
An e�cient four-connected parallel system for
PET image reconstruction

Chung-Ming Chen 1

Center for Biomedical Engineering, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai

Road, Taipei, Taiwan

Received 15 January 1998; received in revised form 15 April 1998

Abstract

In this paper, we present an e�cient parallel system with an interconnection network

customized for Positron Emission Tomography (PET) image reconstruction. The proposed

parallel reconstruction system has two distinguished features. On feature is that the inter-

connection network is optimal for both ®ltered backprojection and EM algorithms, rather

than only for one of them. The other feature is that with only four-connectivity in contrast to

log N-connectivity for a hypercube, the proposed parallel algorithms may accomplish the same

performance in terms of order statistics as achieved by the optimal algorithms on a hypercube.

The proposed parallel system has been realized using transputers. Ó 1998 Elsevier Science

B.V. All rights reserved.

Keywords: Positron emission tomography; Parallel image reconstruction; Filtered-backprojection algo-

rithm; EM algorithm; Perfect shu�e network; Mesh; Hypercube

1. Introduction

Positron Emission Tomography (PET) is an imaging modality giving distribu-
tion of positron-emitting isotope-labeled chemicals in the human body. Unlike X-
ray CT and MRI which provide anatomical data, PET reveals functional infor-
mation on in vivo physiology and metabolism of the human body. Clinically, early
detection of a disease before morphologically distinguishable may be achieved
through PET by studying physiological or metabolic disorders. Hence, PET has
become one of the most important imaging tools in modern diagnosis. However,

Parallel Computing 24 (1998) 1499±1522

1 E-mail: chung@lotus.mc.ntu.edu.tw

0167-8191/98/$ ± see front matter Ó 1998 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (9 8) 0 0 0 6 8 - 4

even though PET may o�er information not attainable by other medical imaging
modalities, it requires much more reconstruction time for obtaining a high-quality
3D PET image. It is because a high-quality 3D PET image may not be recon-
structed by simply stacking slices of 2D PET image as X-ray CT and MRI do due
to its 3D nature. This can be easily understood by imagining that each pair of
photons produced by positron±electron annihilation may ¯y in any direction in the
3D space. If only transverse planes are utilized, clearly, most photons would be
wasted. Therefore, if a high-quality 3D PET image is desired, a true 3D recon-
struction utilizing all available projection data needs to be employed, which un-
doubtedly would be far more computationally intensive than reconstruction of 3D
X-ray CT or MRI.

To reconstruct a PET image in a reasonable time, various e�orts have been made
in the past to speed up both types of reconstruction algorithms, namely, analytic and
iterative algorithms. Some of these works were based on special hardwares [21,38] to
attain the required computation speed. Others took advantages of supercomputing
[25] or parallel processing [4±11,22±24,30,33±36] to gain high computing power. For
those works with special hardwares, two examples are the fractional address accu-
mulator designed by Thompson et al. [38] using digital circuits and the slice-back-
project engine proposed by Hartz et al. [21] making use of bit-slice technology.
Although special hardwares could possibly meet the computational requirement of a
particular PET system, these designs either have a limited obtainable speedup or are
not generally applicable and extendible to other PET systems.

On the other hand, supercomputing and parallel processing both promise a fast
and scalable reconstruction, e.g., it was shown in [25] that a 128 ´ 128 2D PET
image can be reconstructed in several seconds on a Cray computer even using an EM
algorithm. However, the high cost/performance ratio on a supercomputer is not
preferable for most implementations.

In contrast to supercomputing, parallel processing o�ers more degrees of free-
dom, such as VLSI technology, interconnection networks, routing algorithms, task
partitioning and so on, in achieving a low-cost high-performance implementation.
Two classes of parallel implementations for PET image reconstruction may be found
previously. One is taking advantage of general-purpose parallel systems [5±11,
19,33], such as Intel iPSC/2, iPSC/860, i860-based, workstation cluster, etc., which
are commercially available. The other is resorting to dedicated parallel architec-
tures, e.g., employing array processors [1], building a system based on special VLSI-
based chips [23,24], transputers [2,4,35], DSP processors [34], and general processors
[13±16], etc. Using a general-purpose parallel system, in general, has the merits of
¯exibility and easy implementation. However, the cost/performance might not be
optimal even if the optimal parallelization e�ciency is achieved on such a general-
purpose parallel system. On the other hand, employing a dedicated parallel system
may expect a high cost/performance since a customized hardware, e.g., processing
units and interconnection network, may be used to minimize redundant computa-
tion and data sharing overhead. Moreover, the redundant hardware may be elimi-
nated to reduce system cost. But, it generally requires an elaborate design to achieve
a cost-e�ective system.

1500 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

While both classes of implementations have their own merits and demerits, in our
e�ort to support fast PET image reconstruction for the PET center in National
Taiwan University, we have been interested in a dedicated parallel reconstruction
system considering the cost-e�ectiveness in a clinical environment. Two classes of
PET reconstruction algorithms are under considerations. The ®rst class is the ®l-
tered-backprojection algorithm, which is an analytic algorithm. The ®ltered-back-
projection algorithm is widely used in commercial PET system since it provides a
faster solution than its counterpart. Various ®ltered-backprojection algorithms have
been proposed previously [12,36], especially for 3D PET image reconstruction.
However, a ®ltered-backprojection algorithm is usually composed of two stages, i.e.,
®ltering followed by backprojection. The second class is the EM algorithm, which is
an iterative method. The EM algorithm is interested for it generally promises a better
reconstructed image. It is because more detailed physical processes have been
modeled in the EM algorithm. But, it is much slower than the ®lter-backprojection
algorithm. The EM algorithm was originally proposed by Shepp and Vardi [37]
based on maximum likelihood estimates. Although there are many variations of the
EM algorithms, most of them have the similar algorithmic structure as the Shepp
and Vardi's EM algorithm. These EM algorithms usually include the Shepp and
Vardi's EM algorithm and some additional steps either to speed up convergency [29]
or to attain better quality of images [18,20,28].

In this paper, we propose an e�cient parallel system with an interconnection
network customized for the PET image reconstruction algorithms under consider-
ation. The interconnection network is the static (i.e., consisting of point-to-point
communication links among PEs as de®ned in [27]) perfect shu�e interconnection
network. Compared to most previous dedicated systems, the proposed parallel re-
construction system has two distinguished features. On feature is that the inter-
connection network is optimal for both ®ltered backprojection algorithm and EM
algorithm, rather than only for one of them. The other feature is that with only four-
connectivity in contrast to log N-connectivity for a hypercube, the proposed parallel
algorithms may accomplish the same performance in terms of order statistics as
achieved by the optimal algorithms on a hypercube.

This paper is organized as follows. The algorithmic models of the PET image
reconstruction algorithms are ®rst de®ned in Section 2. For ease of presentation, the
data sharing modes involved in both classes of parallel reconstruction algorithms are
de®ned in Section 3. In Section 4, the dedicated parallel architecture is proposed
along with the optimal data sharing algorithms for the four underlying data sharing
modes. In Section 5, the parallel ®ltered-backprojection algorithm and its imple-
mentation results are presented. In Section 6, the parallel EM algorithm and its
implementation results are provided. Conclusions are given in Section 7.

