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Abstract

This paper considers key ideas in the design of out-of-core dense

LU factorization routines. A left-looking variant of the LU factor-

ization algorithm is shown to require less I/O to disk than the right-

looking variant, and is used to develop a parallel, out-of-core imple-

mentation. This implementation makes use of a small library of par-

allel I/O routines, together with ScaLAPACK and PBLAS routines.

Results for runs on an Intel Paragon are presented and interpreted

using a simple performance model.

1 Introduction

The in-core solution of dense linear systems typically takes less than one hour

on the largest parallel computers, even when the system occupies all of mem-

ory. For example, on 1,000 processors of an Intel paragon supercomputer,

each with 16 Mbytes of memory, it takes about 22 minutes to factor and

solve at 64-bit precision a dense linear system of order 40,000 that �lls up

all the memory available to applications. This indicates that the processing
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power of such machines is underutilized in problems that require the solu-

tion of a single linear system in the sense that much larger systems could be

solved before the run time became prohibitively large. In the absence of sub-

stantial increases in the ratio of memory to processing power it is natural to

develop out-of-core solvers to tackle very large linear systems. These types of

large linear system arise, for example, in three-dimensional electromagnetic

scattering problems and in 
uid 
ow past complex objects [10, 11].

This paper presents a prototype for the design of a parallel software li-

brary for the out-of-core solution of dense linear systems. In section 2, we

consider left- and right-looking, out-of-core parallel LU factorization routines

and propose a hybrid version that balances the degree of parallelism with the

amount of I/O. In section 4 di�erent approaches to parallel I/O are discussed.

Section 5 outlines the main components of a library of routines for perform-

ing I/O on dense matrices. A complete parallel, out-of-core LU factorization

routine is described in section 6. This algorithm is implemented in terms of

the BLACS [9], PBLAS [3], and ScaLAPACK [2] routines. Section 7 presents

some preliminary performance results on the Intel Paragon. A summary and

conclusions are presented in section 8.

2 Sequential Out-Of-Core LU Factorization

Let us consider the decomposition of the matrix A into its LU factorization

with the matrix partitioned in the following way. Let us suppose that we

have factored A as A = LU . We write the factors in block-partitioned form

and observe the consequences.

0
BBBBBBBBBBB@

A11 A12 A13

A21 A22 A23

A31 A32 A33

1
CCCCCCCCCCCA
=

0
BBBBBBBBBBB@

L11

L21 L22

L31 L32 L33

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

U11 U12 U13

U22 U23

U33

1
CCCCCCCCCCCA

Multiplying L and U together and equating terms with A, we have
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Left−looking variant Right−looking variant

Figure 1: Memory access patterns for variants of LU decomposition. The

shaded parts indicate the matrix elements accessed in forming a block row

or column, and the darker shading indicates the block row or column being

modi�ed.

A11 = L11U11, A12 = L11U12, A13 = L11U13,

A12 = L21U11, A22 = L21U12 + L22U22, A23 = L21U13 + L22U23,

A31 = L31U11, A32 = L31U12 + L32U22, A33 = L31U13 + L32U23 + L33U33.

With these simple relationships we can develop variants by postponing

the formation of certain components and also by manipulating the order in

which they are formed. A crucial factor for performance is the choice of the

blocksize, k (i.e., the column width) of the second block column. A blocksize

of 1 will produce matrix-vector algorithms, while a blocksize of k > 1 will

produce matrix-matrix algorithms. Machine-dependent parameters such as

cache size, number of vector registers, and memory bandwidth will dictate

the best choice for the blocksize.

Two natural variants occur: right-looking and left-looking. (There are

several other variants possible, we examine only two here.) The terms right

and left refer to the regions of data access, as shown in Figure 1.

The left-looking variant computes one block column at a time, using pre-

viously computed columns. The right-looking variant (the familiar recursive
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algorithm) computes a block row and column at each step and uses them

to update the trailing submatrix. These variants have been called the i,j,k

variants owing to the arrangement of loops in the algorithm. For a more

complete discussion of the di�erent variants, see [8, 13].

We now develop these block variants of LU factorization with partial

pivoting.

2.1 Right-Looking Algorithm

Suppose that a partial factorization of A has been obtained so that the �rst

k columns of L and the �rst k rows of U have been evaluated. Then we may

write the partial factorization in block partitioned form, with square blocks

along the leading diagonal, as

PA =

0
BBBBBBBBBBB@

L11

L21 I

L31 0 I

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

U11 U12 U13

Â22 Â23

Â32 Â33

1
CCCCCCCCCCCA
; (1)

where L11 and U11 are k� k matrices, and P is a permutation matrix repre-

senting the e�ects of pivoting. Pivoting is performed to improve the numer-

ical stability of the algorithm and involves the interchange of matrix rows.

The blocks labeled Âij in Eq. 1 are the updated portion of A that has not

yet been factored, and will be referred to as the active submatrix.

We next advance the factorization by evaluating the next block column

of L and the next block row of U , so that

0
BBB@ I

P2

1
CCCAPA =

0
BBBBBBBBBBB@

L11

L21 L22

L31 L32 I

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

U11 U12 U13

U22 U23

Â33

1
CCCCCCCCCCCA
: (2)
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where P2 is a permutation matrix of orderM�k. Comparing Eqs. 1 and 2 we

see that the factorization is advanced by �rst factoring the �rst block column

of the active submatrix which will be referred to as the current column,

P2

 
Â22

Â32

!
=

 
L22

L32

!
U22 (3)

This gives the next block column of L. We then pivot the active submatrix

to the right of the current column and the partial L matrix to the left of the

current column,

 
Â23

Â33

!
( P2

 
Â23

Â33

!
;

 
L21

L31

!
( P2

 
L21

L31

!
(4)

and solve the triangular system

U23 = L22

�1Â23 (5)

to complete the next block row of U . Finally, a matrix-matrix product is

performed to update Â33,

Â33( Â33 � L32U23: (6)

Now, one simply needs to relabel the blocks to advance to the next block

step.

