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Abstract

This paper deals with parallel Turing machines with multi-head control units on one

or more tapes which can be considered as a generalization of cellular automata. We

discuss the problem of �nding an appropriate measure of space complexity. A de�nition

is suggested which implies that the model is in the �rst machine class. It is shown that

without loss of generality it su�ces to consider only parallel Turing machines of certain

normal forms.

1 Introduction

Hemmerling (1979) was probably the �rst to consider a model where several �nite automata
are working cooperatively on one common tape. It is known that this model can simulate
cellular automata and vice versa in linear time and linear space simultaneously. Wieder-

mann (1984) considered these �nite automata as TM control units and generalized the model
to so-called Parallel Turing Machines (PTM) in the same way as one-tape one-head Turing
machines have been generalized to Turing machines with possibly several tapes and several
heads on each tape.

Later Wiedermann (1992) introduced the notion of weak parallel machines and showed
that the parallel Turing machines are an example of this class of machines. This means that
TM space and PTM pipeline period are polynomially related which is particularly interesting
because on the other hand it seemed that TM space and PTM space were not linearly related
and hence PTM were not in the �rst machine class. It will become clear in later sections that
this has to do with the de�nition used for the space complexity of PTM. In de�nition 4.4 we
will propose a di�erent notion of space complexity for PTM which makes them a member of
the �rst machine class (theorems 5.1 and 5.3).

Further information on a taxonomy for parallel machine models and their relations can
be found in the papers of van Emde Boas (1990) and Wiedermann (1995a,b).

The rest of this paper is organized as follows: In section 2 we give the de�nitions of PTM
and some related complexity measures with the exception of space complexity. The latter
is considered in detail in section 4 because an adequate de�nition plays an important rôle
for later results. In section 3 it is shown that it is often su�cient to consider only PTM of
some special types. These results are used in section 5 where relations of PTM to sequential
Turing machines are investigated.

In this paper we shall only consider deterministic machines with one-dimensional tapes.

2 Basic notions

In this section we introduce parallel Turing machines (essentially following Wiedermann

(1984)) which consist of a �nite constant number of tapes with several control units working
on them cooperatively. Also three obvious complexity measures will be introduced, but not
space complexity which is the topic of section 4. As computational tasks the complexities of
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which are to be measured the recognition of formal languages will be used (unless explicitly
stated otherwise).

2.1 De�nition. A parallel Turing machine is speci�ed by a tuple P = (Q;F+; F�; (h1;
: : : ; hk); B; I; �; q0;2; ). Q is the �nite set of states, containing at least the initial state q0.
F+ � Q is the the set of accepting �nal states and F� � Q is the the set of rejecting �nal
states with F+\F� = ;. (h1; : : : ; hk) is the type of the PTM P ; k is its number of tapes, and
each control unit has hi heads on tape i for 1 � i � k. B is the tape alphabet, containing the
blank symbol 2. I � B is the input alphabet. The \no write" symbol is not an element of
B, but it may be used in the speci�cation of the transition function1

� : Q� Bh1 � � � � � Bhk ! P(Q� Bh1 � � � � � Bhk �Dh1 � � � � �Dhk )

where B = B [f g and D = f�1; 0; 1g. For the interpretation of � see de�nition 2.3 below.

The type (h1; : : : ; hk) of a (parallel) TM will sometimes be denoted as Th1 � � �Thk . Instead of
Th � � �Th (k times) we'll write (Th)

k, and if the number of heads and/or tapes can be chosen
arbitrarily, notations like (T�)

� will be used. We are only considering one-dimensional tapes
in this paper.

2.2 De�nition. A con�guration c = (b1; : : : ; bk; u) of a PTM is given by the inscriptions
bi : Z ! B of all tapes (1 � i � k) and by a �nite list u = (u1; : : : ; um) where uj1 6= uj2
for j1 6= j2 and each uj 2 Q � Zh1 � � � � � Zhk speci�es the state of a control unit and the
positions of all of its heads on their tapes.