2. Algorithmic models of the PET image reconstruction algorithms

There have been many ®ltered-backprojection and EM algorithms proposed
previously. To de®ne the application scope of the proposed parallelization schemes,

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1501

the algorithmic models for the two classes of algorithms, i.e., the ®ltered-backpro-
jection algorithm and the EM algorithm, are described in this section.

2.1. The ®ltered-backprojection algorithm

The ®ltered-backprojection algorithm considered in our system is composed of
two stages, namely, ®ltering and backprojection. In the ®ltering stage, the projection
data, i.e., the measured event counts in a PET system, are convolved with the ®lter.
In the second stage, the ®ltered projection data are backprojected onto the image to
be reconstructed. Varieties of ®ltered-backprojection algorithms with di�erent ®lters
may be found in the literature [12]. As an example, the original 2D ®ltered-back-
projection for a parallel beam geometry may be expressed as

f �x; y� �
Zp

0

Qh�x cos h� y sin h� dh; �1�

where

Qh�t� �
Z1
ÿ1

Sh�w�jwjej2pwt dw: �2�

Eqs. (1) and (2) are the backprojection and ®ltering stages, respectively. In these
two equations, jwj denotes the ®lter, Sh�w� the frequency response of the projection
data measured in angle h, Qh�t� the ®ltered projection data, and f �x; y� the recon-
structed image. As another example, the ®lter for the True Three-dimensional Re-
construction Algorithm [12] is

Hh�q; n� �
2q�cos n sin b�; 06 n6 p

2
ÿ b;

2q�sin n cos b�; p
2
ÿ b < n6 p

2
;

�
where Hh�q; n� denotes the frequency response of the ®lter in polar coordinate and b
the angle limiting the slices sharing projection data [12]. After each view of 2D
projection data are convolved with the ®lter, the ®ltered projection data are pro-
jected onto the 3D image to be reconstructed. Clearly, for both 2D and 3D recon-
struction, the algorithmic model for the ®ltered-backprojection algorithm may be
described as:

(1) Filtering: Each view of projection data are convolved with the ®lter inde-
pendently, and

(2) Backprojection: each view of ®ltered projection data are independently back-
projected onto the same image to be reconstructed.

2.2. The EM algorithm

The EM algorithm generally consists of two primary steps in an iteration. One is
forward projection and the other is backprojection. In the forward projection, the
algorithm simulates physical processes, e.g., photon generation and detection, of a

1502 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

PET system based on a certain model to generate the estimated projection data.
Then, the estimated projection data would be compared with the measured projec-
tion data. In the backprojection, the discrepancy between the estimated and mea-
sured projection data is backprojected onto the image to be reconstructed. Then, the
backprojected data would be used to modify the image obtained in the previous
iteration. Additional steps may be inserted between these two primary steps, e.g., to
speed up convergency or to get a better quality. A typical example is the EM al-
gorithm proposed by Shepp and Vardi [37], which may be described as follows. In
the EM algorithm, the object of interest is decomposed into a number of small cu-
bical boxes (voxels). A pair of detectors de®nes a parallelepiped-like space called
tube. Note that only those boxes inside the disk in each layer are to be reconstructed.
The correction equation for the Shepp and Vardi's EM reconstruction algorithm can
be written as:

knew�b� � kold�b�
XT

t�1

n�t�p�b; t�PB
b�1 kold�b�p�b; t� ; �3�

where k(b) is the number of photon pairs emitted from box b (the image to be re-
constructed), n(t) the number of photon pairs detected by tube t (projection data),
p(b, t) the probability that a photon pair emitted from box b is detected by tube t, T
the total number of tubes, B the total number of boxes.

For each iteration, Eq. (3) can be decomposed into the following steps, where n, ~n,
e, d and k are the vector forms of n(t), ~n(t), e(t), d(b), and k(b), respectively, and P the
matrix form of p(b, t), which is very sparse:

�1� n � koldP ;

�2� e�t� � n�t�=n�t� for all t;

�3� d � P eT;

�4� knew�b� � d�b�kold�b� for all b:

To avoid computing p(b, t) on the ¯y which requires enormous computation,
p�b; t� is usually precomputed for a given system geometry. In these four steps, steps
(1) and (3) are the forward projection and backprojection, respectively. Step (2) is for
computing the correction factors between the estimated projection data and the
measured projection data. Step (4) is to modify the image obtained in the previous
iteration.

As a summary, the EM algorithm considered in this study may be modeled as four
steps in an iteration.

(S1) Forward projection: Simulate the physical processes of a PET system to
generate estimated projection data.

(S2) Filtering and correction factor estimation: Compute the discrepancy between
the estimated and measured projection data. Generate the correction factor for each
tube. Filtering may be applied to the estimated projection data or the correction
factors to take into account some desired models, e.g., for a fast convergency or for a

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1503

better quality of image. It is assumed that these operations may be accomplished for
each tube independently.

(S3) Backprojection: Backproject the correction factor to the boxes passed
through by each tube. The backprojected datum on each box is called the update
factor.

(S4) Modi®cation: Modify the image obtained in the previous iteration according
to the update factors. Filtering may be applied to the reconstructed image or the
update factors to take into account some desired models, e.g., for a fast convergency
or for a better quality of image. It is assumed that these operations may be per-
formed for each box independently.

With the assumptions in steps (S2) and (S4), computations in steps (S1) and (S2)
may be carried out for each tube independently and those in steps (S3) and (S4) may
be executed for each box independently.

3. Data sharing modes

De®ning data sharing modes is essential for the design of an e�cient intercon-
nection network. Since both the ®ltered-backprojection and EM algorithms are data-
parallel algorithms, it is reasonable to replicate shared data in each PE such that each
PE may perform computations until data coherence needs to be ensured. At this
moment, all copies of replicated shared data need to be summed up and the results
should be redistribute to all PEs to maintain data coherence. In addition, each PE
needs to acquire initial data from the host in the beginning and report the ®nal re-
sults to the host at the end. As a result, the data sharing modes employed in the
proposed parallel algorithms are de®ned as follows. Throughout this paper, it is
assumed that there are N PEs in the system and the size of the shared data is M.
Moreover, without loss of generality, the shared data are divided into N segments,
each with (N/M) shared data.
· One-to-all broadcasting: In this mode, one PE, e.g., PE0, sends the entire shared

data to all other PEs.
· Scattering: In this mode, PE0 distributes the ith segment of the shared data to PEi,

for 06 i < N :
· Integration: Suppose the shared data are replicated in all PEs. In this mode, also

known as multinode accumulation in [27], the replicated data in all PEs are summed
up element-wise and the sum of the ith segment of all the replicated data will be
assigned to PEi, for 06 i < N :

· All-to-all broadcasting: In this mode, PEi sends the ith segment of the shared data
to all other PEs, for 06 i < N :
Among these four modes, the ®rst two are to be used in the initialization stage of

our parallel implementations. For examples, one-to-all broadcasting may be used for
broadcasting the ®lter used in the ®ltered-backprojection algorithm to all PEs and
scattering for distributing projection data of di�erent views to di�erent PEs. The
third mode, integration, serves two purposes. The ®rst purpose is to maintain data
coherence of the replicated data. The second purpose is to maximize parallelization

1504 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

e�ciency by generating well-partitioned integrated data, i.e., the sum of all copies of
replicated data, and tasks in each PE for the computations following integration.
Note that since only partial integrated data would be utilized by each PE in these
computations, it would be redundant to use such operation as all_reduce as de®ned
in Message Passing Interface (MPI) standard [32] to maintain data coherence.
All_reduce makes each PE have an entire copy of the integrated data. After these
computations, which use the integrated data as input, have been completed, the
results obtained in each PE are distributed to all other PEs by all-to-all broadcasting.