The main advantage of the block partitioned form of the LU factorization

algorithm is that the updating of Â33 (see Eq. 6) involves a matrix-matrix op-

eration if the block size is greater than 1. Matrix-matrix operations generally

perform more e�ciently than matrix-vector operations on high performance

computers. However, if the block size is equal to 1, then a matrix-vector

operation is used to perform an outer product | generally the least e�cient

of the Level 2 BLAS [7] since it updates the whole submatrix.

Note that the original array A may be used to store the factorization,

since the L is unit lower triangular and U is upper triangular. Of course,

in this and all of the other versions of LU factorization, the additional zeros

and ones appearing in the representation do not need to be stored explicitly.

We now derive the cost for performing I/O to and from disk for the block-

partitioned, right-looking LU factorization of an M �M matrix A with a

block size of nb. For clarity assumeM is exactly divisible by nb. The factor-

ization proceeds in M=nb steps which we shall index k = 0; 1 : : : ;M=nb � 1.
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For some general step k, the active submatrix is the Mk �Mk matrix in the

lower right corner of A, where Mk = M � knb. In step k it is necessary to

both read and write all of the active submatrix, so the total I/O cost for the

right-looking algorithm is

(R +W )

M=nb�1X
k=0

(M � knb)
2 =

M3

3nb
(1 +O(nb=M)) (R +W ) (7)

where R and W are the times to read and write one matrix element, respec-

tively, and we assume there is no startup cost when doing I/O.

2.2 Left-Looking Algorithm

As we shall see, from the standpoint of data access, the left-looking variant

is better than the right-looking variant. To begin, we assume that

PA =

0
BBBBBBBBBBB@

L11

L21 I

L31 0 I

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

U11

0

0

A12 A13

A22 A23

A32 A33

1
CCCCCCCCCCCA
: (8)

and that we wish to advance the factorization to the form

0
BBB@ I

P2

1
CCCAPA =

0
BBBBBBBBBBB@

L11

L21 L22

L31 L32 I

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

U11 U12 A13

0 U22 A23

0 0 A33

1
CCCCCCCCCCCA
: (9)

Comparing Eqs. 8 and 9 we see that the factorization is advanced by �rst

solving the triangular system

U12 = L�1
11
A12 (10)
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and then performing a matrix-matrix product to update the rest of the middle

block column of U ,  
Â22

Â32

!
(

 
A22

A32

!
�

 
L21

L31

!
U12: (11)

Next we perform the factorization

P2

 
Â22

Â32

!
=

 
L22

L32

!
U22 (12)

and lastly the pivoting 
A23

A33

!
( P2

 
A23

A33

!
and

 
L21

L31

!
( P2

 
L21

L31

!
: (13)

Observe that data accesses all occur to the left of the block column being

updated. Moreover, the only write access occurs within this block column.

Matrix elements to the right are referenced only for pivoting purposes, and

even this procedure may be postponed until needed with a simple rearrange-

ment of the above operations.

In evaluating the I/O cost for the left-looking out-of-core LU factorization

algorithm two variants of the left-looking algorithm will be considered. In the

�rst we always store the matrix on disk in unpivoted form at all intermediate

phases of the algorithm, writing out the whole matrix in pivoted form only

in the last step of the algorithm. In this case pivoting has to be done \on

the 
y" when matrix blocks are read in from disk. In the second version of

the algorithm the matrix is stored on disk in pivoted form.

Consider the version in which the matrix is stored in unpivoted form.

Whenever a block is read in the whole M � nb block must be read so that

it can be pivoted. Upon completion of a step the newly-factored block is

the only block that is written to disk, except in the last step in which we

write out all blocks in pivoted form so that the �nal matrix stored on disk is

pivoted (although in some cases these writes may be omitted if an unpivoted

matrix is called for { the pivots can always be applied later since they are

stored in the pivot vector). At some general step k of the algorithm the I/O

cost is

(R +W )Mnb +RMnbk (14)
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where the �rst term corresponds to reading and writing the block to be

factored in this step and the second term to reading in the blocks to the left.

Summing over k and adding in the time to write out all pivoted blocks in

the last step, the total cost for this version of the left-looking algorithm is

M3

2nb
(1 +O(nb=M))R + 2M2 (1 +O(nb=M))W (15)

Thus, to order nb=M the time to do the writes can be ignored. If we assume

that reads and writes take approximately the same time (i.e., R �W ), then

comparison with Eq. 7 shows that this version of the left-looking algorithm

should perform less I/O than the right-looking algorithm.