In the initial con�guration cw for an input word w 2 I+ there is always only one
control unit in the inital state with all heads positioned on cell 0 of the tapes, all of which
are empty except the �rst one, on which the input is written into cells 0; : : : ; jwj� 1 symbol
by symbol. Formally cw = (b1; b2; : : : ; bk; ((q0; 0; 0; : : : ; 0))) where bi(x) = 2 for all 2 � i � k

and all x 2 Z, and b1(x) = w[x] for 1 � x � jwj and b1(x) = 2 otherwise.
A con�guration is a �nal one, if and only if there is exactly one control unit and it is in

a �nal state. A �nal con�guration is accepting if and only if the state of the only control
unit is an accepting one, otherwise it is a rejecting �nal con�guration.

2.3 De�nition. The dynamics of a PTM P , i.e. the partial mapping � describing one
step of P , leading from a con�guration c = (b1; : : : ; bk; u) to its successor con�guration c0 (if
de�ned), can be described as consisting of four substeps:

1. Each control unit speci�ed by (q; p1;1; : : : ; pk;hk) reads the symbols on the cells it is
scanning with its heads. Formally bi;j = bi(pi;j) for all 1 � i � k and all 1 � j � hi.

2. Each control unit in state q and having read symbols b1;1; : : : ; bk;hk is replaced by the
set �(q; b1;1; : : : ; bk;hk) = fv1; : : : ; vlg of new \control units" vj = (qj; b

0
1;1; : : : ; b

0

k;hk
;

d1;1; : : : ; dk;hk). If the set is empty, the old control unit is simply deleted.

3. Each new control unit tries to write b0i;j on cell pi;j if b
0
i;j 6= ; otherwise the head does

not write anything. If there are at least two heads somewhere in the con�guration on
the same cell trying to write di�erent symbols onto it, the computation is illegal and
its result is unde�ned. Otherwise the symbols are written on the tapes.

4. If no write conict happened in the previous substep, each head \moves" to the cell
p0i;j = pi;j + di;j for all 1 � i � k and all 1 � j � hi afterwards. This �nally yields the
new con�guration c0.

In the last paragraph it has to be understood that if two control units are in the same state
and if their corresponding heads are positioned on the same tape cell, then they are considered
to be only one control unit since they will behave identically and cannot be distinguished
any more.

1P(M) denotes the set of all subsets of M .
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As usual one can de�ne several measures for the resources needed for the recognition of
a formal language. In the following it will always be assumed that all PTM involved reach a
�nal con�guration for every input. Hence in the next de�nition all functions are total.

2.4 De�nition. The time complexity t(n) of a PTM is the maximal number of steps it
needs for any input of length n to reach a �nal con�guration.

The tape complexity rt(n) of a PTM is the maximal number of cells on one of the
tapes which are used during a computation for any input of length n. A cell is used during a
computation if in at least one con�guration its inscription is not 2 or it is visited by a head
of a control unit.

The processor complexity rp(n) of a PTM is the maximal number of control units
which simultaneously exist in a con�guration occuring during a computation for an input of
length n.

2.5 We shall for example write Th1 � � �Thk{Ptm{Tape{Proc{Time(rt; rp; t) for the fam-
ily of all languages which can be recognized by PTM of type Th1 � � �Thk which have time
complexity � t, tape complexity � rt and processor complexity � rp. (See also remark 4.5.)

2

2.6 A bound on the tape complexity always implies a bound on the processor complexity.
For a given rt there are at most rht possibilities to chose di�erent h-tuples of head positions
for a control unit with h = h1 + � � �+ hk heads. And each such h-tuple can be used by at
most jQj control units. Hence always rp � jQj � r

h
t . Since any \reasonable" PTM has to

investigate all input symbols and therefore has t(n) � n and since the number of used tape
cells can only grow linearly with time, rt and rp are always bounded by polynomials in t.

2

One notices that we didn't introduce something called space complexity. It might be
tempting to name tape complexity as space complexity. For example this is the approach
of Wiedermann (1992). Later the present author suggested to use the sum of tape and
processor complexity as the space complexity. But as should become clear from the consid-
erations in the section following the next one, there are good reasons for preferring a more
complicated de�nition.

