoragarFig. 5.

0.22 — | | | | |
itl
T —
0.2 L —
— it11
@ 018} 15 .- |
& t20 -
O 016 | it40 - _
2
S o014t
3
"
S 012}
()
E 01}
c
S o008}
>
(&)
e
% 006
0.04 == /\/ ‘,\/A T
0.02 . . , | | |

simulation time [h]

Fig. 10. Execution times with external load feedback. Thresalts were obtained during
the Dallas case study [4,34].

width become too expensive. As a compromise, such supergenspusually use
a communications topology where communication to “neariydes can be done

18

at full node bandwidth, whereas global communication ssff®me performance
degradation. Since we partition our traffic simulations ey that communication

is local, we can assume that we do communication with fullenbandwidth on a
supercomputer. That is, on a parallel supercomputer, waneglect the contribu-
tion coming from thé,,.;-term. This assumes, however, that the allocation of street
network partitions to computational nodes is done in sortadligent way which
maintains locality.

As a result of this discussion, we assume that the commumiciine per time step
is

Nspl(p> M

Sbnd
bnd + NSpl(p)))

bnet

Tcmm (p) = Nsub . (nnb(p) Et +

which will be explained in the following paragraphs,,; is the number of sub-
time-steps. As discussed in Sec. 4, we do two boundary egelsguer time step,
thus N, = 2 for the 1999 TRANSIMS micro-simulation implementation.

nqy 1S the number of neighbor domains each CPU talks to. All imition which
goes to the same CPU is collected and sent as a single meSsagmcurring the
latency only once per neighbor domain. koe= 1, n,,;, is zero since there is no
other domain to communicate with. Fer= 2, it is one. Fop — oo and assuming
that domains are always connected, Euler’s theorem foraplgraphs says that
the average number of neighbors cannot become more thaBesigd on a simple
geometric argument, we use

m(p) =2(3vp = 1) (VP =1)/p,

which correctly hasi,,(1) = 0 andn,, — 6 for p — oco. Note that the METIS
library for graph partitioning (Sec. 6) does not necesg@anerate connected par-
titions, making this potentially more complicated.

T}, is the latency (or start-up time) of each messd@ebetween 0.5 and 2 millisec-
onds are typical values for PVM on a LAN [34,11].

Next are the terms that describe our two bandwidth effééts(p) is the number of
split links in the whole simulation; this was already disse$ in Sec. 6 (see Fig. 6).
Accordingly, Ny, (p)/p is the number of split links per computational nodg,,

is the size of the message per split likk, andb,,.; are the node and network
bandwidths, as discussed above.

In consequence, the combined time for one time step is

T(p) = %(1 + four (p) + Famn(P)) +

19

N, Shn Stn
Nsub' <nnb(p)frlt—i_M bnd Nspl()ﬂ> .

bnd

According to what we have discussed above gfer oo the number of neighbors
scales as:,, ~ const and the number of split links in the simulation scales as
Ngp ~ /p- In consequence fof,,,,. and f4,., Small enough, we have:

e for a shared or bus topology,.; is relatively small and constant, and thus
T(p) 1+1+—1 +p =P
p)~ — p p;
P VP

e for a switched or a parallel supercomputer topology, werasgsi}.; = oo and
obtain
1

1
T(p)~—+14+——1.
(p) ’ 7

Thus, in a shared topology, adding CPUs will eventuailyrease the simulation
time, thus making the simulatissiower. In a non-shared topology, adding CPUs
will eventually not make the simulation any faster, but aiskeit will not be detri-
mental to computational speed. The dominant term in a stia@padogy forp — oo

is the network bandwidth; the dominant term in a non-shaopdlogy is the la-
tency.

The curves in Fig. 11 are results from this prediction for atdved 100 Mbit
Ethernet LAN; dots and crosses show actual performancdtse3ine top graph
shows the time for one time step, iB(p), and the individual contributions to this
value. The bottom graph shows the real time ratio (RTR)

ﬁ _ 1lsec
T(p) T(p)’

rtr(p) =

which says how much faster than reality the simulation is\ng. At is the dura-
tion a simulation time step, which issec in TRANSIMS-1999. The values of the
free parameters are:

e Hardware-dependent parametersWe assume that the switch has enough band-
width so that the effect ob,,.; is negligeable. Other hardware parameters are
Ty = 0.8 ms andb,,; = 50 Mbit/s]

¢ Implementation-dependent parameters The number of message exchanges
per time step iSV,,, = 2.