Now consider the version of the left-looking algorithm in which blocks are

always stored on disk in pivoted form. In this case it is no longer necessary

to read in all rows of an M � nb block, but it is necessary to write out

partial blocks in each step. This is because the pivoting performed in the

factorization of the block column must also be applied to the blocks to the

left, which must then be written to disk. In some general step k all of the

block to be updated must be read in and written out. The parts of the blocks

to the left that must be read in form a stepped trapeziodal shape (see Figure

2(a)), while the parts of the blocks to the left that must be written out after

applying the pivots for this step form a rectangle (see Figure 2(b)). Thus for

step k > 0 the I/O cost is

(R +W )Mnb +Rnb

k�1X
i=0

(M � inb) +Wnb(M � knb)k (16)

and for step k = 0 the I/O cost is (R+W )Mnb. Thus, the total I/O cost is

M3

3nb
(1 +O(nb=M))R +

M3

6nb
(1 +O(nb=M))W (17)

It is interesting to note that if reads and writes take the same time the

two left-looking versions of the algorithm have the same I/O cost, and they

both have a lower I/O cost than the right-looking algorithm. We therefore

expect a left-looking algorithm to be better than a right-looking algorithm

for out-of-core LU factorization.
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(a) (b)

Figure 2: This �gure pertains to the left-looking LU factorization algorithm

that stores the matrix in pivoted form. (a) The shaded blocks show the block

columns read from disk in step k = 5. The dark shaded block is the block

being updated in this step. (b) The shaded blocks show the block columns

written to disk in step k = 5.
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3 Implementation of the Left-Looking Algo-

rithm

In this section the implementation of the sequential, left-looking, out-of-core

LU factorization routine will be discussed. As we shall see in Section 6, once

the sequential version has been implemented it is a relatively easy task to

parallelize it using the BLACS, PBLAS, and ScaLAPACK, and the parallel

out-of-core routines described in Section 5.

In the out-of-core algorithm only two block columns of width nb may be

in-core at any time. One of these is the block column being updated and fac-

tored which we shall refer to as the active block. The other is one of the block

columns lying to the left of the active block column which we shall refer to as

a temporary block. As we saw in Section 2.2, the three main computational

tasks in a step of the left-looking algorithm are a triangular solve (Eq. 10),

a matrix-matrix multiplication (Eq. 11), and an LU factorization (Eq. 12).

In the out-of-core algorithm the triangular solve and matrix-matrix multipli-

cation steps are intermingled so that a temporary block can play its part in

both of these operations but be read only once. To clarify this, consider the

role that block column i plays in the factorization of block column k (where

i < k). In Figure 3, the �rst i rows of block column i play no role in factoring

block column k. The lower triangular portion of the next nb rows of block

column i are labeled T0, and the next k� i�nb rows are labeled T1. The last

M�k rows are labeled D. The corresponding portions of block column k are

labeled C0, C1, and E. Then the part played by block column i in factoring

block column k can be expressed in the following three operations,

C0  T�1
0
C0 (18)

C1  C1 � T1C0 (19)

E  E �DC0 (20)

where in Eqs. 19 and 20 we use the C0 given by Eq. 18. It should be noted

that Eqs. 19 and 20 can be combined in a single matrix-matrixmultiplication

operation

 
C1

E

!
 

 
C1

E

!
�

 
T1
D

!
C0: (21)
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i

T0

T1

D

k

C0

C1

E

Figure 3: Partitioning of temporary block i and active block k.

In updating block column k, the out-of-core algorithm sweeps over all

block columns to the left of block column k and performs for each the trian-

gular solve in Eq. 18 and the matrix-matrix multiplication in Eq. 21. After

all the block columns to the left of the block have been processed in this way

using the Level 3 BLAS routines TRSM and GEMM [6], the matrix E is

then factored using the LAPACK routine GETRF [1].

If the matrix is stored on disk without applying the pivots to it, then

whenever a block column is read in the pivots found up to that point must

be applied to it using LASWP, an LAPACK auxiliary routine. Also after

updating and factoring the active block, the pivots must be applied to it in

reverse order to undo the e�ect of pivoting before storing the block column

to disk. In this version of the left-looking algorithm complete block columns

are always read or written. In the version of the algorithm in which the

matrix is stored on disk in pivoted form it is necessary to read in only those

parts of the temporary blocks that play a role in the computation. When a

partial temporary block is read in the pivots found when factoring E in the

previous step must be applied before using it, and it must then be written
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for (each block column, k=0,1,...,M/n_b-1)

read block column k into active block

_LASWP : apply pivots to active block

go to start of file

for (each block column to left, i=0,1,...k-1)

read block column i into temporary block

_LASWP : apply pivots to temporary block

_TRSM : triangular solve

_GEMM : matrix multiply

end for

_GETRF : factor matrix E

_LASWP : unpivot active block

write active block

end for

Figure 4: Pseudocode for out-of-core, left-looking LU factorization algorithm

that leaves matrix in unpivoted form.

back out to disk.

In Figure 4 the pseudocode is presented for the version of the left-looking

algorithm in which the matrix is stored in unpivoted form. Since a vector of

pivot information is maintained in-core, the factored matrix can always be

read in later to be pivoted. It has been assumed in Figure 4 that the matrix

is M �M and that M is divisible by the block size nb. However, the general

case is scarcely more complicated. It should be noted that it is necessary

to position the �le pointer (at the start of the �le) only once in each pass

through the outer loop.

4 Approaches To Parallel I/O

Our discussion of parallel I/O for dense matrices assumes that in-core ma-

trices are distributed over processes using a block-cyclic data distribution as

in ScaLAPACK [4, 2]. Processes are viewed as being laid out with a two-

dimensional logical topology, forming a P �Q process mesh. Our approach
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to parallel I/O for dense matrices hinges on the number of �le pointers, and

on which processes have access to the �le pointers. We divide parallel I/O

modes into two broad classes

1. There is one �le pointer into the disk �le. In this case some of the

possibilities are

(a) Only one process has access to the �le pointer. Thus only that

process can do I/O to the �le, and has to scatter to, or gather

from, the other processes when reading or writing the �le.

(b) All processes in a group have individual access to the �le pointer.

Synchronization is required if the order in which data are written

to, or read from, the �le is important.

(c) All processes in a group have collective access to the �le pointer

permitting collective I/O operations in which all processes can

read the same data from the �le, or collectively write to the �le

in such a way that the data from exactly one of the processes is

actually written to the �le.