But before we will show that for the proofs of many results it is su�cient to consider only
PTM of some special types.

3 Normal forms for PTM

The aim of this section is to show that as far as the type Th1 � � �Thk of a PTM is concerned
what usually is of importance is only the total number of heads per control unit but not how
they are distributed onto tapes. More precisely as long as two PTM have the same number
of heads per control unit they can simulate each other with a linear overhead of time, tape
and processors, no matter how many tapes are involved.

The analogous of problem of reducing the number of heads per control unit is di�erent. In
general it is impossible without a nonlinear increase of tape, processor and time complexity.
We will return to this point at the end of section 5.

3.1 Lemma. (Merging of tapes) For each Th1 � � �Thk{PTM P with k � 2 tapes there is
a Th1 � � �Thk�1+hk{PTM (with k � 1 tapes) P 0 simulating each step of P in constant time
and on linear tape with the same number of processors.

3.2 Proof. We only describe the construction for the special case k = 2. The generalizations
for larger k are obvious.

For each con�guration c = (b1; b2; u) of P we de�ne the \corresponding" con�guration
c = (b0; u0) of P 0 such that there is a constant s with �s

P 0(c) = �P (c), the number of tape
cells needed in c is linearly related to that needed in c, and s does not depend on c.
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P 0 uses the same tape alphabet as P and the tape inscription b0 is de�ned as2

8x 2 Z 8y 2 Z2 : b
0(2x+ y) = by(x)

Symbols of adjacent tape cells in c are 2 tape cells apart in c.
For each control unit of P in c there is exactly one control unit of P 0 in c. If in c the

head of a control unit is positioned on cell j of tape i the position of the corresponding head
of the corresponding control unit in c is 2j + i (on the only tape).

Each step of P is simulated by 2 steps of P 0 which are needed to simulate the movement
of heads onto cells carrying the symbols of adjacent tape cells in c.

Since two heads are visiting the same tape cell in c if and only if the corresponding heads
are visiting the same tape cell in c, it is easy to see that there are no more and no less write
conicts in P 0 than in P .

In the previous proof we have ignored the problem of what happens to inputs. In de�nition 2.2
it has been required that an input is provided symbol by symbol on successive tape squares,
while for the previous simulation to work it is required that they stored on every other tape
square. The additional time needed to rearrange the input symbols therefore has to be taken
into account for all theorems using the above construction. This time of course depends on
how many processors may be used for the rearrangement. For example:

3.3 Corollary. For each Th1 � � �Thk{PTM P (with k � 2 tapes) there is a Th1 � � �Thk�1+hk{

PTM (with k � 1 tapes) P 0 recognizing the same language as P with a linear overhead of
time and tape and with the same number of processors, if one of the following (su�cient but
not necessary) conditions holds:

� The time complexity rt of P is rt � n2.

� The time complexity rt of P is rt � n and its processor complexity rp is rp � n.

The following result essentially is the reverse of lemma 3.1: If there are at least two heads
of each control unit on one tape, those heads can be \separated" by splitting o� additional
tapes.

3.4 Lemma. (Separation of heads) For each Th1 � � �Thk�1+hk{PTM P (with k�1 tapes)
there is a Th1 � � �Thk{PTM P 0 (with k tapes) simulating each step of P in constant time with
a linear overhead of processors on the same amount of tape.

3.5 Proof. The construction is described only for the transition T2 ! T1T1. It can be
generalized to the other cases easily.

The idea is that every time P 0 wants to simulate one step of P both tapes of P 0 contain
the same inscription, namely that of P and to make sure that this condition is also satis�ed
after the simulation of the step.

Figure 1 shows a con�guration c of a T2{PTM and the corresponding con�guration c of
a T1T1{PTM. In c there are two types of contol units, which are called simulation CUs and
maintenance CUs.

For each CU U present in c there is exactly one simulation CU U in c. If p1;1 and p1;2
are the positions of the �rst and second head resp. of U on the only tape, then the positions
of the heads of U are p1;1 := p1;1 on the �rst tape and p2;1 := p1;2 on the second.

