NH,
i PARALLEL
;ﬁ% COMPUTING

ELSEVIER Parallel Computing 25 (1999) 499-523

www.elsevier.com/locate/parco

Practical aspects

Aspects of computational mode and data
distribution for parallel range image
segmentation

Nicholas Giolmas ?, Daniel W. Watson °, David M. Chelberg ©*,
Peter V. Henstock ¢, June Ho Yi ¢, Howard Jay Siegel *

& Parallel Processing Laboratory, School of Electrical and Computer Engineering, Purdue University,
West Lafayette IN 47907-1285, USA
b Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
¢ School of Electrical Engineering and Computer Science, Russ College of Engineering and Technology,
Ohio University, Athens OH 45701-2979, USA
4 Lincoln Laboratory, Massachusetts Institute of Technology, Lexington MA 02173, USA
¢ School of Electrical and Computer Engineering, Sungkyunkwan University, 300, Chunchun-dong,
Jangan-gu, Suwon 440-746, South Korea

Received 14 November 1996; received in revised form 6 August 1998

Abstract

Parallel processing methods are a means to achieve significant speedup of computationally
expensive image understanding algorithms, such as those applied to range images. Practical
implementations of these algorithms must deal with the problems of selecting an appropriate
parallel architecture and mapping the algorithm onto that architecture. The parallel imple-
mentation approaches for range image segmentation that are presented here are applicable to
many low-level image understanding algorithms in a variety of parallel architectures. An
evaluation of initial data distribution is presented to determine whether a square subimage or
a striped subimage distribution would result in the greatest overall reduction in execution time
for the given range image segmentation problem. Novel implementations that consider each
data distribution’s treatment of edge pixels in window operations yield a trade-off between the
number of data transfers versus the amount of computation. This trade-off is examined both
analytically and experimentally. Additionally, using the same initial data distributions, a

* Corresponding author. Tel.: +740 593 1251; fax: +740 593 0406; e-mail: chelberg@ohiou.edu

! This research was supported by the Office of Naval Research under grant number N00014-90-J-1937,
by NRaD under subcontract number 20-950001-70 and contract number N66001-96-M-2277, and by the
Digital Equipment Corporation Incentives for Excellence Grant. The equipment used was supported by
the National Science Foundation under grant number CDA-9015696.

0167-8191/99/$ — see front matter © 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S0167-8191(99)00007-1



500 N. Giolmas et al. | Parallel Computing 25 (1999) 499-523

technique is introduced for changing the allocation of work to each of the processors to reduce
the number of network settings by one half. This technique and the method for determining
the better initial data distribution can be used with any machine and any window-based
technique that requires a full window to perform image calculations. Comparisons of range
image processing algorithms are performed using “pure” SIMD algorithms, “pure” MIMD
algorithms, and mixed-mode implementations with both SIMD and MIMD elements. Each of
these approaches are quantitatively analyzed and compared for implementing the different
phases of a particular hybrid range segmentation algorithm. Results of this implementation
study indicate that quantifiable reductions in execution time result from the proper choice of
parallel mode for each portion of the segmentation process. © 1999 Published by Elsevier
Science B.V. All rights reserved.

Keywords: Computer vision; Hybrid range image segmentation; Image processing; MIMD; Mixed-mode;
Parallel processing; PASM; SIMD

1. Introduction

Parallel processing methods are a means to achieve significant speedup of com-
putationally expensive image understanding algorithms, such as those applied to
range images. Any practical implementation of these algorithms must deal with the
problems of selecting an appropriate parallel architecture [1,2] and mapping the
algorithm onto that architecture. The parallel implementation approaches for range
image segmentation that are presented here are applicable to many low-level image
understanding algorithms in a variety of parallel architectures. An analysis is pre-
sented for a square subimage initial data distribution versus a striped subimage
distribution. Novel implementations that consider each data distribution’s treatment
of edge pixels in window operations yield a trade-off between the number of data
transfers versus the amount of computation. This trade-off is examined both ana-
lytically and experimentally. Additionally, using the same initial data distribution, a
technique is introduced for changing the allocation of work to each of the processors
to reduce the number of network settings by one half. This technique and the method
for determining the better initial data distribution can be used with any machine and
any window-based technique that requires a full window to perform image calcu-
lations.