8 Our measurements have consistently shown that node bathdvaick lower than network
bandwidths. Even CISCO itself specifies 148 000 packetsigbich translates to about
75 Mbit/sec, for the 100 Mbit switch that we use.

20

e Scenario-dependent parametersExcept when noted, our performance predic-
tions and measurements refer to the Portland 20 024 linkgonket We use, for
the number of split linksN,,;(p) = 140 - p°* — 140, as explained in Sec. 6.

e Other Parameters. The message size depends on the plans format (which de-
pends on the software design and implementation), on theatypumber of links
in a plan, and on the frequency per link of vehicles migrafiogn one CPU to
another. We us#,,,; = 200 Bytes. This is an average number; it includes all the
information that needs to be sent when a vehicle migrates we CPU to an-
other. The new TRANSIMS multi-modal plans format easily B88 entries per
driver and trip, resulting in 800 bytes of information just the plan. In addition,
there is information about the vehicle (ID, speed, maximwaaekeration, etc.);
however, not in every time step a vehicle is migrated acrdssiadary on every
split link. In principle it is however possible to comprebg fplans information,
SO improvements are possible here in the future. Also, we Inat explicitely
modelled simulation output, which is indeed a performarsseieé on Beowulf
clusters.

These parameters were obtained in the following way: Rirstpbtained plausible
values via systematic communication tests using messaggardo the ones used
in the actual simulation [34]. Then, we ran the simulationhwut any vehicles
(see below) and adapted our values accordingly. Runningithelation without
vehicles means that we have a much better contrdl,@f. In practice, the main
result of this step was to sét,; to 0.8 msec, which is plausible when compared
to the hardware value of 0.5 msec. Last, we ran the simuktioth vehicles and
adjusteds,,,q to fit the data. — In consequence, for the switched 100 MbieEtat
configurations, within the data range our curves are modelidithe data. Outside
the data range and for other configurations, the curves agelibased predictions.

The plot (Fig. 11) shows that even something as relativeljgore as a combination
of regular Pentium CPUs using a switched 100Mbit Etherngtrielogy is quite

capable in reaching good computational speeds. For examijile 16 CPUs the

simulation runs 40 times faster than real time; the simoiatif a 24 hour time

period would thus take 0.6 hours. These numbers refer, dsabawve, to the Port-
land 20 024 links network. Included in the plot (black dot® measurements with
a compute cluster that corresponds to this architecture.tiiangles with lower

performance for the same number of CPUs come from using detdad of sin-

gle CPUs on the computational nodes. Note that the curvéslewt at about forty

times faster than real time, no matter what the number of CRI®ne can see
in the top figure, the reason is the latency term, which ewalytaonsumes nearly
all the time for a time step. This is one of the important eletaavhere parallel

supercomputers are different: For example the Cray T3D Imasra than a factor
of ten lower latency under PVM [11].

As mentioned above, we also ran the same simulation withoytvahicles. In
the TRANSIMS-1999 implementation, the simulation sendsdbntents of each

21

CA boundary region to the neighboring CPU even when the bawyncegion is
empty. Without compression, this is five integers for fivesjtimes the number of
lanes, resulting in about 40 bytes per split edge, whichmsicerably less than the
800 bytes from above. The results are shown in Fig. 12. Shoevtha computing
times with 1 to 15 single-CPU slaves, and the correspondialgime ratio. Clearly,
we reach better speed-up without vehicles than with vehidempare to Fig. 11).
Interestingly, this does not matter for the maximum comiponal speed that can
be reached with this architecture: Both with and withoutiekels, the maximum
real time ratio is about 80; it is simply reached with a highember of CPUs for
the simulation with vehicles. The reason is that eventuakyonly limiting factor
is the network latency term, which does not have anythingotavidh theamount
of information that is communicated.