4. Parallel architecture and data sharing algorithms

The parallel system model considered in this study is an Multiple instruction,
multiple data (MIMD) message passing model. In design of our dedicated parallel
architecture, the ultimate goal is to attain the optimal parallelization e�ciency
subject to such constraints as hardware cost, clinically acceptable reconstruction
time, system developing time, expandability, etc. The essential approach to achieve
this goal is to exploit the parallelism involved in the reconstruction as much as
possible in the architecture design. In this section, we present the proposed parallel
architecture for PET image reconstruction and the data sharing algorithms tailored
to the architectural features.

4.1. Parallel architecture

Based on the parallel system model, two levels of parallelism might be utilized to
maximize parallelization e�ciency. In the lower level, a special processor may be
designed to take advantage of parallelism in the instructions. A typical example is the
VLSI architecture proposed by Jones [24]. On the other hand, in the higher level, an
interconnection network customized to all data sharing activities may be employed
to exploit algorithmic parallelism to minimize data sharing overhead among PEs.
This approach has been attempted by several previous works, e.g., the transputer-
based system proposed by Atkins [2].

Theoretically, the highest parallelization e�ciency may be obtained by fully uti-
lizing both levels of parallelism. However, development of a new processor would
cause a much higher hardware cost and a longer system developing time. On the
contrary, using commercially available processors, including special-purpose pro-
cessors (e.g., DSP processors) and general-purpose processors (e.g., Pentium pro-
cessors), would avoid these two problems and, more importantly, could make use of
the state-of-the-art processor technology. Hence, we propose to build a dedicated
parallel system maximizing parallelization e�ciency by (1) taking advantage of the
commercially available processors, and (2) designing an interconnection network
optimized for the underlying data sharing modes.

An ideal interconnection network for our system is expected to possess two es-
sential properties. The ®rst property is a constant connectivity. This property is
desired so that the system can be expanded for a larger problem size easily in terms

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1505

of hardware cost and complexity. The second property is that it minimizes the data
sharing overhead involved in the parallel algorithms. Taking these two properties
into account, in this paper, we propose a four-connected parallel system using the
static perfect shu�e network. As an example, the proposed parallel architecture with
8 PEs is illustrated in Fig. 1. Note that the perfect shu�e network has been unfolded
in such a way that the left and right columns depict the ports 2 and 3 and the ports 0
and 1, respectively, of the original PEs for a better visualization of the network.

Although the static perfect shu�e network has been well studied in the literature
[27,31], to our best knowledge, the optimal algorithms for integration and all-to-all
broadcasting have not been investigated thoroughly. In the following, the optimal
algorithms proposed in this paper for the underlying data sharing modes on the
static perfect shu�e network are to be described. It is assumed that the host and the
perfect shu�e based parallel architecture are connected through a single link be-
tween the host and PE0.

4.2. Data sharing algorithms

The general block diagram for the proposed parallel image reconstruction algo-
rithms may be sketched as in Fig. 2. In these algorithms, the data required for all

Fig. 1. 8 PEs interconnected by the static perfect shu�e network.

1506 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

PEs are ®rst downloaded from the host. Shared data are replicated to each PE. At
the end of the computation, all replicated data are integrated and broadcast such
that all PEs have the same shared data for the following computation if any. When
the program ends, PE0 transfers the reconstructed image to the host.

Given an interconnection network, the optimal data sharing algorithms may vary
with routing schemes employed, e.g., the store-and-forward routing or the wormhole
routing. Although wormhole routing may largely eliminate the ``distance'' e�ect in
data communication, this bene®t greatly diminishes when all processors are involved
in the data sharing activity, e.g., in integration and all-to-all broadcasting. As an
example, in [27], it has been pointed that sending data through wormhole routing is
not faster than through store-and-forward routing on a ring due to link contention.
On the other hand, by deliberately scheduling the communication pattern, the
communication links may be fully utilized and link contention may be minimized by
using store-and-forward routing and the concept of pipelining. In this paper, we
present the optimal data sharing algorithms in terms of order statistics for the four
desired data sharing modes.

4.2.1. Downloading data
To optimize utilization of the perfect shu�e network for a high parallelization

e�ciency, the algorithms to download data and to integrate and broadcast shared

Fig. 2. Block diagram of the proposed parallel reconstruction algorithms.

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1507

data, which fully exploits the topological feature of the perfect shu�e network, have
been developed. For downloading data, there are basically two types of data sharing
modes. One is one-to-all broadcasting and the other is scattering.

For scattering, a binary tree rooted at PE0 embedded in the perfect shu�e
network is employed as the downloading pattern. Moreover, the data are transferred
in a pipelining fashion. The number of steps required to complete scattering is
élog(N + 1)ù, where N is the number of PEs involved and ``+1'' is to account for the
host. Fig. 3 illustrates the snapshots at the end of the four steps for scattering data
from the host, which is not shown in this ®gure, to 8 PEs. Note that there are 9 PEs

Fig. 3. The snapshots at the end of four steps for scattering data from the host to 8 PEs.

1508 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

involved in total, including the host. Note that in Fig. 3, the perfect shu�e network
is unfolded three times (i.e., the four columns of PEs in each snapshot are actually
the same one,) to illustrate the embedded binary tree, in which the nodes are indi-
cated by the dark blocks and the edges by the arrows. Moreover, in each snapshot,
the numbers contained in the white block of each node represent the numbers of the
segments arriving at that node. And, the line of an arrow changes from a dotted line
to a thickened solid line if the corresponding edge is used in that step. Recall that in
the scattering mode, PEi is supposed to obtain the ith segment of data. These four
steps may be summarized as below:

Step 1: The host sends a half of data, which are destined for PE4±PE7, to PE0.
Step 2: While PE0 sends the half of data received at step 1 to PE1, the host sends a

quarter of data, which are destined for PE2 and PE3, to PE0.
Step 3: PE1 splits the data received previously into two halves and sends the ®rst

half to PE2 and the second half to PE3. Meanwhile, PE1 and PE0 receive data from
PE0 and the host, respectively.

Step 4: PE2 and PE3 split the data into two halves and send di�erent halves to
di�erent successors. At the same time, PE0±PE3 receive the data destined for
themselves from their predecessors, respectively.

For one-to-all broadcasting, the data are transferred in a similar pipelining
fashion on an embedded binary tree, except that the entire data are sent to all PEs
and each packet consists of (1/log N) of the data. As scattering, it also takes
élog (N + 1)ù steps, which are not illustrated in this paper for brevity.