2. Each process in a group has its own �le pointer. We consider here two

main possibilities

(a) The �le pointers can all access a global �le space. In this case we

refer to the �le as a \shared �le."

(b) each �le pointer can only access its own local �le space. This �le

space is physically and logically contiguous. In this case we refer

to the �le as a \distributed �le."

Modes 1(a) and 1(b) correspond to the case in which there is no parallel

I/O system, and all I/O is bound to be sequential. Modes 1(c), 2(a) and 2(b)

corresponds to di�erent ways of doing parallel I/O. The shared �le mode is

the most general since it means a �le can be written using one particular

process grid and block size and read later using a di�erent process grid and

block size. A distributed �le can only be read using the same process grid and

block size that it was written with. However, a major drawback of a shared

�le is that, in general, each process can only read and write nb contiguous

elements at a time. This results in very poor performance unless block sizes
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are very large or unless the process grid is chosen to be 1 � Q (for Fortran

codes) so that each column of the matrix lies in one process. The potential for

poor performance arises because most I/O systems work best when reading

large blocks. Furthermore, if only a small amount of data is written at a

time systems such as the Intel Paragon will not stripe the data across disks

so I/O is essentially sequentialized.

5 Parallel I/O Routines For Dense Matrices

We propose a prototype library of Basic Linear Algebra Parallel I/O Subpro-

grams (BLAPIOS) for dense matrices. As discussed in Section 3, we would

like the BLAPIOS to be compatible with any future standard for parallel

I/O that emerges. Thus, we describe only the high-level functionality of

the BLAPIOS, and defer specifying the detailed semantics and syntax. A

similar approach has been taken by Toledo and Gustavson in the Matrix

Input-Output Subroutines (MIOS) which forms part of the SOLAR library

for out-of-core dense matrix computations [15].

Before describing the BLAPIOS we shall consider the fundamental I/O

operation supported by the BLAPIOS in which a rectangular array of data

is read from (written to) the out-of-core �le into (from) a given in-core array.

Suppose the data in the out-of-core �le and the in-core array are represented

by the index ranges (k : k+m�1; ` : `+n�1), and (i : i+m�1; j+n�1),

respectively, as shown in Figure 5. As in the PBLAS and ScaLAPACK

libraries, submatrices are regarded as global entities and are referenced by

global indices.

For a shared �le the indices k and ` can refer to any element in the out-of-

core �le. However, for a distributed �le the submatrix referenced in the out-

of-core �le must have the same data distribution as that in the in-core array.

This is because both the out-of-core distributed �le and the in-core array are

distributed data objects. An example of compatible and incompatible data

distributions for a distributed �le and an in-core matrix are shown in Figure

6.

The routines comprising the BLAPIOS library are arranged in three

groups.

� Routines for opening and closing �les, and for manipulating �le point-

ers.
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read

(k,l) (i,j)

DISK MEMORY

Figure 5: Fundamental I/O operation for matrices.

out-of-core files

compatible incompatible

in-core array

Figure 6: On the left we show two submatrices of a distributed �le. On the

right is an in-core array. Both the distributed �le and the in-core array are

distributed over a 2 � 3 mesh of processes. The smaller squares represent

nb � nb blocks of elements. The distribution of the submatrix in the left-

hand distributed �le is compatible with that in the in-core array, while the

distribution of the submatrix in the righthand distributed �le is not.
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� Routines for reading and writing.

� Auxiliary routines.

We shall now present the functionality of each of these routines.

5.1 File Management Routines

The BLAPIOS contain the following routines for handling shared and dis-

tributed �les.

POPEN. Opens a �le.

PCLOSE. Closes a �le.

P LSEEK. Independently positions the �le pointer to a speci�c location in

the �le.

P ASEEK. Positions the �le pointers according to an explicit alignment.

For a distributed �le the alignment must be compatible with the data

distributions of the out-of-core �le and the in-core array.

P GSEEK. Positions the �le pointers according to an implicit alignment

obtained by applying a given data distribution over the out-of-core �le.

For a distributed �le, the data distribution applied must be that of the

distributed �le. This is useful when it is known that a subsequent I/O

operation will refer to a compatibly aligned in-core array.

5.2 I/O Routines

The BLAPIOS provide the following blocking and nonblocking routines for

reading and writing submatrices of an out-of-core �le. The nonblocking rou-

tines permit the possibility of overlapping I/O to disk with computation and

interprocess communication.

P READ. Reads a submatrix into speci�ed location of a matrix, and leaves

the �le pointer for each process at the next data element for the process.

This is a blocking call.
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P WRITE. Writes a submatrix from speci�ed location of a matrix, and

leaves the �le pointer for each process at the next data element for the

process. This is a blocking call.

P IREAD. Reads a submatrix into speci�ed location of a matrix, and leaves

the �le pointer for each process at the next data element for the process.

This is a nonblocking call.

P IWRITE. Writes a submatrix from speci�ed location of a matrix, and

leaves the �le pointer for each process at the next data element for the

process. This is a nonblocking call.

PIOTEST. Tests if a nonblocking parallel I/O call has completed.

PIOWAIT. Blocks until a nonblocking parallel I/O call has completed.

5.3 Auxiliary Routines

The BLAPIOS include the following auxiliary routines.

P STOD. Converts a shared �le to a distributed �le.

P DTOS. Converts a distributed �le to a shared �le.

P RANM. Produces a random out-of-core �le using a parallel random num-

ber generator.