Also in this study, comparisons of range image processing algorithms are per-
formed using “pure” SIMD algorithms, “pure” MIMD algorithms, and mixed-
mode implementations with both SIMD and MIMD eclements. Each of these
approaches are quantitatively analyzed and compared for implementing the different
phases of a particular hybrid range segmentation algorithm. Results of the imple-
mentation study indicate that quantifiable reductions in execution time result from
the proper choice of parallel mode for each portion of the segmentation process.

Several earlier studies have broadly claimed that SIMD mode should be used with
low-level image processing and MIMD for higher-level image understanding algo-
rithms [3-6]. Hybrid mixed-mode SIMD/MIMD parallel systems are well-suited to
the implementation of complete image analysis tasks because they provide the
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flexibility of matching each portion of the algorithm with the parallel mode that best
suits it [7,8]. This advantage overcomes the limitations of pure SIMD and pure
MIMD machines that were encountered in Ref. [9]. This paper examines the trade-
offs of the different parallel modes and explores different data distributions, pro-
cessor loading, and data transfer schemes to improve computation speed in a hybrid
range image segmentation algorithm that embodies a broad class of image under-
standing algorithms.

In summary, three of the major contributions of this paper are: (1) a thorough
evaluation of the impact of data distributions on the trade-off between communi-
cation time versus computation time when edge pixels are considered for this class of
algorithms; (2) a technique for reducing the number of network settings by one-half
for this class of algorithms; and (3) a comparison of SIMD, MIMD, and mixed-
mode implementations of the application.

In range image understanding, it is necessary to reduce the information contained
in an image from a collection of range measurements, one for each image picture
element, or pixel, to a symbolic description of surface types and edges found in the
image. To obtain a symbolic description, pixels are grouped into regions, connected
sets of pixels that have unifying characteristics determined by a property of the range
image data (e.g., surface normal). Images that have been partitioned into non-
overlapping regions are called segmented images, and the term segmentation refers to
this process of dividing an image into non-overlapping regions.

Segmentation is a computationally expensive operation with a high degree of
uniformity for the operations applied to all pixels in an image. Thus, it is a good
candidate for parallelization [1]. Selection of the parallel architecture that is best
suited to the algorithm is a critical step in the algorithm mapping process. Fur-
thermore, an efficient implementation for different portions of an algorithm may
require using different parallel architectures. The selection of the optimum map-
ping of program segments to computational modes is not necessarily straightfor-
ward. By encoding multiple versions of each segment, different computation mode
assignments for each segment can be compared. This work adopts a phase opti-
mized approach for the entire algorithm, although, in general, this method is not
guaranteed to produce the optimal implementation for the overall task [10]. In
addition to being a useful application study, this work helps to build the body of
knowledge that is needed to develop software tools that will facilitate the
mapping of tasks onto parallel machines. Using the knowledge gained from
studies such as this one, attempts are being made to develop techniques for
choosing modes in a mixed-mode compiler [11]. Many mixed-mode architectures
have been prototyped [7], and mixed-mode studies in part are important to de-
termine in what applications, if any, mixed-mode parallelism can make a signifi-
cant difference.

The partitionable SIMD/MIMD (PASM) parallel processing system [12,13], de-
signed at Purdue, is one of a number of multiprocessor systems that are capable of
mixed-mode parallelism, i.e., they can operate in either the SIMD or MIMD mode of
parallelism, and can dynamically switch between modes at instruction level granu-
larity [7]. PASM is a distributed memory machine, where each processor is paired
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with a memory module forming a processing element (PE). A 16-PE small-scale
proof-of-concept prototype has been built [12] and is being used as a test bed for
application studies, e.g., Ref. [13].

In addition to PASM, five other mixed-mode machines have been built: TRAC
(University of Texas at Austin, USA) [14], OPSILA (University of Nice, France)
[15], Triton (University of Karlsruhe, Germany) [16], EXECUTE (IBM, USA) [17],
and MeshSP (ICE/MIT Lincoln Labs, USA) [18]. More information about mixed-
mode computing is in Ref. [7].