4.2.2. Integration and all-to-all broadcasting algorithms
Integration is required to ensure data coherence of the replicated shared data.

Moreover, integration provides a balanced load distribution for the computations
following integration and using the integrated data as the input. On the other hand,
all-to-all broadcasting allows all PEs to have the entire shared data after each PE
generates a segment of shared data.

The integration algorithm proposed in this study is illustrated in Fig. 4 for 8 PEs.
The integration algorithm takes log N steps to complete integration. In this algo-
rithm, at step k, 16 k6 log N, each PE splits its most updated data into two halves
and sends these two halves to its two successors, respectively. In other words, each
PE sends 1/2k of total data to each of its two successors at step k. At the same time,
each PE receives the same amount of data from each of its two predecessors. All four
links operate simultaneously. Then, each PE sums up the two sets of data received
from its predecessors correspondingly. At the end of step k, each PE has only 1/2k of
total data, which are valid. At the end of integration, each PE would have a segment
of integrated data of the same size.

To broadcast the segment of integrated data from each PE to all other PEs, the
data may be transferred following a communication pattern, including the directions
and the message sequences, reverse to that in the integration, except that no sum-
mation is needed. That is at step k, each PEs sends its own 1=2�log N�1ÿk� of integrated
data to its two successors and receives the same amount of data from its two

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1509

predecessors. At the end of step k, each PE has 1=2�log Nÿk� of integrated data. Note
that the successors and predecessors of each PE during broadcasting are the pre-
decessors and successors of this PE during integration, respectively.

Fig. 4. An illustration for the integration algorithm for 8 PEs.

1510 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

4.2.3. Performance analysis and discussions
The performances of the proposed data sharing algorithms are to be analyzed in

terms of order statistics to account for the various communication capabilities of the
commercial processors. For example, some processors support full communication
capability of all four links simultaneously, but others do not. In general, it is as-
sumed that sending data of size m from one PE to another, both of which are directly
connected, may be completed in time Ols(1) + Odx(m). The subscript ls denotes link
setup time, i.e., the time for establishing a link before data transfer, and the subscript
dx stands for data transfer time, i.e., the time for the data travelling through the link.
Moreover, for integration, the subscript sum indicates the summation time, i.e., the
time for summing up two copies of shared data element-wise. Based on the simple
model, the time analyses for the four data sharing modes are given in Propositions
1±4. Since we are interested in the performance of the static perfect shu�e, the
communication time between the host and PE0 will be ignored in these performance
analyses. Furthermore, for ease of analysis, it is assumed that the number of PEs, N,
is a power of two.

Proposition 1. The time required for the one-to-all broadcasting algorithm on the static
perfect shu�e network is Ols(log N) + Odx(M).

Proof. Recall that the data to be broadcast are divided into log N packets, each with
(M/log N) elements. With N PEs, the number of pipeline stages is log N. Therefore,
the pipelining operations may be completed in 2 log N) 1 steps and each step can
be accomplished in time O(M/log N). As a result, the total time required for the one-
to-all broadcasting algorithm is Ols(log N) + Odx(M). h

Proposition 2. The time required for the scattering algorithm on the static perfect
shu�e network is Ols(log N) + Odx((1) 1/N)M).

Proof. Since the step 1 of the scattering algorithm is for data transfer between the
host and PE0, the performance analysis will start with step 2 based on the
assumption. From step 2, the size of data to be transferred across each link at step i is
�M=2iÿ1�, for 26 i6 élog (N + 1)ù. Excluding the step 1, the total number of steps
required is log N. Therefore, the total time required for the scattering algorithm is
Ols(log N) + Odx((1) 1/N)M). h

Proposition 3. The time required for the integration algorithm on the static perfect
shu�e network is Ols(log N) + Odx((1) 1/N)M) + Osum((1) 1/N)M).

Proof. The proposed integration algorithm takes log N steps to complete integration.
At step k, 16 k6 log N , each PE sends (M/2k) data to each of its two successors and
receives the same amount of data from each of its two predecessors. Then, each PE
sums up the two sets of data received from its predecessors correspondingly.
Therefore, the total time required for the integration algorithm is Ols(log N) +
Odx((1) 1/N)M) + Osum((1) 1/N)M). h

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1511

Proposition 4. The time required for the all-to-all broadcasting algorithm on the static
perfect shu�e network is Ols(log N) + Odx((1) 1/N)M).

Proof. Recall that the proposed all-to-all broadcasting algorithm follows a
communication pattern, including the directions and the message sequences, reverse
to that in the integration, except that no summation is needed. The same arguments
for the proof of Proposition 3 may be applied. Therefore, the time required by the
all-to-all broadcasting algorithm is the same as that required by the integration
algorithm, except that the summation time should be excluded. That is, the total time
is Ols(log N) + Odx((1) 1/N)M). h

As a comparison, the lower bounds of the data sharing times for the four data
sharing modes on a mesh and a hypercube are provided in Table 1. The lower
bounds for integration are given in [8]. They can also be obtained from [27] by
considering integration as the dual of all-to-all broadcasting. The other lower
bounds are derived according to the timing analyses in [27]. In [27], the exact timing
expressions have been provided with the assumption of one-port communication.
These expressions have been modi®ed accordingly in terms of order statistics and
simpli®ed to a looser lower bound, if necessary, such that they are consistent with
our analysis model. Except the lower bounds given in [8], all lower bounds derived
from [27] have assumed the cut-through routing, which is supposed to yield a per-
formance not worse than that based on the store-and-forward routing.

From Table 1, we can see that the proposed data sharing algorithms on a perfect
shu�e network may achieve performance comparable to those on a hypercube with
only four-connectivity in contrast to the log N-connectivity in a hypercube. Com-
pared to a mesh, the proposed data sharing algorithms and interconnection network
obviously outperform those on a mesh. The outstanding performance of the pro-
posed approaches arises from the fact that most data sharing algorithms for a
hypercube may be easily mapped onto a perfect shu�e network, but much more
di�cult onto a mesh. Although e�orts have been made to optimize such operation as
global combine (also called all_reduce in the MPI standard) on a mesh by more
complicated algorithms [3], the data transfer time and link setup time still cannot be
optimized simultaneously.

When the link setup time is negligible, which may be due to a very small cost for
link setup or a very large number of data to be transferred, the data sharing time is

Table 1

Lower bounds of data sharing time for the four data sharing modes on a mesh and a hypercube

Mesh Hypercube

One-to-all broadcasting Ols(log N) + Odx(M) Ols(log N) + Odx(M)

Scattering Ols(
����
N
p

) + Odx((1) 1/N)M) Ols(log N) + Odx((1) 1/N)M)

Integration Ols(
����
N
p

) + Odx((1) 1/N)M)

+ Osum((1) 1/N)M)

Ols(log N) + Odx((1) 1/N)M) +

Osum((1) 1/N)M)

All-to-all broadcasting Ols(
����
N
p

) + Odx((1) 1/N)M) Ols(log N) + Odx((1) 1/N)M)

1512 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

dominated by the data transfer time for all the four underlying data sharing modes.
In this case, the hypercube, the mesh, and the perfect shu�e network are expected to
have a similar performance. In addition to the remarkable performance, a ring may
be easily found in the perfect shu�e network which is very useful in optimizing the
parallel EM algorithms, e.g., for a perfect shu�e network with 32 nodes, a ring could
be

16®0-1-2-5-18-4-9-19-25-12-6-13-26-29-30-31-15-7-3-17-8-20-10-21-11-
22-27-23-14-28-24-16®0.