For each tape cell x in c, which is visited by at least one head, there is a maintenance
CU of c visiting tape cells x on both tapes.

Furthermore the description below will make use of so called conict CUs. Their only
purpose will be to enforce a write conict if necessary. Therefore there are two types of
conict CUs, one always writing one �xed symbol with all of its heads and the other always
writing another �xed symbol. If generated at all, conict CUs will alsways be generated in
pairs, one of each type, resulting in a write conict.

2
Z2 denotes f0;1g.
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a b c � � � k l m � � � p q r s t

a b c � � � k l m � � � p q r s t

a b c � � � k l m � � � p q r s t

1 2 2 1
2 1

Figure 1: A T2{con�guration (top) and its corresponding T1T1{con�guration (bottom). The
simulation CUs are white and the maintenance CUs are gray shaded.

The tape alphabet B0 of P 0 is B0 := B [ ((B [ B̂) �P(f ; #;!g)) where B̂ contains a
copy â for each a 2 B.

The simulation of one step of P is carried out by P 0 in six steps:

1. Each simulation CU U reads the symbols on the tape cells it is currently scanning with
its heads. According to the transition function of P determines how U would behave in
c: U stores in its memory the states of the new CUs replacing U in c (without already
generating their simulating counterparts; this will happen in step 6), and also stores
the movements of the heads of the new CUs. Furthermore U determines (separately
for each of the tape cells visited by its heads) whether the new CUs

(a) would cause a write conict in c3,

(b) would not write anything at all, or

(c) would consistently write a symbol a.

Respectively U

(a) will generate a pair of conict CUs,

(b) will write (a; ;) (where a is the original cell symbol), or

(c) will store the information that it has to write the copy (â; ;) on the respective
tape cell in the next step.

2. U will write (â; ;) if it has to. This may lead to a write conict, if another CU tries
to write a di�erent (â0; ;) which is okay because it means that there would be a write
conict in P , too.

3. The next three steps are used to add to each currently visited tape cell the information
whether because of the simulation there will be a head moving from this cell to the
left, whether there will be a head moving to the right, and whether there will be a head

3Note that these are not all write conicts possible; the others will be \discovered" later.
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staying on the same cell. One should note that it is necessary to do this in three steps
in order to avoid write conicts for which there is no corresponding write conict in P .

First, if a simulation CU U will generate a new one which will move one of its heads
from a tape cell x to the left, U adds to the set of directions of the symbol on cell x.

4. Next, the analogous action is carried out for the opposite direction, adding! if a head
will move to the right.

5. Finally the analogous action is carried out for heads staying in place, adding # to the
symbol.

6. Now the simulation can be completed:

(a) Each simulating CU U replaces itself by a set of new simulating CUs in corre-
spondence to the information stored in step 1 which do not write anything onto
the tape (this has already been done also in step 1), but only move (if necessary)
to neighboring tape cells.

(b) Each maintenance CU checks whether its heads read copies of di�erent symbols
from B. If this is the case, in the original PTM P a write conict occured, and
P 0 therefore generates a pair of conict CUs.

Otherwise the maintenance CU deletes the information on head movements and
generates a corresponding set of new maintenance CUs after copying newly written
tape symbols from one tape to the other (replacing copies by originals).

The number of maintenance CUs and that of conict CUs is bounded by twice the number
of heads per original CU times the number of CUs in c. In both c and c the same amount
of tape is needed. Hence the above construction satis�es the complexity requirements of the
lemma.

By repeated applications of the above lemmata it is easy to see that the following holds
(again not speaking about language recognition for which some additional time which might
be necessary to rearrange the input).

3.6 Corollary. If P and P 0 are PTM of types (h1; : : : ; hk) and (h01; : : : ; h
0

k0) respectively
and h1 + � � �+ hk = h01 + � � �+ h0k0 then each step of P can be simulated by P 0 in a constant
number of steps and with a linear overhead of tape and processors.