The prior work most related to the research presented here is [9]. As in this
study, they perceive that some portions of the range-image segmentation process
are best suited to SIMD, while others are better suited to MIMD. Additionally, [9]
considers the impact of the initial distribution of range image data on overall
algorithm performance. Separate SIMD and MIMD implementations of range
image segmentation are presented in [9] using a Connection Machine 200 for the
SIMD application and a Transputer-based system (a Meiko) for the MIMD
implementation. The research here extends and complements the earlier work in
Ref. [9].

However, the results introduced in this paper differ from [9] in several important
ways. The overall focus of [9] is the selection of specific range segmentation algo-
rithms that are well-suited to parallel machines. Here, a different implementation is
studied, one whose basic components are used in many image-processing applica-
tions. Furthermore (and unlike [9]), the analysis of initial data distribution in this
study indicates the number of operations saved for different distributions and the
number of network settings needed, thus the results are more generally applicable to
other image processing studies. Most importantly, the use of PASM in this study as a
single reconfigurable architecture capable of both SIMD and MIMD modes of
operation makes possible the direct comparison of SIMD and MIMD approaches
without regard to differences in system architecture. Additionally, the use of the
PASM reconfigurable architecture facilitates the selection of the most appropriate
mode of parallelism for each phase of the algorithm in a mixed-mode implementa-
tion; developers need not be constrained to a ‘pure’ MIMD or pure SIMD algo-
rithm.

Background information about range image processing is included in Section 2. A
description of the SIMD, MIMD, and mixed-mode models of parallel architecture
are discussed in Section 3. In Section 4, the effect of the initial placement of data on
algorithm execution is examined. Section 5 compares different parallel implemen-
tations and provides results obtained from the study.

2. Segmenting range images

The techniques for range image segmentation can be classified into two cate-
gories: region-based and edge-based. A region-based approach attempts to group
pixels into surface regions based on the homogeneity or similarity of image
properties [19]. Alternatively, an edge-based approach detects discontinuities in
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depth values and in surface orientations. The algorithm study in Section 4 exam-
ines a parallel implementation of a hybrid approach [20] to the problem of range
image segmentation, which is a combination of region-based and edge-based ap-
proaches.

One motivation for the choice of this algorithm is that it is characteristic of many
image processing tasks, so that implementation results for this study are applicable
to a broad class of image processing problems. Additionally, the hybrid approach
employs both region-based and edge-based segmentation methodologies, and the
combining portion is representative of other kinds of algorithms (e.g., connected-
component labeling, contracting, and expanding). Finally, the many different com-
ponents of the algorithm make it difficult to map it effectively to a single architecture,
i.e., different portions of the algorithm are best suited for different parallel imple-
mentations.

In the hybrid algorithm, a local biquadratic surface fit is employed to approxi-
mate object surfaces. This method and related methods (e.g., linear and cubic fit
methods) are common in range image segmentation. The computations performed
for similar surface fitting algorithms, such as [21] (which uses low-order bivariate
polynomials) and [22] (which employs B-spline surface fitting) closely resemble the
computations performed for the hybrid algorithm. The overall algorithm can be
considered as representative of a wide range of image understanding tasks, because
the computations involved in each phase are common to many segmentation and
image processing problems.

The algorithm consists of three major stages (Fig. 1). In the first stage, differential
geometric properties of a surface (i.e., surface normal, Gaussian curvature, and mean
curvature) are locally estimated. Object surfaces are locally approximated in a
window using second-order bivariate polynomials. In the first computational step,
the six coefficients of the polynomial are determined by a least square method.
Application of differential geometric concepts in the vicinity of discontinuities yields
inaccurate estimates of geometric properties because real objects are only piecewise
smooth. Accurate surface fitting may be achieved in the neighborhood of a dis-
continuity by selecting the window and offset that provides a minimum fitting error,
referred to as squared error. Thus, the second step in local surface characterization is
to compute fitting errors for each pixel in the image. The next step is to calculate the
best offset for the local neighborhood, which is the location within the window that
has the minimum fitting error. This offset is used to compute more accurate geo-
metric measurements. Once these offsets are calculated, the fitted image can be
computed. From these fitted polynomials, first and second partial derivative esti-
mates are obtained and the surface normal, Gaussian (K), and mean (H) curvatures
are computed from these partial derivatives. These geometric measurements are used
to segment an image into homogeneous regions likely to correspond to object sur-
faces.