Fig. 13 (top) shows some predicted real time ratios for otde@nputing architec-
tures. For simplicity, we assume that all of them except foe special case ex-
plained below use the same 500 MHz Pentium compute nodesdiffaeence is
in the networks: We assume 10 Mbit non-switched, 10 Mbitchétl, 1 Gbit non-
switched, and 1 Gbit switched. The curves for 100 Mbit areagtwieen and were
left out for clarity; values for switched 100 Mbit Etherneére already in Fig. 11.
One clearly sees that for this problem and with today’s caensylit is nearly im-
possible to reaclany speed-up on a 10 Mbit Ethernet, even when switched. Gbit
Ethernet is somewhat more efficient than 100 Mbit Ethernesiioall numbers of
CPUgs, but for larger numbers of CPUs, switched Gbit Ethesatirates at exactly
the same computational speed as the switched 100 Mbit Ethdrinis is due to the
fact that we assume that latency remains the same — aftédrealt, was no improve-
ment in latency when moving from 10 to 100 Mbit Ethernet. FD®$upposedly
even worse [11].

The thick line in Fig. 13 corresponds to the ASCI Blue Mountparallel super-
computer at Los Alamos National Laboratory. On a per-CPUsb#ss machine is
slower than a 500 MHz Pentium. The higher bandwidth and itiqudar the lower
latency make it possible to use higher numbers of CPUs ettigieand in fact one
should be able to reach a real time ratio of 128 according itoglot. By then,
however, the granularity effect of the unequal domains (Eqg.Fig. 8) would have
set in, limiting the computational speed probably to ab®@ times real time with
128 CPUs. We actually have some speed measurements on tttahméor up to
96 CPUs, but with a considerably slower code from summer 189&8omit those
values from the plot in order to avoid confusion.

Fig. 13 (bottom) shows predictions for the higher fidelityrtRond 200 000 links
network with the same computer architectures. The assomptas that the time
for one time step, i.€l; of Eq. (3), increases by a factor of eight due to the in-
creased load. This has not been verified yet. However, thergemessage does
not depend on the particular details: When problems becamngeH, then larger
numbers of CPUs become more efficient. Note that we agaimasafuvith the

22

switched Ethernet architecture, at 80 times faster thartirea, but this time we
need about 64 CPUs with switched Gbit Ethernet in order to4fetimes faster
than real time — for the smaller Portland 20 024 links netwwitk switched Gbit
Ethernet we would need 8 of the same CPUs to reach the santmeattio. In
short and somewhat simplified: As long as we have enough OR&san micro-
simulate road networks afrbitrarily largesize with hundreds of thousands of links
and more, 40 times faster than real time, even without sopgpater hardware.
— Based on our experience, we are confident that these poediawill be lower
bounds on performance: In the past, we have always found teayske the code
more efficient.

9 Speed-up and efficiency

We have cast our results in terms of the real time ratio, sihiseis the most im-
portant quantity when one wants to get a practical study dionihis section, we
will translate our results into numbers of speed-up, efficye and scale-up, which
allow easier comparison for computing people.

Let us define speed-up as

wherep is again the number of CPU%)(1) is the time for one time-step on one
CPU, andT'(p) is the time for one time step gnCPUs. Depending on the view-
point, for7'(1) one uses either the running time of the parallel algorithna eim-
gle CPU, or the fastest existing sequential algorithm. SIRRANSIMS has been
designed for parallel computing and since there is no se@liesimulation with
exactly the same propertie€s(1) will be the running time of the parallel algorithm
on a single CPU. For time-stepped simulations such as usegdthe difference is
expected to be smdfl.

Now note again that the real time ratiosig-(p) = 1 sec/T(p) . Thus, in order

to obtain the speed-up from the real time ratio, one has tdiphukll real time
ratios by7’(1)/(1 sec). On a logarithmic scale, a multiplication corresponds to a
linear shift. In consequence, speed-up curves can be ebt&iom our real time
ratio curves by shifting the curves up or down so that thest ataone.