5.4 Implementation Issues

The BLAPIOS outlined above have been implemented on the Intel Paragon

using Intel's Parallel File System (PFS). In these PFS-BLAPIOS a dis-

tributed �le is implemented by having each process access its own distinct

�le, though it could also have been implemented by partitioning a single

�le into contiguous chunks and assigning each process one chunk. For both

shared and distributed modes the M ASYNC I/O mode of PFS is used. Al-

though one might expect the best performance on a particular platform to

come from implementing the BLAPIOS directly on top of the native parallel

I/O system, there are also distinct advantages to being able to implement

them on top of a portable parallel I/O system. Parallel I/O is an area of

much active research (see, for example, [12] and the parallel I/O archive at
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http://www.cs.dartmouth.edu/pario.html

for more information.) Although there is currently no generally accepted

parallel I/O standard, MPI-IO, the proposed extensions to MPI [14] for per-

forming parallel I/O, is a strong contender [5]. We shall, therefore, brie
y

consider how the BLAPIOS might be implemented on top of MPI-IO.

MPI-IO contains routines for collective and independent I/O operations.

All the I/O operations in the BLAPIOS are independent. MPI-IO partitions

a �le using �letypes, which are an extension of MPI datatypes. Each process

in a given group (speci�ed by an MPI communicator) creates a �letype that

picks out just the data assigned to it. A routine for creating a �letype

for block-cyclicly distributed matrices is provided by MPI-IO. This �letype,

together with MPI-IO's absolute o�set mode, can be used to create and

access the equivalent of a BLAPIOS shared �le. A BLAPIOS distributed �le

can be handled by creating a datatype that divides the �le into contiguous

segments with one segment being assigned to each process. In this case

MPI-IO's relative o�set mode would be used to access data.

In MPI-IO the �letype and communicator are speci�ed as input argu-

ments when a �le is opened. This is somewhat more restrictive than access

to a shared �le using the BLAPIOS in which the partitioning is determined

dynamically by the distribution of the in-core matrix being read from or writ-

ten to. The usefullness of dynamic partitioning (or alignment) is apparent

when performing the LU factorization of A, an M �N matrix with N > M .

In this case there are two phases to the computation: �rst the LU factor-

ization of the �rst M columns is found (call this matrix B), and then the

transformations are applied to the remaining N �M columns (call this ma-

trix C). It is natural, and convenient, in performing the second phase of the

algorithm to treat matrices B and C as unrelated matrices with independent

partitionings. However, complications can arise if the number of columns

spanning the process grid, Qnb, does not exactly divideM , so that C begins

in the middle of a block. If we are dealing with a shared �le the BLAPIOS

routine P ASEEK can be used to dynamically partition C so it starts at the

beginning of a block. For a distributed �le, which has a �xed partitioning,

we have to o�set the in-core matrix involved in I/O operations so that it

is aligned with the partitioning. To make the BLAPIOS compatible with

MPI-IO we need to either permit multiple alignments for a �le in MPI-IO,

or else permit only �xed alignments for shared �les in the BLAPIOS.

18



6 A Parallel Algorithm

Although in section 2 we saw that the left-looking LU factorization routine

has a lower I/O cost that the right-looking variant, the left-looking algo-

rithm has less inherent parallelism since it acts only on single blocks. We

therefore propose a hybrid parallel algorithm in which a single block actually

spans several widths of the process grid, say ng. In e�ect, the matrix is now

blocked at two levels. It is divided into blocks of size nb elements, which

are distributed cyclicly over the process grid, but we apply the left-looking

algorithm to \superblocks" of width nbngQ columns where the process grid

is assumed to be of size P �Q. If ng is chosen large enough we have a pure

right-looking algorithm, and if ng and Q are both 1 we essentially recover

the pure left-looking algorithm. Within a superblock we use a right-looking

LU factorization algorithm (P GETRF) to get good parallelism, but at the

superblock level we employ a left-looking algorithm to control I/O costs. The

parameter ng can be used to trade o� parallelism and I/O cost.

In Figure 7 we show an example for a 2� 3 process grid, and ng = 2. For

clarity we consider here a matrix consisting of only four column superblocks,

though in a \real" application we would expect the number to be much

larger. In Figure 7 the �rst two superblocks have been factored, while the

third and fourth superblocks have not yet been changed. We now consider

the next stage of the algorithm in which the third superblock, for which the

data distribution is shown explicitly, is factored. Note that each of the small

numbered squares is actually an nb�nb block, with the numbering indicating

the position in the process grid to which it is assigned. At the end of this

stage of the algorithm the �rst three superblocks will have been factored,

and the fourth will still be unchanged. In the following we shall refer to the

superblock being factored as the active superblock.

The parallel implementation closely follows the sequential implementation

presented in Section 3. Block columns are read and written using the rou-

tines P READ and P WRITE. The �le pointer is positioned with P GSEEK.

These routines are part of the BLAPIO library introduced in Section 5. The

triangular solve and matrix multiplication are done using PBLAS routines.

Pivoting is performed by the ScaLAPACK auxiliary routine P LAPIV, while

the factorization is done by the ScaLAPACK routine P GETRF. Since all

these routines reference matrices as global data structures, parallelization of

the sequential algorithm is almost trivial. Pseudocode for the parallel version
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0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

0,0 0,1 0,2

1,0 1,1 1,2

Figure 7: Schematic view of the parallel hybrid out-of-core algorithm for the

case P �Q = 2� 3 and ng = 2.
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P_GSEEK : go to start of file

for (each superblock column, k=0,1,...,M/n_b-1)

P_READ : read superblock column k into active superblock

P_LAPIV : apply pivots to active superblock

P_GSEEK : go to start of file

for (each superblock column to left, i=0,1,...k-1)

P_READ : read superblock column i into temporary superblock

P_LAPIV : apply pivots to temporary superblock

P_TRSM : triangular solve

P_GEMM : matrix multiply

end for

P_GETRF : factor lower portion of active superblock

P_LAPIV : unpivot active superblock

P_WRITE : write active superblock

end for

Figure 8: Pseudocode for parallel, out-of-core, left-looking LU factorization

algorithm that leaves matrix in unpivoted form.

is given in Figure 8.