5. Parallel ®ltered-backprojection algorithm

One major goal in parallelization of sequential algorithms on multiprocessor
systems is to achieve the largest speedup or highest e�ciency such that the processing
time is minimized. The speedup is de®ned as (the sequential processing time)/(the
parallel processing time) and the e�ciency as (the speedup)/(the number of PEs
employed). The optimal performance, i.e., the largest speedup or the highest e�-
ciency, may be attained by optimizing task partitioning and data sharing algorithms.

As de®ned in our algorithmic model, the ®ltered-backprojection algorithm is
composed of two essential steps, namely, ®ltering and backprojection. For both 2D
and 3D ®ltered-backprojection algorithms, the projection data in each view are ®rst
®ltered with a kernel. Then, the ®ltered-projection data are backprojected onto the
image space to be reconstructed. Since each view has about the same amount of
computations in a ®ltered-backprojection algorithm, we propose to partition the
task according to views. That is, given V views and N PEs, each PE would take care
of computations for V/N views and computational loads are balanced in theory. At
the beginning of the program, the host downloads V/N views of projection data to
each PE to carry out ®ltering. Since the host would download di�erent projection
data to di�erent PEs, the scattering algorithm is employed. In addition to projection
data, the host also downloads ®lters to all PEs using the one-to-all broadcasting
algorithm. Since computations of ®ltering for di�erent views are completely inde-
pendent, no data sharing would be required during ®ltering.

During backprojection, since all views need to backproject to the same image
space, the image to be reconstructed is replicated entirely at the local memory of each
PE such that all PEs may perform backprojection without communication with
other PEs. However, to obtain the correct reconstructed image, the replicated images
at the local memories of all PEs should be integrated after all PEs have ®nished
backprojection. To integrate the replicated images, the integration algorithm is used.
Since the integration algorithm would result in a scattered type of integrated image,
i.e., each PE has only 1/N of the integrated image, the all-to-all broadcasting algo-
rithm is used such that PE0 would have the entire reconstructed image to send back
to the host. Note that a simple binary-tree type of algorithm may also be used to
collect all scattered integrated data to a single PE, which is expected to have the same
performance as the all-to-all broadcasting algorithm. Another way to sum up all

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1513

copies of the replicated data is to use reduce operation as de®ned in MPI standard,
which accumulates the ®nal results into PE0. Since integration allows a balanced
computations on the integrated data after summation of all copies of shared data,
which might be required for post-processing, integration is still preferred in this
study, though integration and reduce operations have a similar performance.

The ®ltered-backprojection algorithm proposed in [36] has been parallelized on a
transputer-based parallel system with the perfect shu�e interconnection network.
Limited by the memory capacity available in each PE, i.e., 4M in a node PE and 8M
in the host, we can only realize 2D ®ltered-backprojection. However, since the
parallel algorithms for both 2D and 3D ®ltered algorithms are essentially the same,
parallelizing a 2D algorithm would be su�cient to see the correctness and feasibility
of the proposed parallel algorithm. Moreover, it is expected that the parallelization
e�ciency for the 3D parallel ®ltered-backprojection would be higher than that for
the 2D case since the computation/communication ratio for the former is much
higher than that for the latter.

Di�erent numbers of PEs, i.e., 1, 2, 4, 8, 16 and 32 PEs, have been employed in the
parallel implementations. The image sizes tested are 64 ´ 64, 128 ´ 128, 256 ´ 256,
and 512 ´ 512. Table 2 gives the execution times of all tested cases. Besides, the
downloading and uploading times are also listed in this table, which were obtained
by eliminating the computation parts in the parallel algorithms.

From Table 2, it can be seen that the I/O time is approximately linearly pro-
portional to the size of the image. And, it does not increase signi®cantly as the
number of PEs increases. This observation is consistent with the theoretical analysis
for a negligible link setup time. To see the parallelization e�ciency, the speedups are
given in Table 3 and the e�ciencies in Fig. 5. In both Table 3 and Fig. 5, the ``+I/O''
indicates that the speedups or e�ciencies are calculated including I/O times and
``)I/O'' excluding I/O times.

The parallelization e�ciency of the proposed parallel ®ltered-backprojection
algorithm may be modeled as

E � t0

t0 � �2a� b��N ÿ 1�M � 2cN log N � NtI=O

; �4�

Table 2

Execution times including and excluding I/O time of the parallel ®ltered-backprojection algorithm

#PEs 64 128 256 512

Execution

time

I/O time Execution

time

I/O time Execution

time

I/O time Execution

time

I/O

time

1 6.17 0 4.91 0 394 0 3130.7 0

2 3.18 0.02 25.02 0.08 198.77 0.34 1584.95 1.34

4 1.7 0.03 13.02 0.10 102.33 0.37 811.89 1.47

8 1.04 0.03 7.73 0.10 59.91 0.39 471.98 1.56

16 0.59 0.03 4.12 0.10 31.03 0.40 241.40 1.59

32 0.37 0.03 2.29 0.11 16.42 0.41 124.73 1.61

1514 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

where t0 is the sequential processing time, M the number of shared data to be in-
tegrated and N the number of PEs involved. a is the average time for transferring the
data associated with one shared datum during integration and broadcasting, b the
average time for integrating one shared datum, c the average time for each link setup
and tI=O the I/O time, including uploading and downloading data.

In general, Table 3 and Fig. 5 reveal that given a number of PEs, the larger the
image size is, the more e�cient the parallel ®ltered-backprojection algorithm would
be. The reason is for 2D reconstruction, as the size of images increases, the amount
of computational loads, i.e., t0=N , increases with the third order while the size of the
replicated images, i.e., M, and that of projection data increase with the second order.
That is, the ratio of computational load to communication overhead is O(NI), as-
suming that the size of the 2D image to be reconstructed is NI � NI . It is expected
that the parallelization e�ciency for 3D reconstruction would be much better than
that for 2D reconstruction since the ratio of computational load to communication
overhead for the 3D case is O�N 2

I �.

Table 3

Speedups of the parallel ®ltered-backprojection algorithm

#PEs 64 128 256 512

+I/O)I/O +I/O)I/O +I/O)I/O +I/O)I/O

2 1.94 1.95 1.96 1.97 1.98 1.99 1.98 1.98

4 3.63 3.69 3.77 3.8 3.85 3.86 3.86 3.86

8 5.93 6.11 6.35 6.44 6.58 6.62 6.63 6.66

16 10.46 11.02 11.92 12.21 12.70 12.86 12.97 13.05

32 16.68 18.15 21.44 22.52 24.00 24.61 25.10 25.43

Fig. 5. E�ciencies of the parallel ®ltered-backprojection algorithm.