This also makes it easy to judge if our speed-up is linear orFar example in

9 An event-driven simulation could be a counter-example:ddejing on the implementa-
tion, it could be extremely fast on a single CPU up to mediuabjam sizes, but slow on a
parallel machine.

23

Portland EMME/2 network (20 000 links)

0.25 T T T
Tcmp(x)
Tlat(x) -
Tnode(x)
g 02 Tnet(x) .
7] T(x)
o Jun 00; Pentium Cluster @
£ Jun 00; Pentium Cluster Dual CPUs &
~ 0.15
(]
o
(O]
=
< 01
(8]
o
(8]
g oo0s
0
1 1024
number of CPUs]
Portland EMME/2 network (20 000 links)
128 T
64 //(
A
32 &
A
16
% A
o 87
£
= 4
©
o
2
1
1/T(x)
0.5 | Jun 00; Pentium Cluster @ 7
0.25 Jun OO;I Pentium Clu§ter Dual CPIUS A
T 4 16 64 256 1024

number of CPUs

Fig. 11. 100 Mbit switched Ethernet LANLop: Individual time contributionsBottom:
Corresponding Real Time Ratios. The black dots refer toatlgtineasured performance
when using one CPU per cluster node; the crosses refer tallgatueasured performance
when using dual CPUs per node (thexis still denotes the number of CPUs used). The
thick curve is the prediction according to the model. Tha times show the individual time
contributions to the thick curve.

Fig. 13 bottom, the curve which starts at 0.5 for 1 CPU shoaldehan RTR of

2 at 4 CPU, an RTR of 8 at 16 CPUs, etc. Downward deviations flasmmean

sub-linear speed-up. Such deviations are commonly desthip another number,
called efficiency, and defined as

24

Portland EMME/2 network (20 000 links)

0.25 T T T
Tcmp(x)
Tlat(x) -
Tnode(x)
g 02 Tnet(x) .
7] T(x)
g Jun 00; Pentium Cluster; no cars °
T 015
(O]
o
()
£
= 0.1
(&)
o
(&)
g o005
0
1 256 1024
number of CPUs
Portland EMME/2 network (20 000 links)
128
64
32
o 16
£ 8
(O]
2
et 4
S
o
2
1
0.5 1T(x) 1
0.95 . JunIOO; Pentium pluster; no cars °
1 4 16 64 256 1024

number of CPUs

Fig. 12. 100 Mbit switched Ethernet LAN; simulation withowthicles.Top: Individual
time contributions.Bottom: Corresponding Real Time Ratios. The same remarks as to
Fig. 11 apply. In particular, black dots show measured perémce, whereas curves show

predicted performance.

Fig. 14 contains an example. Note that this number contaimew information; it
is just a re-interpretation. Also note that in our logaritbiplots, £ (p) will just be
the difference to the diagonall’(1). Efficiency can point out where improvements

would be useful.

25

Portland EMME/2 network (20 000 links)

128
-7/ A S N> o (U ——
32
o 16
©
o 8
=
= 4
5
o
2 o/
1L ASCI Blue Mountain parallel supe“r‘computer —
Gbit switched
Gbit non-switched =—~—
0.5 10 Mbit switched -~
10 Mbit non-switched -
0.25 1 1 1 1
1 4 16 64 256 1024
number of CPUs]
Portland TIGER network (200 000 links)
128
64
32
o 16
©
° 8
£
= 4
[
o
1L ue Mountain"paralle,l‘supercomputer ——
" Ghit switched
) Gbit non-switched
0.5 10 Mbit switched. - 1
10 Mbit non-switched -+
0.25 . :

1 4 16 64 256 1024
number of CPUs

Fig. 13. Predictions of real time ratio for other computemfegurations.Top: With Portland
EMME/2 network (20 024 links)Bottom:With Portland TIGER network (200 000 links).
Note that for the switched configurations and for the supamger, the saturating real
time ratio is the same for both network sizes, but it is redoléh different numbers of
CPUs. This behavior is typical for parallel computers: Tasyparticularly good at running
larger and larger problems within the same computing timeAl-eurves in both graphs
are predictions from our model. We have some performanceunements for the ASCI
maschine, but since they were done with an older and slowsioveof the code, they are
omitted in order to avoid confusion.