3.7 For example as long as one can a�ord to ignore an increase of time, tape and processor
complexity by at most a constant factor, it su�ces to consider PTM with one tape or with

control units which have ony one head on each tape. 2

4 Space complexity for PTM

What is wrong with calling the tape complexity of a PTM its space complexity?
This depends on the point of view of course. On one hand it is merely a de�nition and one

may de�ne whatever one wants to. On the other hand there are usually reasons for preferring
certain de�nitions over others; for example one would probably have to face objections if one
would call the number of tapes of a Turing machine its time complexity.

As far as space complexity is concerned, it has been discussed in some papers on other
machine models that sometimes there are good reasons for considering something not so
obvious as the space complexity.

We therefore begin with some general remarks. Their consequences for PTM are the
topic of the subsequent subsection.
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Some general remarks on space complexity

The problem of giving a de�nition of space complexity which is in some sense reasonable has
already come up in the literature before for di�erent models.

One example are RAM and the discussion on uniform versus logarithmic measures.
Another example, which perhaps is less known but more relevant for PTM, are the stor-

age modi�cation machines by Sch�onhage (1980), also called pointer machines (PM) in
more recent papers (Luginbuhl and Loui, 1993). One of the �rst papers which explicitly
discusses the problem of space complexity for PM is by van Emde Boas (1989).

In PM all information is stored as a directed edge-labeled graph. A program for a PM
consists of instructions which allow to add nodes to the graph and to redirect edges from
one target to another thereby modifying the graph. The nodes of such a graph cannot store
any information, except that one node is designated as its \center". It is the structure of the
graph in which all information is stored.

In early papers on PM (see e.g. Halpern et al., 1986) the maximum number of nodes
used during a computation is used as the space measure. But there are �(rdr) directed
graphs with r nodes and degree at most d (which is a constant for each PM), and hence in
the worst case one needs �(r log r) bits4 to write down the description of a con�guration of
a PM.

It turns out, that not only are there this many graphs, but they can really be used as
con�gurations by an PM to store information:

4.1 Theorem. (van Emde Boas (1989), Luginbuhl and Loui (1993))

� Every multi-tapeTMwith space complexity s can be simulated by a PMwithO(s= log s)
nodes in real time.

� Every PM with O(s= log s) nodes can be simulated by a multi-tape TM with space
complexity s in polynomial time.

Let r(n) denote the maximal number of nodes which are used for any graph occuring during
computations of a given PM for inputs of size n. And let C(n) denote the number of di�erent
PM con�gurations with at most r(n) nodes. Then the above results say that it is also
meaningful to consider logC(n) 2 O(r(n) log r(n)) as a space measure for PM. Consequently
van Emde Boas (1989) distinguishes uniform space measure (the number of nodes) and
logarithmic space measure (the logarithm of the number of con�gurations). Luginbuhl

and Loui (1993) avoid the term space measure completely and speak of mass and capacity

instead.

4.2 In general it seems reasonable to us to use as a guideline the requirement that the

space complexity should measure the amount of information stored in con�gurations, i.e.
the number of bits needed to write down unique descriptions of con�gurations, at least
approximately. 2

Of course, there are potential problems with this formulation.

1. First of all, one has to have a notion of con�guration and it has to be reasonable itself.
It is by no means clear why this should always be the case. But it seems that at least
this happens more often than one immediately has a \good" notion of space complexity.
PM and also multi-head PTM are examples where only the former seems to be the case.

2. Now assume that some reasonable de�nition of con�guration is given. Then the other
problem is to �nd out, how much information is stored in a con�guration. One ap-
proach which is used in many cases is the following: The model under consideration
has at least one kind of \resource" and each con�guration uses the resource to some
extent. Limiting the amount of resources available to r(n) also limits the number of
con�gurations to C(n) = f(r(n)).

4Let log always denote the logarithm to base 2.

7



3. One might also have to think about the problem whether all of the C(n) con�gurations
counted can really occur during computations, and if they can whether the machine
can really \extract" all the information.

For example in the case of TM the resource is the cells on the tapes and in the case of PM
the resource is the nodes.

It should be noted, that even the usual de�nition of space complexity for one-tape one-
head TM is a little bit more complicated than described above. Let rt(n) denote the maximal
number of tape cells used during computations for inputs of size n, let Q denote the state set
and B the tape alphabet. Then there are C(n) = jBjrt(n) � rt(n) � jQj di�erent con�gurations.
Hence logC(n) = log jQj+ log jBj � rt(n) + log rt(n) which is di�erent from rt(n).