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1515

On the other hand, given an image size, the more PEs the system employs, the less
e�cient the parallel algorithm would be, though the speedup increases. Since the link
setup is relatively negligible when NI is large enough, the performance shown in
Fig. 5 approximately exhibits the behavior of

E � 1

1� kN
�5�

for those cases marked ``)I/O''. Due to the e�ect of link setup term, workload
variation, and measurement errors, k varies slightly with N and image size. Since
M=t0 inversely proportional to the image size, k is smaller for a larger image size. In
other words, the e�ciency degrades faster for a smaller image size.

From these experiments, we can also see that the time for downloading and up-
loading data is insigni®cant for a large image size, but is non-negligible for a small
image size. It is mainly because the parallel processing time for reconstructing an
image of a small size is very short.

6. Parallel EM algorithm

The EM algorithm is a large-scale data-parallel algorithm [6], which has very rich
data parallelism. The two major computations in each iteration of the EM algorithm
are large sparse-vector matrix multiplications in the steps (S1) and (S3). Although
sparse matrix computation [17,26] has been studied extensively, minimizing the data
sharing overhead involved in these two sparse-vector matrix multiplications is non-
trivial due to the con¯icting requirements for optimal task and data partitioning in
both multiplications.

The major data parallelism in the EM algorithm is scalar multiplications. A
reasonable way to utilize the data parallelism may be described by two spaces,
namely, box and tube spaces. For each step, if a box (or tube) is assigned to a PE, all
the tasks and data associated with this box (or tube) are also assigned to the PE. It is
clear that in the steps (S1) and (S2), the computations for di�erent tubes may be
performed in parallel and the outputs are mutually exclusive. That is, it would be
better to partition the tasks and data according to the tube space to achieve an ex-
clusive partition in the steps (S1) and (S2) so that no overhead would be incurred to
maintain data coherence. However, in the steps (S3) and (S4), the box space is
preferred. It is this con¯icting characteristic making the data sharing overhead in-
evitable in the parallelization of the EM algorithm.

In this study, we employ the modi®ed partition-by-box scheme, which is proposed
in one of our previous works [8], to partition the tasks involved in the EM algorithm.
The modi®ed partition-by-box scheme is a modi®ed version of the partition-by-box
scheme [8]. For ease of description, the partition-by-box scheme is described ®rst.
The partition-by-box scheme partitions the tasks and data according to the box
space for both of the steps (S1) and (S3). The box space is partitioned such that all
PEs have about the same number of box-tube pairs. Note that, for the Shepp and
Vardi's EM algorithm, each box-tube pair is associated with one scalar multiplica-

1516 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

tion in each of the steps (S1) and (S3). In the steps (S2) and (S4), each PE performs
(1/N) of the computations.

To avoid communication among PEs during the step (S1), the estimated projec-
tion data are replicated at the local memory of each PE. At the end of step (S1), to
ensure the data coherence, the replicated estimated projection data are integrated
using the integration algorithm. After integration, each PE has (1/N) of integrated
estimated projection data, which exactly matches the need for the step (S2). At the
end of step (S2), since each PE needs almost all the correction factors in the step (S3),
each PE broadcasts its own (1/N) of correction factors to all other PEs using the all-
to-all broadcasting algorithm.

The potential problem of the partition-by-box scheme is that the computational
load might not be well balanced since the computational load associated with each
box is di�erent. To minimize the potential load imbalance problem, we further
partition all the tubes associated with some boxes. More precisely, one can imagine
that all boxes are arranged into a 1D array. The partition-by-box scheme divides this
array into N segments such that the total number of box-tube pairs associated with
each segment is as close as possible. Then, each PE takes care of computations for
one segment. To balance the computational loads completely, the box-tube pairs
associated with each box connecting two segments are further divided into two
subsets, each assigned to one of the two adjacent segments. Again, to avoid com-
munication during computation, these subdivided boxes are replicated to the two PE
taking care of the two segments sharing the box. Therefore, at the end of step (S3),
the two PEs sharing the same box need to exchange the computed box values to
derive the correct one. In order to accomplish this procedure, all PEs need to be
interconnected as a ring fashion (or at least as a linear array) in addition to be in-
terconnected by the perfect shu�e network. This scheme is called the modi®ed par-
tition-by-box scheme.

Unlike the parallel ®ltered-backprojection algorithm, many data need to be
downloaded to all PEs at the beginning of the proposed parallel EM algorithm.
These data include projection data, probability matrix and its indices (since it is a
sparse matrix and only non-zero elements are sent), and the indices for the boxes
assigned to each PE. Among these data, the projection data are downloaded using
one-to-all broadcasting algorithm and the others using scattering algorithm.

The Shepp and Vardi's EM algorithm [37] has been parallelized with di�erent
numbers of PEs, i.e., 1, 2, 4, 8, 16, and 32 PEs. To see the e�ect of I/O, including
downloading and uploading, various number of iterations have been performed.
They are 1, 2, 4, 8, 16 and 32 iterations. Again, limited by the memory capacity, the
size of image and the size of the PET system that we could simulate are 64 ´ 64 and
one ring with 96 detectors, respectively. Since, algorithmically, the EM algorithm is
independent of dimensionality, parallelizing the 2D case would be adequate to see
the feasibility for the 3D case, except the latter is expected to have a higher e�ciency.
For reference, the I/O times for using di�erent number of PEs are listed in Table 4.

Table 4 indicates that the I/O time decreases ®rst and then increases. This phe-
nomenon may be ascribed to two important factors determining the I/O time,
namely, the size of data sent to each PE and the number of stages the data binary

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1517

tree has. As the number of PEs increases, the ®rst factor decreases but the second one
increases. The minimal point turns out to be somewhere between 8 and 16 PEs in our
case.

The total execution times for di�erent numbers of iterations are listed in Table 5.
In the same table, the execution times excluding I/O time are also listed for analysis.
As before, +I/O indicates with the I/O time and)I/O without the I/O time.

From Table 5, one can see that when the number of iterations is small, the
overhead caused by downloading and uploading is quite signi®cant. The extreme
case is when only two PEs are used for one iteration. In this case, it takes even more
time than using only one PE. The reason why the I/O time is so signi®cant is due to
the large amount of data to be downloaded and at the same time the image size
which can be simulated is too small. As a result, the I/O operations take a great
portion of the total execution time when the number of iterations or the number of
PEs is small. Given a number of PEs, as the number of iterations increases, the
overhead caused by I/O becomes less in¯uential. This statement may be veri®ed by
Tables 6 and 7 in which the speedups and e�ciencies for the cases with (+I/O) and
without ()I/O) I/O times are listed, respectively.