10 Other modules

As explained in the introduction, a micro-simulation in dta@re suite for trans-
portation planning would have to be run many times (“fee#bterations”) in or-

26

Portland TIGER network (200 000 links)

1 pr—— —
0.1
>
(8]
o
-3 0.01
£
[}
0.001 ¢ ASCI Blue Mountain parallel supercomputer — E
Ghit switched =~
Gbit non-switched ———
10 Mbit switched =+
10 Mbit non-switched -
0.0001 ‘ ‘ ‘ ‘

1 4 16 64 256 1024
number of CPUs

Fig. 14. Efficiency for the same configurations as in Fig. 18dm. Note that the curves
contain exactly the same information.

der to achieve consistency between modules. For the micubaiion alone, and
assuming our 16 CPU-machine with switched 100 Mbit Ethenvetwould need
about 30 hours of computing time in order to simulate 24 hotitsaffic fifty times
in a row. In addition, we have the contributions from the ottmodules (routing,
activities generation). In the past, these have never bémmger problem than the
micro-simulation, for several reasons:

e The algorithms of the other modules by themselves did snitly less compu-
tation than the micro-simulation.

e Even when these algorithms start using considerable ammaficomputer time,
they are “trivially” parallelizable by simply distributgnthe households across
CPUSM]

¢ In addition, during the iterations we never replan more tabaut 10% of the
population, saving additional computer time.

In summary, the TRANSIMS modules besides the traffic mienougation cur-
rently do not contribute significantly to the computatiobatden; in consequence,
the computational performance of the traffic micro-simolais a good indicator
of the overall performance of the simulation system.

10 This is possible because of the specific purpose TRANSIM8s&ded for. In real time
applications, where absolute speed between request gmmhees matters, the situation is
different [7].

27

11 Summary

This paper explains the parallel implementation of the TRSAMS micro-simulation.
Since other modules are computationally less demandingksadsimpler to par-
allelize, the parallel implementation of the micro-sintida is the most important
and most complicated piece of parallelization work. Thefpelization method for
the TRANSIMS micro-simulation is domain decompositiorattis, the network
graph is cut into as many domains as there are CPUs, and eatki@RBlates the
traffic on its domain. We cut the network graph in the middlgheflinks rather than
at nodes (intersections), in order to separate the traffi@ihycs complexity at in-
tersections from the complexity of the parallel impleméota We explain how the
cellular automata (CA) or any technique with a similar timepencency schedul-
ing helps to design such split links, and how the messageaegehin TRANSIMS
works.

The network graph needs to be partitioned into domains inyathat the time for
message exchange is minimized. TRANSIMS uses the METI8&rljdor this goal.
Based on patrtitionings of two different networks of Portlg®regon), we calculate
the number of CPUs where this approach would become inefitist due to this
criterion. For a network with 200 000 links, we find that du¢his criterion alone,
up to 1024 CPUs would be efficient. We also explain how the TBAAS micro-
simulation adapts the partitions from one run to the nexinduieedback iterations
(adaptive load balancing).

We finally demonstrate how computing time for the TRANSIMSraisimulation
(and therefore for all of TRANSIMS) can be systematicallggicted. An impor-
tant result is that the Portland 20 024 links network runsuaB0 times faster than
real time on 16 dual 500 MHz Pentium computers connectednitatsed 100 Mbit
Ethernet. These are regular desktop/LAN technologies.n\Mlseng the next gener-
ation of communications technology, i.e. Gbit Ethernet predict the same com-
puting speed for a much larger network of 200 000 links wittO84Js.

12 Acknowledgments

This is a continuation of work that was started at Los Alamasidhal Laboratory
(New Mexico) and at the University of Cologne (Germany). Amlier version of

some of the same material can be found in Ref. [36]. We thaekJtis. Federal
Department of Transportation and Los Alamos National Latwy for making

TRANSIMS available free of charge to academic institutidrige version used for
this work was “TRANSIMS-LANL Version 1.0".