In the second stage, three types of initial segmentations are computed. A region-
based segmentation is obtained in the form of the surface type map. Surface points
are classified, according to the sign of K and H, into one of eight possible surface
primitives [21]. To eliminate small surface regions, typically due to noise, the surface
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type map is contracted and expanded once. Two edge-based segmentations are
performed to detect jump and roof edges. The jump edge magnitude is computed as
the maximum difference in depth between the point and its eight neighbors, while the
roof edge magnitude is computed as the maximum angular difference between ad-
jacent unit surface normals. Both jump and roof edge magnitudes are thresholded to
produce edge maps.

In the final stage, the three initial segmentation maps are combined to produce a
final region map where each region is homogeneous in curvature sign and contains
no discontinuities. This final map can then be used in higher-level image under-
standing algorithms.
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Fig. 1. Range image segmentation algorithm flow.
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3. Modes of parallelism

There are trade-offs that exist between the SIMD and MIMD modes of paral-
lelism that explain why some sequences of instructions perform better in one mode
than in the other [7,23,24]. Some of the advantages and disadvantages of each mode,
as they apply to image processing algorithms, are summarized here.

It is possible that the execution time of an instruction is data dependent, taking a
variable length of time to perform on each PE. For example, on some processors the
time it takes a floating point operation to execute is a function of the value of the
operands. Variable-time instructions execute more efficiently in MIMD mode than in
SIMD mode. In SIMD mode, the control unit (CU) broadcasts the next instruction
to the PEs only after they have all completed the current instruction. Therefore, each
instruction takes as long as it takes the slowest PE. In MIMD mode, the PEs are not
synchronized and each PE executes the next instruction independently. More for-
mally, let 77 represent the time it takes instruction i to execute in PE p. Assume that
77 in SIMD mode is equal to 77 in MIMD mode. The execution time in SIMD mode
of a sequence of data-dependent instructions can be expressed as >, max,(7”), for
all 7 in the sequence. The time to perform the same sequence of instructions in
MIMD mode can be expressed in terms of 77 as max,()_,77) (Fig. 2). Because
max, (>, 77) < >_,(max, T7), the time to execute the sequence of data-dependent
instruction in MIMD mode is less than or equal to the time to execute the same
sequence of instruction in SIMD mode. Thus, MIMD mode is more appropriate for
sequences of data-dependent instructions because of this “max of sums’’ versus “sum
of maxs” effect. Many current processors use all fixed execution time instructions;
however, the same effect occurs for constructs such as a sequence of “while” state-
ments contained in a loop.

SIMD MIMD
PEO PE1 PE2.. PEO PE1 PE2..

mstn;ctlon ”ﬂ ime M

instruction N N
k+1
- -
N
N % > %
instruction 5 7
k+2 %

Fig. 2. Execution of variable-time instructions in SIMD and MIMD mode.
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Conditional statements in the synchronous execution of an SIMD program can
introduce serialization. Consider an if-A-then-B-else-C statement. Let the condi-
tional test A depend on PE data. In some PEs, A is true and in others false. Those
PEs where A is false are disabled (masked off) for the execution of clause B. Once B
has executed, the PEs where A is true are disabled and the PEs where A is false are
enabled. C is then executed. This serializes the execution of B and C. Conversely, in
MIMD mode those PEs where A is true execute B, and PEs where A is false execute
C. In MIMD mode, the maximum time for a PE to execute the if-A-then-B- else-C
statement in a PE is approximately 74 + max(7s, Tc), while in SIMD mode the time
would be approximately Tx + 7 + Tc (where the PE is idle for T or 7¢). Thus, in
general, MIMD mode is more effective for executing conditional statements.

Another distinction between SIMD mode and MIMD mode pertains to syn-
chronization overhead. In SIMD mode, the synchronization of program execution is
implicit, because there is a single thread of control. However, when synchronization
of program execution is required among PEs in MIMD mode, explicit synchroni-
zation mechanisms, such as semaphores and barriers, must be employed in the
parallel program. Thus, synchronization costs are greater for MIMD mode.