7 Performance Results

In this section some preliminary performance results are presented for the

parallel left-looking LU factorization algorithm running on an Intel Paragon

concurrent computer. These results are intended to illustrate a few general

points about the performance of the algorithms used, and do not constitute a

detailed performance study. In the work presented here we were constrained

by di�culties encountered in getting exclusive access to the Paragon for

su�ciently long periods. In addition we found that the parallel �le system

of the Paragon to which we had access was close to full much of the time.

We hope to overcome these problems in the future and undertake a detailed

performance study in future work. All the runs were made in exclusive use

mode, i.e., with logins disabled to prevent other users accessing the system.
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This was done because the performance of PFS is a�ected by the load on the

service nodes, even if other users are just editing or compiling.

The �rst runs were done using the version of the algorithm that maintains

the partially factored matrix in unpivoted form throughout the algorithm.

Timing results are shown for 4� 4 and 8� 8 process meshes in Tables 1 and

2 for a distributed out-of-core matrix. In these cases we say that the matrix

was both logically and physically distributed because each processor opens

a separate �le. As expected for this version of the algorithm, the time spent

writting to PFS is much less than the time spent reading. However, the most

striking aspect of the timings is the fact that pivoting dominates. The large

amount of time spent pivoting arises because each time a superblock is read

in all the pivots evaluated so far must be applied to it. For a sequential

algorithm (i.e., P = Q = ng = 1), a total of M3=(3n2b ) superblocks of width

nb elements must be pivoted. Thus, pivoting entails M3=(3nb) exchanges of

elements, which is of the same order as the I/O cost. In the parallel case,

we must replace nb by the width of a superblock, Qngnb. Thus, in order for

the version of the algorithm that stores the matrix in unpivoted form to be

asymptotically faster than the version that stores the matrix in pivoted form

we require
W

6
<
R

6
+
P

3
; (22)

whereW and R are the costs of writing and reading an element, respectively,

and P is the cost of pivoting an element.

In general, there is no reason why writing should be substantially faster

then reading, so we would not expect Eq. 22 to hold. Thus, the version

of the algorithm that stores the matrix in pivoted form is expected to be

faster. This is borne out by the timings presented in Table 3 for an 8 � 8

process mesh. These timings are directly comparable with those of Table 2,

and show that the version of the algorithm that stores the matrix in pivoted

form is faster by 10-15%. Note that the time for writing is slightly more than

half the time for reading, suggesting that it takes slightly longer to write a

superblock than to read it.

We next attempted to investigate the e�ect of varying the width of the

superblock by increasing ng from 2 to 10. The results are shown in Table 4.

A problem will �t in core if the memory required in each process to hold two
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Task 5,000 8,000 10,000

Read 67.32 196.73 325.16

Write 9.21 24.39 31.97

Pivot 156.55 538.38 1006.03

Triangular solve 52.88 139.14 219.75

Matrix multiply 115.21 483.37 955.33

Factorization 29.98 65.32 95.76

Total 427.74 1557.16 2802.84

Table 1: Timings in seconds for the main phases of out-of-core LU factoriza-

tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.

In all cases nb = 50, ng = 2, P = 4, and Q = 4. The version of the algorithm

that stores the matrix in unpivoted form and performs pivoting on the 
y

was used. The out-of-core matrix was physically and logically distributed.

Task 5,000 8,000 10,000

Read 31.56 94.95 193.04

Write 7.93 18.59 45.91

Pivot 56.62 159.55 319.34

Triangular solve 50.18 136.41 218.77

Matrix multiply 28.37 118.79 242.29

Factorization 22.74 45.18 63.87

Total 222.48 615.67 1158.39

Table 2: Timings in seconds for the main phases of out-of-core LU factoriza-

tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.

In all cases nb = 50, ng = 2, P = 8, and Q = 8. The version of the algorithm

that stores the matrix in unpivoted form and performs pivoting on the 
y

was used. The out-of-core matrix was physically and logically distributed.

23



superblocks exceeds that required to hold the entire matrix, i.e., if

2:
M

P
:ng:nb <

M

P
:
M

Q
;

or 2Qngnb < M . Thus, for the parameters of Table 4 the M = 5000 and

M = 8000 cases �t in core, so we just read in the whole matrix, factorize it

using the standard ScaLAPACK routine P GETRF, and then write it out

again. In Table 4 it takes about 58 seconds to perform an in-core factoriza-

tion of a 5000 � 5000 matrix, compared with 191 seconds for an out-of-core

factorization (see table 3). The M = 8000 case in Table 4 failed, presum-

ably because PFS was not able to handle the need to simultaneously read

8 Mbytes from each of 64 separate �les. The M = 10000 case ran success-

fully out-of-core, and the results in Table 4 should be compared with those

in Table 3, from which we observe that increasing ng increases the time for

I/O and factorization, but decreases the times for all other phases of the

algorithm. The increase in I/O is an unexpected result since increasing ng
should decrease the I/O cost. Perhaps the larger value of ng increases the

I/O cost because larger amounts of data are being read and written, leading

to congestion in the parallel I/O system.