28

References

[1] A. Bachem, K. Nagel, and M. Rickert, Ultraschnelle mikkopische Verkehrs-
Simulationen, in: R. Flieger and R. Grebe (eds.), Paralbeleenverarbeitung Aktuell
TAT (1994).

[2] J. Barcelo, J. Ferrer, D. Garcia, M. Florian, and E. Le §aRarallelization of
microscopic traffic simulation for ATT systems, in: P. Matteoand S. Nguyen (eds.),
Equilibrium and advanced transportation modelling (Kluweademic Publishers,
1998), 1-26.

[3] R. J. Beckman, K. A. Baggerly, and M. D. McKay, Creatingngetic base-line
populations, Transportion Research Part A — Policy andtieea80 (1996) 415-429.

[4] R.Beckman et al, TRANSIMS—Release 1.0 — The Dallas-®éotth case study, Los
Alamos Unclassified Report (LA-UR) 97-4502, see transisasa.lanl.gov (1997).

[5] J.L.Bowman, The day activity schedule approach to trdeenand analysis, Ph.D.
thesis, Massachusetts Institute of Technology, Boston,(1/A%®8).

[6] G. D. B. Cameron and C. I. D. Duncan, PARAMICS — Parallelcroscopic
simulation of road traffic, J. Supercomputing 10(1) (1996) 2

[7] . Chabini, Discrete dynamic shortest path problemsransportation applications:
Complexity and algorithms with optimal run time, Transpdidn Research Records
1645 (1998) 170-175.

[8] G.Chang, T. Junchaya, and A. Santiago, A real-time negtwraffic simulation model
for ATMS applications: Part | — Simulation methodologie®¥HS Journal 1 (1994)
227-241.

[9] A. Chronopolous and P. Michalopoulos, Traffic flow sintida through parallel
processing. Final research report, Tech. rep., Center fansportation Studies,
Minnesota University, Minneapolis, MN (1991).

[10] M. Cremer and J. Ludwig, A fast simulation model for frafflow on the basis of
Boolean operations, Mathematics and Computers in Sinoul&8 (1986) 297-303.

[11] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorstyigrical linear algebra for
high-performance computers, Software, Environments, Tards (SIAM Society for
Industrial and Applied Mathematics, Philadelphia, 1998).

[12] DYNAMIT/MITSIM (1999), Massachusetts Institute of denology, Cambridge,
Massachusetts. See its.mit.edu.

[13] J. Esser and K. Nagel, Census-based travel demand agimefor transportation
simulations, in: W. Brilon, F. Huber, M. Schreckenberg, &hdwallentowitz (eds.),
Traffic and Mobility: Simulation — Economics — Environmemachen, Germany
(1999).

[14] Federal Highway Administration, Washington, D.C.affic Network Analysis with
NETSIM—A User Guide (1980).

29

[15] J. Ferrer and J. Barcel6, AIMSUNZ2: Advanced InteraetMicroscopic Simulator
for Urban and non-urban Networks, Internal report, Depaetato de Estasttica
e Investigacibn Operativa, Facultad de Informatica, versitat Politecnica de
Catalynya (1993).

[16] D. L. Gerlough, Simulation of freeway traffic by an elextic computer, in:
F. Burggraf and E. Ward (eds.), Proc. 35th Annual Meetingjfidiay Research Board,
National Research Council, Washington, D.C., 1956), 543.

[17] A. Hislop, M. McDonald, and N. Hounsell, The applicatiof parallel processing to
traffic assignment for use with route guidance, Traffic Eagiimg and Control (1991)
510-515.

[18] R. R. Jacob, M. V. Marathe, and K. Nagel, A computatiosalidy of routing
algorithms for realistic transportation networks, ACM twal of Experimental
Algorithms See www.inf.ethz.chhagel/papers.

[19] A. Jakobs and R. Gerling, Scaling aspects for the perémice of parallel algorithms,
Parallel Computing 19 (1993) 1063-1073.

[20] I. Kosonen, HUTSIM, Ph.D. thesis, University of HelkinFinnland (1999).