One benefit of implicit PE synchronization in SIMD mode becomes apparent
when inter-PE data transfer are needed. In SIMD mode, when one PE sends data to
another PE, all enabled PEs send data. Therefore, the “send” and ‘‘receive’” com-
mands are implicitly synchronized. Because all enabled PEs are following the same
single instruction stream, each PE knows from which PE the message has been re-
ceived and for what use the message is intended. Conversely, MIMD mode programs
are executed asynchronously among all PEs. As a result, the PEs may need to exe-
cute explicit synchronization and identification protocols for each inter-PE transfer.
While the details of the inter-PE transfer protocols in both SIMD and MIMD mode
are implementation dependent, there is substantially more overhead associated with
MIMD mode inter-PE transfers. Like the synchronization overhead above, this
protocol overhead is a cost of the flexibility of programming in MIMD mode.

In SIMD mode, CU can be used to overlap operations with PEs [25]. For ex-
ample, the CU can perform the increment and compare operations on loop control
variables, while the PEs compute the contents of the loop. Furthermore, any oper-
ations common to all PEs, such as local subimage array address calculations, can be
performed in the CU while the PEs are performing other computations. The CU can
then broadcast this information to the PEs. In MIMD parallelism, each PE has its
own set of instructions and its own instruction pointer. Because each PE performs all
of the instructions, even those common to all PEs, the advantage of CU/PE overlap
found in SIMD machines is not present. Furthermore, while a commercial MIMD
machine can attempt to use a master/slave configuration to emulate SIMD, this
would be quite inefficient. This is due to the excessive instruction level (or at least
block level) synchronization that would be necessary, as well as due to the lack of a
fast mechanism for broadcasting information to all of the PEs that a SIMD CU has
for broadcasting common information it calculates concurrently with PE execution.

From the discussion above it is evident that there are many trade-offs between
operating in SIMD mode and operating in MIMD mode. This motivated the design
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of mixed-mode machines. Although it is often clear in which mode a sequence of
instruction should be executed in a mixed-mode machine, this is not the case when
counteracting trade-offs are involved. For example, a data-conditional statement
may contain instructions that perform network transfers. Choosing the mode of an
operation is not straightforward; conditional statements should be performed in
MIMD mode while network transfers should be performed in SIMD mode. In such
cases, the programmer may choose to code more than one version of the algorithm
to determine the optimal approach.

When using the mixed-mode approach, new problems can arise such as the macro
level “max of sums”/“sum of maxs” effect. In mixed mode, an entire block of in-
structions whose execution time varies on different PEs due to data conditional
statements and/or variable execution time instructions may exhibit the same per-
formance characteristics on a macro level if synchronization is required after the
block (e.g., MIMD instructions in an SIMD loop) [23].

In summary, SIMD, MIMD, and mixed mode all have advantages and disad-
vantages. Consequently, the programmer of a mixed-mode system must be aware of
the trade-offs between executing in SIMD mode and MIMD mode. Finding the
optimal implementation involves algorithm analysis and experimentation.

4. Data distribution

The overall segmentation algorithm can be divided into stages, with each stage
having its own optimal mapping on a parallel machine. A common parallel imple-
mentation issue among all the stages is the distribution of the range data to the
processors. The way data is distributed among the PEs dictates the number of inter-
PE transfers performed, and the source/destination pairs for each transfer. If es-
tablishing a new communication path between PEs is more costly than continuing to
use the current setting, then a distribution method that promotes few such path
creations (network settings) should be considered. System performance is determined
in part by the amount of data transferred during each network setting.

For some algorithms (e.g., range data segmentation), the distribution method
dictates the number of calculations performed on each PE. The method often used in
parallel implementations of image processing algorithms distributes a square sub-
image to each PE. This minimizes the number of inter-PE transfers. For some al-
gorithms, minimizing transfers is not as advantageous as minimizing the number of
calculations required between transfers. In this section, an alternative method that
minimizes the number of calculations is presented. It is based on distributing con-
secutive rows rather than square subimages of data to the PEs.

Many calculations in segmentation algorithms involve w-by-w windows of data
(e.g., convolutions, local minima). For some of the pixels in the image, specifically
those located on the perimeter, window calculations need not be performed because
they lack the necessary data over the entire w-by-w window. These border pixels play
an important role in the selection of the distribution method. The proposed hori-
zontal stripe method allows window algorithms to take advantage of the fact that no
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calculations need to be performed for the border pixels, thereby decreasing the
overall number of required calculations.