The parallelization e�ciency of the proposed parallel EM algorithm may be
modeled as

E � nit0

nit0 � ni��2a� b��N ÿ 1�M � 2cN log N � � NtI=O

; �6�

where ni is the number of iterations and other parameters are as de®ned in Eq. (4).
Basically, Eq. (6) is quite similar to Eq. (4) except that the total time for computa-
tion, integration and all-to-all broadcasting are proportional to the number of it-
erations executed. From Tables 6 and 7, it is clear that given a number of PEs, the
more iterations are performed, the higher e�ciency the algorithm may achieve.
However, the upper bound of the achievable e�ciency for each given number of PEs

Table 5

Execution times including and excluding I/O time of the parallel EM algorithm

iter->

#PEs

1 2 4 8 16 32

+I/O)I/O +I/O)I/O +I/O)I/O +I/O)I/O +I/O)I/O +I/O)I/O

1 5.17 5.17 10.34 10.34 20.68 20.68 41.36 41.36 82.00 82.00 162.4 162.4

2 6.35 2.82 9.15 5.62 14.74 11.21 25.92 22.39 48.29 44.76 93.02 89.49

4 4.3 1.66 5.77 3.13 8.75 6.11 14.66 12.02 26.45 23.81 50.08 47.44

8 3.46 1.29 4.43 2.26 6.38 4.21 10.28 8.11 18.09 15.92 33.62 31.45

16 2.97 0.8 3.57 1.40 4.77 2.60 7.17 5.00 11.94 9.77 21.50 19.33

32 2.80 0.49 3.20 0.89 4.00 1.69 5.60 3.29 8.80 6.49 15.17 12.86

Table 4

The I/O times for using various number of PEs in the parallel EM algorithm

#PEs 1 2 4 8 16 32

Time (s) 0 3.53 2.64 2.17 2.17 2.34

1518 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

would be close to the e�ciency computed by excluding the I/O time for a large
number of iterations. For example, the maximal e�ciency attainable with 32 PEs
would be around 39.5%. This phenomenon may be clearly seen in Fig. 6.

It should be pointed out that the reason why the maximal achievable parall-
elization e�ciencies for using a large number of PEs are not very high is due to the
combining e�ect of the small problem size that we can simulate and the slow com-
munication rate provided by the transputers. This combining e�ect results in a small
computation/communication ratio. However, the parallelization e�ciency may in-
crease rapidly as the problem size increases. The reason is as follows. On one hand,
for an NI � NI 2D image, the computational load is about O�N 3

I �. For an NI � NI 3D
image, the computational load is about O�N 5

I �. On the other hand, as the number of
iterations is large enough, the major overhead is caused by integration and all-to-all
broadcasting. But, as pointed out before, the proposed integration and all-to-all
broadcasting algorithms have been theoretically optimal which is linearly propor-
tional to the size of data to be integrated and broadcast, i.e., O�N 2

I � and O�N 3
I � for

2D and 3D cases, respectively. Hence, as NI increases, the computational load would
increase O�NI� and O�N 2

I � times faster than integration and all-to-all broadcasting
for 2D and 3D cases, respectively. That is, the data sharing overhead would become
much less signi®cant for a larger problem size. As a matter of fact, there is nothing
much we can do to further improve the performance of the proposed parallel EM
algorithm algorithmically on the transputer system employed. In addition to in-
creases the problem size, one way to get a higher parallelization e�ciency is to use
processors with fast communication capability.

Table 7

E�ciencies including and excluding I/O time of the parallel EM algorithm

iter->-

#PEs

1 2 4 8 16 32

+I/O

(%)

)I/O

(%)

+I/O

(%)

)I/O

(%)

+I/O

(%)

)I/O

(%)

+I/O

(%)

)I/O

(%)

+I/O

(%)

)I/O

(%)

+I/O

(%)

)I/O

(%)

2 40.1 91.5 56.5 92.0 70.0 92.0 80.0 92.5 85.0 91.5 87.5 90.5

4 30.0 77.8 44.8 82.5 59.0 84.5 70.5 86.0 77.5 86.0 81.0 85.5

8 18.6 50.5 29.0 57.3 40.5 61.4 50.3 63.8 56.6 64.4 60.4 64.5

16 10.9 40.4 18.1 46.2 27.1 49.7 36.1 51.7 42.9 52.4 47.2 52.5

32 5.8 33.0 10.1 36.3 16.2 38.3 23.0 39.3 29.1 39.5 33.4 39.5

Table 6

Speedups including and excluding I/O time of the parallel EM algorithm

iter->

#PEs

1 2 4 8 16 32

+I/O)I/O +I/O)I/O +I/O)I/O +I/O)I/O +I/O)I/O +I/O)I/O

2 0.81 1.83 1.13 1.84 1.40 1.84 1.60 1.85 1.70 1.83 1.75 1.81

4 1.20 3.11 1.79 3.30 2.36 3.38 2.82 3.44 3.1 3.44 3.24 3.42

8 1.49 4.00 2.33 4.58 3.24 4.91 4.02 5.10 4.53 5.15 4.83 5.16

16 1.74 6.46 2.90 7.39 4.34 7.59 5.77 8.27 6.87 8.39 7.55 8.40

32 1.85 10.55 3.23 11.63 5.17 12.24 7.39 12.57 9.32 12.63 10.70 12.63

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1519

7. Conclusions

From the experimental results obtained for using a single PE in this paper, the
long computation time con®rms that parallel processing is necessary for a practical
3D PET system. To speed up the reconstruction, we have designed a dedicated
parallel system for PET image reconstruction based on the static perfect shu�e
network. The distinguished feature of the perfect shu�e network is that with only
four connectivity, it may accomplish all types data sharing activities involved in both
®ltered-backprojection and EM algorithms in a time comparable to that on a
hypercube. Moreover, the proposed parallel system is optimal for both the ®ltered-
backprojection and EM algorithms. In addition, a ring communication pattern can
be easily embedded in the PPS network, which is very useful in optimizing the
parallel EM algorithm.

Based on the topological feature of the perfect shu�e network, we have devel-
oped optimal data sharing algorithm for one-to-all broadcasting, scattering, inte-
gration and all-to-all broadcasting on the perfect shu�e network. The time required
by the one-to-all broadcasting algorithm is, the times for the scattering and all-to-
all broadcasting algorithms are the same, which is Ols(log N) + Odx((1) 1/N)M),
and the time for the integration algorithm is Ols(log N) + Odx((1) 1/N)M) +
Osum((1) 1/N)M).

With the proposed data sharing algorithms, we have developed e�cient parallel
®ltered-backprojection and EM algorithms taking advantage of the perfect shu�e

Fig. 6. Upper bounds of the achievable e�ciencies by the proposed parallel EM algorithm on the

transputer system employed.

1520 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

network. Although the parallelization e�ciencies demonstrated in the experiments
are not very high, they are mainly due to the combining e�ect of the small problem
size we can simulated and the slow communication rate provided by the transputer
system. This combining e�ect results in a small computation/communication ratio. It
is believed that a high e�ciency may be attained for a real 3D PET image recon-
struction if a su�cient number of PEs and memories are available or if high per-
formance processors are employed with fast communication capability.

References

[1] Analogic Corporation, Wake®eld, MA, Modular Image Processor (MIP), IP-300 Technical Manual,

1981.

[2] M.S. Atkins, D. Murray, R.L. Harrop, Use of transputers in a 3-D positron emission tomography,

IEEE Trans. Med. Imaging 10 (1991) 276±283.

[3] M. Barnett, R. Little®eld, D.G. Payne, R. Van De Geijn, Global combine algorithms for 2-D meshes

with wormhole routing, J. Parallel and Distributed Comput. 24 (1995) 191±201.

[4] S. Barresi, D. Bollini, A. Del Guerra, Use of a transputer system for fast 3-D image reconstruction in

3-D PET, IEEE Trans. Nucl. Sci. 37 (1990) 812±817.