[21] S. Kraul3, Microscopic modeling of traffic flow: Invesgigpon of collision free vehicle
dynamics, Ph.D. thesis, University of Cologne, Germanyd{)9see www.zpr.uni-
koeln.de.

[22] H. Mahmassani, R. Jayakrishnan, and R. Herman, Netvakic flow theory:
Microscopic simulation experiments on supercomputerandpn. Res. A 24A (2)
(1990) 149.

[23] METIS library, www-users.cs.umn.edarypis/metis/metis.html.
[24] MPI: Message Passing Interface, See www-unix.mcgianimpi/mpich.

[25] K. Nagel, From particle hopping models to traffic flowding Transportation Research
Records 1644 (1999) 1-9.

[26] K. Nagel and A. Schleicher, Microscopic traffic modelinon parallel high
performance computers, Parallel Computing 20 (1994) 1£26-1

[27] K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnellyd&h L. Barrett, TRANSIMS
traffic flow characteristics, Los Alamos Unclassified Rep@rA-UR) 97-3530,
see www.inf.ethz.chinagel/papers (1997), earlier version: TransportationeRe$
Board Annual Meeting paper 981332.

[28] W. Niedringhaus, J. Opper, L. Rhodes, and B. Hughes, SVirhffic modeling
using parallel computing: Performance results, in: Prdcegs of the International
Conference on Parallel Processing (IEEE, 1994), 688—693.

[29] K. NOkel and M. Schmidt, Parallel DYNEMO: Mesoscopiaffic flow simulation on
large networks, preprint (2000).

[30] PVM: Parallel Virtual Machine, See www.epm.ornl.gown/pvmhome.html.

30

[31] H. A. Rakha and M. W. Van Aerde, Comparison of simulativadules of TRANSYT
and INTEGRATION models, Transportation Research Recofb1%996) 1-7.

[32] A. K. Rathi and A. Santiago, The new NETSIM simulationogram, Traffic
Engineering and Control (1990) 317-320.

[33] T. Research Board, Highway Capacity Manual, SpecighdReNo. 209 (National
Research Council, Washington, D.C., 1994), third edn.

[34] M. Rickert, Traffic simulation on distributed memory roputers, Ph.D. thesis,
University of Cologne, Germany (1998), see www.zpr.urélkade/ mr/dissertation.

[35] M. Rickert and K. Nagel, Issues of simulation-basede@assignment, Presented at the
International Symposium on Traffic and Transportation THESTTT) in Jerusalem
(1999), see www.inf.ethz.chhagel/papers.

[36] M. Rickert and K. Nagel, Dynamic traffic assignment onrghiel computers in
TRANSIMS, Future generation computer systems 17 (2001)-643.

[37] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latourdllane traffic simulations
using cellular automata, Physica A 231 (1996) 534.

[38] T. Schwerdtfeger, Makroskopisches Simulationsmlofigl SchnellstraRennetze mit
Bertcksichtigung von Einzelfahrzeugen (DYNEMO), Ph.Dedis, University of
Karsruhe, Germany (1987).

[39] P. M. Simon and K. Nagel, Simple queueing model appledhe city of Portland,
International Journal of Modern Physics C 10 (1999) 941--960

[40] J. Stewart, M. Baker, and M. van Aerde, Evaluating wegwsection designs using
INTEGRATION, Transportation Research Records (1996) 33-4

[41] TRANSIMS-LANL Version 1.0, See transims.tsasa.lgol; (1999).

[42] TRANSIMS, TRansportation ANalysis and SIiMulation 8m (since 1992), see
transims.tsasa.lanl.gov.

[43] K. Vaughn, P. Speckman, and E. Pas, Generating howseulvity-travel patterns
(HATPs) for synthetic populations (1997).

[44] VISIM, Planung Transport und Verkehr (PTV) GmbH, Seewptv.de.

[45] R. Wiedemann, Simulation des Stral3enverkehrsfluSasiftenreihe Heft 8, Institute
for Transportation Science, University of Karlsruhe, Ganyn(1994).

[46] S. Wolfram, Theory and Applications of Cellular Autotaa(World Scientific,
Singapore, 1986).

31