Since the \usual" point of view is that one may choose B and Q arbitrarily, and since
logC(n) 2 �(rt(n)) it is reasonable to de�ne the space complexity of one-tape one-head TM
to be rt.

Observe also, that because of this, rt(n) turns out to be compressible by constant factors
without any slow-down or other \disadvantages".

Space complexity for PTM

After the discussions in the previous subsection it probably doesn't come as a big surprise,
that we will take into account the tape complexity and the processor complexity when sug-
gesting a de�nition of space complexity of PTM.

4.3 Let P be a PTM of type Th1 � � �Thk with h = h1 + � � �+ hk, tape complexity rt and
processor complexity rp. How many con�gurations are there respecting these resource limits?

There are (
Prt

i=1 jBj
i)k = �(jBjkrt) di�erent tape inscriptions.

There are jQjrht di�erent possibilities to choose a state and positions x = (x1; : : : ; xh) for
the h heads of a control unit (see 2.6). From these i � rp have to be chosen. That makesPrp

i=1

�
jQjrht
i

�
possibilities. This sum can be bounded by

�
jQjrht
rp

�
from below and by rp

�
jQjrht
rp

�
from above. (At least if rp <

1
2
jQjrht ; the other case is trivial.)

This gives a total of approximately

C = �

�
(jBjk)rt �

�
jQjrht
rp

��
O(rp)

di�erent con�gurations. Taking logarithms we can ignore the O(rp), and because of
(x�y)y

yy
��

x

y

�
� xy

y!
� xyey

yy
it follows that

logC 2 �

�
rt + rp + rp log

jQjrht
rp

�

2

This motivates:

4.4 De�nition. The space complexity of a PTM P is

s(n) = rt(n) + rp(n) + rp(n) log
jQjrht (n)

rp(n)

where rt(n) is the tape complexity of P and rp(n) its processor complexity.

This de�nition corresponds to the fact that a PTM can store information on the tape, in the
states of the control units and in the structure of the graph built by the connections between
tape cells and control units via the read/write heads.

We could not drop the factor jQj in the above de�nition because otherwise the logarithm
might become negative.
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As in the de�nition of space complexity of sequential TM we have ignored constant factors.
But unfortunately, for PTM it is not known how this can be compensated for by a kind of
compression. It is possible to reduce the tape complexity, but it is not known whether it is
also possible for processor complexity without signi�cantly increasing the time complexity.

As a matter of fact, if there is such a result it has to exclude at least the case of PTM
with only one tape and two processors with one head each. It is known that in this case a
reduction of the processor complexity from 2 to 1 (i.e. by only a constant summand) must
increase the time complexity by a factor of logn (see Worsch, 1991).

4.5 To avoid problems arising from the facts that we have arbitrarily ignored any constant
factors in the above de�nition but on the other hand don't know any space compressability
results, we will be careful only to make statements about PTM with a space complexity in
�(s) (and not exactly s). 2

4.6 Note that for example for rp 2 O(rt= log rt) we have s 2 �(rt). If for some r both
rt; rp 2 �(r) then s 2 �(r log r) and if r 2 �(s= log s) then the space complexity is in fact
�(s). 2

5 Relations of PTM to sequential TM

5.1 Theorem.

T1{Tm{Spc{Time(s; t) � T2{Ptm{Tape{Proc{Time(�(s= log s);�(s= log s);�(t))

� T2{Ptm{Spc{Time(�(s);�(t))

The second inclusion is already obvious because of 4.6. As one can see from the �rst inclusion,
it is possible to store most of the information about the TM con�gurations \in the structure
of the PTM graph" (and neither on the tape nor in the control units of the PTM).

5.2 Proof. One can use a construction almost identical to the one given by Luginbuhl

and Loui (1993) (LL for short) in the proof of their theorem 4.1. In fact since we are only
interested in a linear time and not in a real time simulation the �rst part of that proof is
su�cient.