[5] K. Bastiaens, I. Lemahieu, P. Desmedt, On the use of a multi-threaded operating system for an

e�cient parallel implementation of the ML-EM algorithm for PET image reconstruction, IFIP Trans.

A: Comput. Sci. and Technol. 44 (1994) 31±39.

[6] C.M. Chen, On minimizing data sharing overhead for large-scale data-parallel algorithms:

Replication and allocation of shared data, Ph.D. Thesis, Cornell University, Ithaca, New York, 1993.

[7] C.M. Chen, S.-Y. Lee, Z.H. Cho, 3D PET image reconstruction on a mesh connected multiprocessor,

in: 1992 Medical Imaging Conference Record, 1992.

[8] C.M. Chen, S.-Y. Lee, On parallelizing the EM algorithm for PET image reconstruction, IEEE Trans.

Parallel and Distributed Systems 5 (6) (1996) 860±873.

[9] C.M. Chen, S.-Y. Lee, Optimal data replication: A new approach to optimizing parallel EM

algorithms on a mesh-connected multiprocessor for 3D PET image reconstruction, IEEE Trans. Nucl.

Sci. 42 (4) (1995) 1235±1245.

[10] C.M. Chen, S.-Y. Lee, Z.H. Cho, A parallel implementation of 3-D CT image reconstruction on

hypercube multiprocessor, IEEE Trans. Nucl. Sci. 37 (1990) 1333±1346.

[11] C.M. Chen, S.-Y. Lee, Z.H. Cho, Parallelization of the EM algorithm for 3D PET image

reconstruction, IEEE Trans. Med. Imaging 10 (1991) 513±522.

[12] Z.H. Cho, P.J. Jones, S. Manbir, Foundations of Medical Imaging, Wiley, New York, 1993.

[13] P.S. Crandall, C.W. Stearns, A scalable multiprocessor implementation of the reprojection algorithm

for volumetric PET imaging, in: 1995 IEEE Nuclear Science Symposium and Medical Imaging

Conference Record, vol. 2, 1995, pp. 1184±1188.

[14] V. Di Lecce, E. Di Sciascio, A.R. Manni, A pipeline backprojection for on-line 3-D PET, in: 1995

IEEE Nuclear Science Symposium and Medical Imaging Conference Record, vol. 2, 1995, pp. 1069±

1073.

[15] V. Di Lecce, E. Di Sciascio, A.R. Manni, Parallelization of 3-D PET BpjF reconstruction on a DSP

cluster, in: 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, vol. 2,

1995, pp. 1222±1226.

[16] M.L. Egger, S.A. Herrmann, C. Joseph, C. Morel, Fast volume reconstruction in positron

emission tomography: Implementation of four algorithms on a high-performance scalable parallel

platform, in: Proceedings of the 1996 IEEE Nuclear Science Symposium, Anaheim, CA, 1996, pp.

1574±1578.

[17] G.C. Fox, Load balancing and sparse matrix vector multiplication on the hypercube, Tech. Rep. C3P-

327, Caltech, 1986.

C.-M. Chen / Parallel Computing 24 (1998) 1499±1522 1521

[18] P.J. Green, Bayesian reconstructions from emission tomography data using a modi®ed EM algorithm,

IEEE Trans. Med. Imaging 9 (1990) 84±93.

[19] T.M. Guerrero, S.R. Cherry, M. Dahlbom, A.R. Ricci, E.J. Ho�man, Fast implementation of 3D

PET reconstruction using vector and parallel programming techniques, IEEE Trans. Nucl. Sci. 40 (4)

(1993) 1082±1086.

[20] H. Hart, Z. Liang, Bayesian image processing in two dimensions, IEEE Trans. Med. Imaging 6 (1987)

199±206.

[21] R. Hartz, D. Bristow, N. Mullani, A real-time TOFPET slice-backproject engine employing dual Am

29116 microprocessors, IEEE Trans. Nucl. Sci. 32 (1985) 839±842.

[22] G.T. Herman, D. Odhner, K.D. Toennies, S.A. Zenios, A parallelized algorithm for image

reconstruction from noisy projections, in: Large-Scale Numerical Optimization, 1989.

[23] W.F. Jones, L.G. Byars, M.E. Casey, Positron emission tomographic images and expectation

maximization: A VLSI architecture for multiple iterations per second, IEEE Trans. Nucl. Sci. 35

(1988) 620±624.

[24] W.F. Jones, L.G. Byars, M.E. Casey, Design of a super fast three-dimensional projection system for

positron emission tomography, IEEE Trans. Nucl. Sci 37 (1990) 800±804.

[25] L. Kaufman, Implementing and accelerating the EM algorithm for positron emission tomography,

IEEE Trans. Med. Imaging 6 (1987) 37±50.

[26] C.P. Kruskal, L. Rudolph, M. Snir, Techniques for parallel manipulation of sparse matrices,

Theoretical Computer Science (1989) 135±157.

[27] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing: Design and

Analysis of Algorithms, Benjamin/Cummings, Menlo Park, CA, 1994.

[28] E. Levitan, G.T. Herman, A maximum a posterior probability expectation maximization algorithm

for image reconstruction in emission tomography, IEEE Trans. Med. Imaging 6 (1987) 185±191.

[29] R.M. Lewitt, G. Muehllehner, Accelerated iterative reconstruction for positron emission tomography

based on the EM algorithm for maximum likelihood estimation, IEEE Trans. Med. Imaging 5 (1986)

16±22.

[30] J. Llacer, J.D. Meng, Matrix-based image reconstruction methods for tomography, IEEE Trans.

Nucl. Sci. 32 (1985) 855±864.

[31] J. Lopez, O. Plata, F. Arguello, E.L. Zapata, Uni®ed framework for the parallelization of divide and

conquer based tridiagonal systems, Parallel Comput. 23 (1997) 667±686.

[32] Message Passing Interface Forum, MPI: A Message Passing Interface Standard, 5 May 1994.

[33] S.P. Olesen, J. Gregor, M.G. Thomason, G.T. Smith, EM-ML PET reconstruction on multiple

processors with reduced communications, Int. J. Imaging System and Technology 7 (3) (1996)

215±223.

[34] K. Rajan, L.M. Patnaik, J. Ramakrishna, High-speed computation of the EM algorithm for PET

image reconstruction, IEEE Trans. Nucl. Sci. 41 (5) (1994) 1721±1728.

[35] F.U. Rosenberger, D.G. Politte, G.C. Johns, C.E. Molnar, An e�cient parallel implementation of the

EM algorithm for PET image reconstruction utilizing transputers, in: 1990 Nuclear Science

Symposium Conference Record, 1990.

[36] L.A. Shepp, B.F. Logan, The Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci. 21

(1974) 21±43.

[37] L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans.

Med. Imaging 1 (1982) 113±122.

[38] C.J. Thompson, T.M. Peters, A fractional address accumulator for fast backprojection, IEEE Trans.

Nucl. Sci. 28 (1981) 3648±3650.

1522 C.-M. Chen / Parallel Computing 24 (1998) 1499±1522