Let the original image be of size M-by-M, the number of PEs on the target ma-
chine be N and the window size for the calculations be w-by-w, where w is a positive
odd integer. A pixel is processed using data from a w-by-w window with that pixel as
the center. In the following discussion, it is assumed that M > N, and typically
N = 64, M > 128 and w > 3. For simplicity it is also assumed that M is a multiple of
N, although the obtained results can be adopted to cases where this restriction does
not apply. The first two stages of the algorithm, the coefficient and squared error
calculations, and the subsequent data transfers, are chosen as an example of a
general processing scenario in which a sequence of calculations followed by data
transfers are performed.

Typically, image processing algorithms that rely heavily on inter-PE transfers
have used the square subimage distribution method as shown in Fig. 3. This method
distributes a unique square portion of size (M /v/N)-by-(M /+/N) from the original
image to every PE. The method succeeds in minimizing the number of data transfers
by using subimages with a square perimeter. For the algorithm stages under con-
sideration, each PE must transfer 4|w/2| x (M/v/N) +4(|w/2] )? floating point data
elements (Fig. 4). All N PEs can send to unique destination PEs simultaneously,
allowing up to N concurrent data item transfers. Each PE must share data with a
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MK RRIKNK NN KNRKXK
XXROO 0O0O00O0 0000 OOKRK
XXOO 0000 0000 UO0OXRK

XXOO 0000 0O000 ODO0OXRK
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XXOO 0000 0O000 O0OKK

XXOO 0000 0000 OO0ONMK
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XXOO 0000 0000 0ODOKK
XXROO OO000 O0O0O0 OOXK
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XXOO 0000 0O00O0 OORK
HRIKK KRN NN KNRXK
XK KNINK XNKNKNXK MKNXKXK

X - border pixel

Fig. 3. Square distribution example, M = 16, N = 16, w = 5.
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Fig. 4. Pixel transfers for w = 5.

maximum of eight neighboring PEs. A minimum of four network settings are re-
quired to perform a transfer operation using this method (e.g., in Fig. 4, the data
elements to be sent from PEs on the diagonal from PE j can be sent through the PEs
to the left and right of PE j).

The square subimage method does not take advantage of the fact that border
pixel calculations can be omitted because the border pixels are distributed unevenly
among the PEs. Some PEs will contain no border pixels and consequently perform
the maximum number of pixel operations, given by (M /v/N) x (M/\/N) or M*/N.
These PEs dictate the amount of time required to complete the parallel calculation
task.

Using the proposed horizontal stripe method shown in Fig. 5, each PE initially
contains M /N rows of data. Each PE transfers data to its two neighboring PEs.
One way to do this is to have PE j send the bottom |w/2]| rows of the subimage to
PE j + 1 and the top |w/2| rows to PE j — 1. As discussed later, the actual direction of
the transfers varies depending on the chosen implementation, but the total amount
of data transferred is 2| w/2| rows (i.e., 2|w/2| x M pixels). Although the number of
data elements transferred is increased, the number of network settings is decreased to
a maximum of two. The border pixels located on the left and right side of the image
are uniformly distributed over all PEs, and operations on these border pixels for each
PE are not performed. When the transfers are complete, each PE will calculate the
six coefficient values and the squared error value for at most (M /N) x (M — 2|w/2])
or (M*/N) —2|w/2| x (M/N) pixels. Let 7, denote the time required to transfer one
data element, and T; denote the time required to perform an operation for one pixel,
which may consist of many calculations. The operation transfer ratio is defined as
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Fig. 5. Striped distribution example, M = 16, N =4, w = 5.

p = Ty/T;. Experimental results on PASM have shown that p = 2500 for these seg-
mentation operations (i.e., calculating the six coeflicient values and squared error
value for each pixel).

The time penalty, T, for processing the extra 2|w/2| x (M/N) pixels using the
square method is

EzZ{gJ x%xTo.

If network setups are time consuming, the time required by the square method for
the extra needed setups should be included in 7,,. Just counting the number of pixels
sent, the time penalty, 7}, for performing the extra intra-PE transfers by using the
horizontal stripe method versus the square method is

= Bl - (3] <ol 15D)] <

The extra time required by the square method to complete this stage of the al-
gorithm is 7, — 7.