We therefore restrict ourselves to a few remarks:

� LL describe a pointer machine simulating a Turing machine while here a PTM has to
be constructed.

� LL construct a directed graph with outdegree 3. In the PTM the nodes can be repre-
sented by tape cells and the outgoing arcs to other tape cells by control units with 2
heads; head 1 points to the source of the arc and head 2 to its destination.

� One has to be careful about the fact, that in PTM the heads can only move from one
tape cell to an adjacent one while in pointer machines there are instructions which can
make an arc jumping to an arbitrary other node. Fortunately a close inspection shows
that every part of the contruction given by LL can be carried over to PTM.

We continue by describing the reverse simulation of PTM by TM.

5.3 Theorem. For all h 2 N holds:

(T1)
h{Ptm{Spc{Time(s; t) � T1{Tm{Spc{Time(�(s);Pol(t))

where the degree of the polynomial depends on h.
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Here we are not interested in minimizing the degree of the polynomial bounding the overhead
of the time complexity. Instead what we do want is a simulation which preserves the space
complexity. Therefore in general it is not possible for the TM to store for each control unit
the positions of all heads in binary. This needs rp log rt space which might be signi�cantly
more than the space complexity of the simulated PTM (for example if rp 2 �(rht )).

5.4 Proof. Once again we �rst consider the case h = 2. The generalization of the construc-
tion to more heads is straightforward.

The states of the control units and the positions of their heads in a con�guration of a
(T1)

2-PTM P with tape complexity rt (for some input size n) can be depicted as a square S
of size rt � rt. The entry Sij 2 P(Q) in row i (1 � i � s) and column j (1 � j � s) is the
set of all states of control units which have their heads on cell i of the �rst tape and on cell
j on the second tape; see �gure 2 for an example.

q1

q5

q2

q3

q4

q6

q1

q5

q2

q6 q3q4

Figure 2: Transforming the \states part" of a (T1)
2-PTM con�guration into a square.

Such a square S will be encoded as a string Ŝ which is the concatenation of the encodings
of the rows of S.

A row of S is encoded as follows: If all entries Sij of a row are the empty set, then it
is encoded as the two letter string [ ]. If for the i-th row j1; : : : ; jf are all columns such
that Sijg 6= ; for 1 � g � f , then it is encoded as the word [bin(j1 � 1)Sij1 bin(j2 � j1 �

1)Sij2 � � �bin(jf � jf�1 � 1)Sijf bin(s � jf )] where bin(x) is the binary representation of x
without leading zeroes (except for x = 0) and the Sij are encoded by simply writing its
states side by side. In other words the non empty sets of states are separated by the binary
representations of the numbers of empty entries in between them.

For example the states from the con�guration in �gure 2 would be encoded as the word
Ŝ = [1q1100][101q20][1q5100][ ][ ][10q60q3q410].

It remains to show

1. that a T1{TM T can use this encoding of PTM con�gurations to simulate a PTM P

in polynomial time and

2. that this kind of encoding needs O(rt + rp + rp log
jQjrht
rp

) TM space.

Assuming that the second claim has already been shown it is straightforward to verify the
�rst one: T stores Ŝ and the tape inscriptions of P . For one step of P it simulates one control
unit after the other constructing incrementally (on separate tracks) the new tape inscriptions
and the encoding Ŝ0 of the new \square of states". To simulate the work of one control unit
T needs to �nd out the tape symbols currently read and then accroding to �P update the
preliminary version of Ŝ0. Obviously both can be done in a time polynomial in the length of
Ŝ which itself is polynomial in rt and rp; these in turn are polynomial in the time complexity
of P .
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It �nally needs to be shown that the length of Ŝ really is in O(rt + rp + rp log
jQjrht
rp

).

First of all it is obvious that the number of occurrences of [ and ] symbols is in �(rt)
and that the number of occurrences of q 2 Q is in �(rp).

It remains to estimate the total length of all maximal subwords v 2 f0; 1g+ of Ŝ. The
number of these words is bounded by O(rp), so it su�ces to show that in the worst case (i.e.
in the case of con�gurations which for �xed rt and rp have the longest encodings) there are

�(rp) words the lengths of which are in O(log
jQjr2t
rp

).