To understand the e�ect of varying the superblock width on the time for

the triangular solve, matrix multiplication, and factorization phases of the

algorithm we derive the following expressions for the number of 
oating-point

operations in each phase,

Triangular solve: = 1

2
M2nb �

1

2
Mn2b

Matrix multiply: = 2

3
M3
�M2nb +

1

3
Mn2b

Factorization: = 1

2
M2nb +

1

6
Mn2b

These expressions apply in the sequential case (Q = ng = 1), but the corre-

sponding expression for the parallel algorihm is obtained by replacing nb by

Qnbng. It should be noted that the total 
oating-point operation count for

all three computational phases is (2=3)M3, but the above expressions show

that the way these operations are distributed among the phases depends

on the width of the superblock, nb. Thus, an increase in the superblock

width results in an increase in the factorization time, and a decrease in the

time for matrix multiplication. If the superblock width is su�ciently small

compared with the matrix size then a small increase results in an increase
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Task 5,000 8,000 10,000

Read 33.36 95.20 181.61

Write 18.85 53.87 117.91

Pivot 11.01 28.98 47.19

Triangular solve 50.20 136.65 218.74

Matrix multiply 28.38 118.55 242.21

Factorization 22.70 45.24 63.91

Total 191.46 549.94 977.05

Table 3: Timings in seconds for the main phases of out-of-core LU factoriza-

tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.

In all cases nb = 50, ng = 2, P = 8, and Q = 8. The version of the algorithm

that stores the matrix in pivoted form was used. The out-of-core matrix was

physically and logically distributed.

Task 5,000 8,000 10,000

Read 20.93 Fail 273.08

Write 59.39 238.66

Pivot | 23.89

Triangular solve | 177.48

Matrix multiply | 117.24

Factorization 58.47 138.62

Total 148.86 1104.66

Table 4: Timings in seconds for the main phases of out-of-core LU factor-

ization of M �M matrices. Results are shown for M = 5000, 8000 and

10000. In all cases nb = 50, ng = 10, P = 8, and Q = 8. The version of the

algorithm that stores the matrix in pivoted form was used. Note that the

M = 5000 and 8000 cases ran in-core, and that the M = 8000 case failed.

The out-of-core matrix was physically and logically distributed.
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in the triangular solve time. However, if the superblock width is large an

increase will decrease the triangular solve time. It should be remembered

that all three of these phases are running in parallel so communication time

also in
uences the total running time. In general, increasing the nb or ng
should decrease communication time on the Paragon as data are communi-

cated in larger blocks. If the times for the computational phases in Tables

3 and 4 are summed we get about 524 seconds for ng = 2 and about 432

seconds for ng = 10 which suggests that a larger value of ng results in more

e�cient parallel compputation overall. Communication overhead, together

with the 
oating-point operation count, determines the performance of the

computational phases of the algorithm as ng changes.

The failure of the M = 8000 case in Table 3 prompted us to devise a

second way of implementing logically distributed �les. Instead of opening a

separate �le for each process, the new method opens a single �le and divides

it into blocks, assigning one block to each process. This does not change the

user interface to the BLAPIOS described in Sec. 5. We refer to this type of

�le as a physically shared, logically distributed �le. It should be noted that

the terms \physically shared" and \physically distributed" refer to the view

of the parallel �le system from within the BLAPIOS. At the hardware level

the �le, or �les, may be striped across multiple disks, as is the case for the

Intel Paragon.

The rest of the results presented in this section are for physically shared,

logically distributed �les, and the version of the algorithm that stores the

matrix in pivoted form. In Tables 5 and 6 results are presented for the same

problems on 4 � 4 and 8 � 8 process meshes. It is interesting to note that

increasing the number of processors from 16 to 64 results in only a very

small decrease in the time for the triangular solve phase, indicating that the

parallel e�ciency for this phase is low. This is in contrast with the matrix

multiplication phase which exhibits almost perfect speedup.

In Table 7 timings are presented for the case ng = 10 for an 8� 8 process

mesh. Comparing these results �rst with those given in Table 4 for a physi-

cally and logically distributed �le, the decrease in the times for reading and

writing is striking. Secondly, of course, the physically shared case no longer

fails for the M = 8000 in-core case. Comparison between Tables 6 and 7

shows that a for physically shared �le an increase in ng results in a decrease

in I/O time, as expected from the dependency of the I/O time on M3=nb.

However, the decrease is less than the expected factor of 5, particularly for
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Task 5,000 8,000 10,000

Read 61.45 178.43 303.99

Write 36.61 124.11 211.67

Pivot 22.59 60.20 94.17

Triangular solve 52.84 139.09 219.66

Matrix multiply 114.70 482.79 948.93

Factorization 29.16 64.00 93.92

Total 350.12 1149.64 2042.41

Table 5: Timings in seconds for the main phases of out-of-core LU factoriza-

tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.

In all cases nb = 50, ng = 2, P = 4, and Q = 4. The version of the algorithm

that stores the matrix in pivoted form was used. The out-of-core matrix was

logically distributed, but physically shared.

Task 5,000 8,000 10,000

Read 34.29 95.74 201.18

Write 24.35 62.53 130.08

Pivot 10.94 28.85 47.27

Triangular solve 50.20 136.45 218.82

Matrix multiply 28.34 118.72 242.36

Factorization 22.70 45.05 63.87

Total 200.26 536.89 1006.34

Table 6: Timings in seconds for the main phases of out-of-core LU factoriza-

tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.

In all cases nb = 50, ng = 2, P = 8, and Q = 8. The version of the algorithm

that stores the matrix in pivoted form was used. The out-of-core matrix was

logically distributed, but physically shared.
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the writes. Results in Table 8 for the case ng = 5 show a read time for the

M = 10000 case which is about the same as for ng = 10, and a write time

that is substantially less. This again shows that as ng increases, thereby

increasing the amount of data being read and written in each I/O operation,

I/O performance starts to degrade quite signi�cantly once ng is su�ciently

large.