The value of p depends on the particular algorithm and machine used for exe-
cution. For a given image size, window size, and number of PEs, p will uniquely
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determine the optimal distribution method for the algorithm under consideration.
Let ppreaeven designate the value of p such that if p > pycaevens then the striped
distribution method should be chosen over the square distribution method. Fig. 6
shows the value of py . even @S @ function of the number of PEs (V) for which the
stripe method should be chosen, given an image size of M = 1024 and window size of
w = 5. Consider a target system with 256 PEs and an image size of M = 1024. If
p > 223, then the stripe distribution method should be used to implement this al-
gorithm. This analysis technique is quite general, and can be applied to other al-
gorithms and machines.

Thus, distribution of image data should not always be done in squares, as is
usually the case. In general, the horizontal stripe method performs faster whenever
calculations on border pixels can be omitted, and transfers are relatively fast com-
pared to calculations.

When network setups are time consuming, there is further gain in using the stripe
method. The number of network settings can be reduced from four settings needed
for the square subimage distribution scheme to only two for the striped subimage
distribution scheme. This can be beneficial if network setup times are significant, as
can be the case for circuit-switched networks and networks that employ wormhole
routing [26]. With these routing approaches, there is a relatively higher cost for es-
tablishing a path between a given source PE and a given destination PE, and a
relatively smaller cost for each pixel transfer. In these cases, it is possible to further
reduce the number of network settings by modifying the set of pixels that are con-
sidered by each PE.

800 —

600 —

P breakeven

400 —

200 —

I \ I I I
16 64 256 1024
Number of PEs (Iogzscale)

Fig. 6. ppreakeven VS- N for M = 1024 and w = 5.
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Consider the case using the striped subimage distribution scheme with N PEs
operating on an M-by-M image, such that each PE initially contains an M /N row by
M column subimage. Rows and columns are numbered 0 to M — 1. The first row of
pixel data contained in PE j is then row j x M /N of the original subimage, and the
last row in PE j is row ((j + 1) x M/N) — 1. Instead of sending |w/2] rows of M
pixels to each of two neighboring PEs, let PE ; send its first w—1 rows (i.e.,
2 x |w/2] rows) of pixel data to one neighbor, PE j — 1 modulo N (the pixels received
by PE N — 1 from PE 0 are ignored). This is illustrated in Fig. 7 using 3-by-3 win-
dows. Only one network setting is required, because only one destination is selected
for each PE. PE ; then has data for all the pixels in rows j x M/N through
(G+1)x M/N +w—2) modulo M, and can then perform w-by-w window calcu-
lations on the M/N image rows (jx M/N)+ |w/2] through (j+ 1)x
M/N + |w/2] — 1. In effect, the problem has been shifted “down” |[w/2] rows,

M
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PE 0|0000000000000000 MN PEO 0oooo000000000o0 M/N+2
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Fig. 7. Method for performing all transfers needed to calculate 3-by-3 window operation on image using a
single network setting.
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making it possible to perform all the necessary transfers with one network setting.
PE N — 1 is the only exception; it has to process only M /N — w + | image rows. For
Fig. 7, where w = 3, PE j then has data for all the pixels in row j x M /N through
(Gj+1) x M/N + 1) modulo M, and can then perform 3-by-3 window calculations
on the M /N image rows (j x M/N) + 1 through (j+ 1) x M/N.

As with the striped subimage scheme that uses two network settings, PEs 1 to
N — 2 each operate on an M /N-by-M subimage. However, in the version that uses a
single network setting, PE 0 operates on M /N x M meaningful pixels (as opposed to
(M/N — |w/2]) x M for the two-setting case), while PE N — 1 calculates (M /N —
w+ 1) x M meaningful pixels (as opposed to (M /N — |w/2]) x M). No PE operates
using more than M /N x M meaningful pixels (as in the two-setting case). Thus, if
changing the network setting takes extra time for a machine, the single network
setting version can be executed in less time than its two-setting counterpart.