To this end we determine the worst case length of a di�erent word ~S corresponding to the
same con�guration. From its de�nition it will be clear that 1

2
jŝj � j~sj � 2jŝj where ŝ is the

length of the word one obtains by deleting all subwords [ ] from Ŝ and ~s = j ~Sj. Hence it is
enough to consider ~S instead of Ŝ in order to deduce the desired upper bound. To construct
~S �rst concatenate all rows of S which contain at least one non empty entry. This gives one
long row R which is then encoded as describe above. In the example of �gure 2 one gets
~S =[1q11001q21q5110q60q3q410].

In the following when we speak of a ;-sequence what we mean is a subsequence of R
which consists of empty sets only and which is maximal in this respect. The lengths of the
;-sequences are the binary numbers occuring in ~S.

Let l be the length of a longest ;-sequence in R and k be the length of a shortest ;-
sequence. Let d = b(l�k)=2c. Assume that l � 7k; hence d � 3k. Construct a new long row
R0 by deleting d empty sets in a longest ;-sequence L of R and inserting them in a shortest
;-sequence K. Let ~s0 be the length of the encoding of R0. Call the lengths of the resulting
;-sequences l0 and k0. Then l0 � l

2
and k0 � k + 3k � 4k and therefore

ŝ0 � ŝ = j bin(l0)j � j bin(l)j+ j bin(k0)j � j bin(k)j � �1 + 2 = 1:

Similarly one �nds that splitting one long ;-sequence of length l in to two subsequences
of lengths b l�1

2
c and d l�1

2
e by making a middle set non empty increases the length of the

encoding.
This means that of all encodings with the same rt and rp those with the longest encodings

have as many ;-sequences as possible satisfying the property l < 7k. Consequently in an

encoding of maximal length (for given rt and rp) no ;-sequence is longer than O(
r2t
rp
) which

in an encoding needs O(log
jQjr2t
rp

) space.

From theorems 5.1 and 5.3 immediately follows:

5.5 Corollary.

Ptm{Spc{Time(�(s);Pol(t)) = Tm{Spc{Time(�(s);Pol(t))

5.6 Corollary. Parallel Turing machines are in the �rst machine class.

This is in contrast with a statement of Wiedermann (1992) the reason of course being that
the space measures involved are di�erent.

We conclude this section with a remark on the reduction of the number of heads per
control unit in PTM. It has been shown that the space complexities of sequential and parallel
Turing machines are linearly related. Therefore the space hierarchy theorems for TM carry
over to the PTM. Consider for example PTM P with h-heads control units, h � 2, some
tape complexity rt (which is always greater or equal n) and processor complexity rp 2 �(rht );
then the space complexity also is s 2 �(rht ). Because of the space hierarchies it is therefore
impossible to simulate P by another PTM P 0 the control units of which have only h�1 heads
on the same amount of tape because there the space complexity is at most s 2 �(rh�1

t ).
Hence in general a reduction of the number of heads is impossible without increasing tape

and/or processor complexity. There are special cases, for example if rp 2 �(rt), in which
it is possible to simulate a PTM with h-heads control units by a PTM with (h � 1)-heads
control units with a linear overhead in tape, processor and time complexity. But a general
treatment of this problem is still beyond our knowledge.

11



6 Conclusion

In this paper parallel Turing machines have been investigated. Emphasis has been put on
a certain de�nition of space complexity. Using this de�nition it could be shown that PTM
are in the �rst machine class. It has been shown that the number of tapes of a PTM is not
important: All PTM with the same total number of heads per control unit can simulate each
other with linear overheads in time, tape and processors. Reducing the number of heads
sometimes requires a non linear increase of the tape complexity.

Some problems remain open, concerning even some very basic questions one is used to
know the answers for in the case e.g. of (sequential) Turing machines: It is not known how to
reduce the number of processors by a constant factor without increasing the time complexity
by more than a constant factor. The same is true for the space complexity. And it is not
even known how to speed up a PTM by a constant factor.
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