Table 8 shows timings for the M = 10000 case for the same problem pa-

rameters as in Table 7, but for ng = 5. Comparing the results in Tables 6, 7,

and 8 we see that the time for writing data does not decrease montonically as

ng increase, but is smallest for ng = 5. Again we ascribe this behavior to the

apparent degradation in I/O performance when the volume of simultaneous

I/O is large.

Task 5,000 8,000 10,000

Read 4.16 11.10 75.04

Write 3.59 14.25 99.60

Pivot | | 24.13

Triangular solve | | 180.25

Matrix multiply | | 130.12

Factorization 58.57 181.55 141.17

Total 69.47 206.90 709.22

Table 7: Timings in seconds for the main phases of out-of-core LU factor-

ization of M �M matrices. Results are shown for M = 5000, 8000 and

10000. In all cases nb = 50, ng = 10, P = 8, and Q = 8. The version of the

algorithm that stores the matrix in pivoted form was used. Note that the

M = 5000 and 8000 cases ran in-core. The out-of-core matrix was logically

distributed, but physically shared.

8 Summary and Conclusions

In this paper we have described a parallel left-looking algorithm for perform-

ing the out-of-core LU factorization of dense matrices. Use of out-of-core

28



Task 5,000 8,000 10,000

Read | | 77.92

Write | | 56.30

Pivot | | 32.51

Triangular solve | | 209.22

Matrix multiply | | 176.60

Factorization | | 92.69

Total | | 681.89

Table 8: Timings in seconds for the main phases of out-of-core LU factor-

ization of M �M matrices. Results are shown for M = 10000 with nb = 50,

ng = 5, P = 8, and Q = 8. The version of the algorithm that stores the

matrix in pivoted form was used. The out-of-core matrix was logically dis-

tributed, but physically shared.

storage adds an extra layer to the hierarchical memory. In order to man-

age 
exible and e�cient access to this extra layer of memory an extra level

of partitioning over matrix columns has been introduced into the standard

ScaLAPACK algorithm. This is represented by the superblocks in the hy-

brid algorithm that we have described. The hybrid algorithm is left-looking

at the outermost loop level, but uses a right-looking algorithm to factor

the individual superblocks. This permits the trade-o�s between I/O cost,

communication cost, and load imbalance overhead to be controlled at the

application level by varying the parameters of the data distribution and the

superblock width.

We have implemented the out-of-core LU factorization algorithm on an

Intel Paragon parallel computer. The implementation makes use of a small

library of parallel I/O routines called the BLAPIOS, together with ScaLA-

PACK and PBLAS routines. From a preliminary performance study we have

observed the following.

1. On the Paragon the version of the algorithm that stores the matrix in

pivoted form is faster than the version that stores matrices in unpivoted

form.

2. On the Paragon the parallel I/O system cannot e�ciently and reliably
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manage large numbers of open �les if the volume of data being read is

su�ciently large. We have therefore implemented logically distributed

�les using a single �le partitioned among the processes.

3. We have a broad qualitative understanding of the performance. In-

creasing the superblock width by increasing ng should decrease I/O

costs, but this was found to be true only up to a point on the Paragon

because when the volume of parallel I/O becomes too great, I/O perfor-

mance starts to degrade. Thus, although it might be expected that the

optimal approach would be a make the superblock as large as possible,

this will not be fastest on all systems.

Future work will follow two main directions. We will seek to implement

our out-of-core algorithm on other platforms, such as the IBM SP-2, sym-

metric multiprocessors, and clusters of workstations. The use of the MPI-IO

library will be considered as a means of providing portability for our code,

rather than implementing the BLAPIOS directly on each machine. We will

also develop a more sophisticated analytical performance model, and use it

to interpret our timings. The IBM SP-2 will be of particular interest as each

processor is attached to its own disk. Hence, unlike our Paragon implemen-

tation, it may prove appropriate on the IBM SP-2 to implement logically

distributed matrices as physically distributed matrices.

As network bandwidths continue to improve, networks of workstations

may prove to be a good environment for research groups needing to perform

very large LU factorizations. Such a system is cost-e�ective compared with

supercomputers such as the Intel Paragon, and is under the immediate control

of the researchers using it. Moreover, disk storage is cheap and easy to

install. Consider the system requirements if we want to factor a 105 � 105

matrix in 24 hours. In a balanced system we might expect to spend 8 hours

computing, 8 hours communicating over the network, and 8 hours doing I/O.

Such a computation would require about 6:7�1014 
oating-point operations,

or 23 G
op/s. If there are Np workstations and each has 128 Mbytes of

memory, then the maximum superblock width is 80Np elements. The I/O

per workstation is then,

8�

�
1

2

� 
M3

80Np

! 
1

Np

!
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or 50000=N2

p Gbyte per workstation. The total amount of data communi-

cated between processes can be approximated by the communication volume

of the matrix multiplication operations that asymptotically dominate. The

total amount of communication is approximately (2=3)(M3=wsb) elements,

where wsb is the superblock width. Assuming again that the superblock

width is wsb = 80Np, the total amount of communication is approximately

(1=120)(M3=Np) elements. So for 16 workstations, each would need to com-

pute at about 1.5 G
op/s, and perform I/O at about 6.8 Mbyte/s. A net-

work bandwidth of about 145 Mbyte/s would be required. Each workstation

would require 5 Gbyte of disk storage. These requirements are close to the

capabilities of current workstation networks.
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