For iterative algorithms, the same network setting will allow PEs to receive the
information they need to compute the next iteration. Each PE sends the top w — 1
rows of information to PE j — 1. Each PE now must compute a different portion of
the image (shifted slightly), but each PE has enough data to compute its share of the
overall workload, with the exception of the PEs at the bottom. Because edge pixels are
ignored, the overall image size shrinks with each iteration, and therefore, there is less
work for the PEs at the bottom of the image (i.e., no PE uses more than M /N x M
meaningful pixels). Fuller utilization of the PEs would require redistribution of the
data, entailing additional network settings, and communication costs. The one
network setting scheme is most beneficial when network settings are relatively ex-
pensive.

Even if the square subimage distribution scheme is used, the number of network
settings can still be reduced using this method. Consider the case using the square
subimage distribution scheme for N PEs operating on an M-by-M image, such that
each PE initially contains an M /+/N row by M /+/N column subimage. Assume the
PEs are logically arranged as a two-dimensional array. Let PE j be denoted PE(k, /),
where k = |j/v/N]| (i.e., the row of PE j) and / = j modulo \/N (i.e., the column of
PE j). Then PE(k, /) has rows k x (M/+/N) through (k+1) x (M/v/N) —1 for
columns / x (M /+/N) through (I + 1) x (M/+/N —1). Each PE(k, /) sends its first
(top) w — 1 rows of pixel data to PE (k — 1 modulo v/N, I), and then sends its first
(leftmost) w — 1 columns of pixel data to PE(k, [ — 1 modulo v/N). PE(k, I)’s sub-
image rows k x (M/+/N) through k x (M/+/N)+w —2 of columns [ x (M/\/N)
through (I x (M/V/N)+w—2 can be sent to PE (k— 1 modulo /N,
[ — 1 modulo v/N) through PE(k — 1 modulo /N, I). This occurs as part of the
second data transfer. For all transfers, data received by PEs (0, /) and
(k,v/N —1),0 < 1, k < +/N is ignored.

In this case, only two network settings are required, because only two destinations
are selected for each PE. PE(k, /) then has data for all the pixels in the subimage
containing rows k x (M/v/N) through (k+1)xM/\/N+w—2 and columns
I x (M/+/N) through (I + 1) x M /+/N +w — 2. (The PEs on the edges of the logical
array have some special conditions). Thus, PE(k, /) can then perform w-by-w window
calculations on a subimage with rows k x (M/v/N)+ |w/2] through (k+1)x



514 N. Giolmas et al. | Parallel Computing 25 (1999) 499-523

M/v/N + |w/2] =1, and columns [ x (M/v/N + |w/2] through (/4 1)x
M/+/N + |w/2] — 1. Analogous to the previous example, the problem has been
shifted “down” |w/2] rows and “right” |w/2] columns, making it possible to per-
form all the necessary transfers with two network settings.

This is illustrated graphically in Fig. 8 for a 3-by-3 window operation when
M/v/N = 4 (PE numbers and row/column numbers have been omitted for clarity).
In Fig. 8(a) each PE sends its top two rows of pixels to the PE “above” it. As each
PE receives the pixels from the PE ‘“below,” it forms an (M/v/N)+ 2 row by
M/+/N column subimage. Then, as illustrated in Fig. 8(b), each PE sends its two
leftmost columns of pixels to the PE to the “left.” As each PE receives pixels from
its “right” neighbor, it forms a square subimage of size (M/v/N)+2 rows by
(M/v/N) + 2 columns. Each PE can then perform a 3-by-3 window operation on a
M/+/N by M/\/N subimage, effectively moving the problem “down” and to the
“right”.

For iterative algorithms, the process may be repeated. With each iteration the
problem moves “down” and to the “right.” Because edge pixels are ignored, the
image is shrinking with each iteration and no PE uses more than M /y/N x M //N
meaningful pixels (i.e., the problem never hits the top and left edges of the image,
and PEs on the opposite edges just have less work to do).

5. Parallel implementation

The serial algorithms that compute the phases of the overall segmentation algo-
rithm were mapped onto the target parallel machine. Due to its greater efficiency for
our task, the striped distribution method was used. Theoretical analysis and ex-
perimental results were used to determine the best mapping for each phase. The
ability of PASM to switch between parallel modes can be exploited to obtain the
optimal mode selection in a single-mode implementation or the best combination of
parallel modes in a mixed-mode implementation. Examples of implementation
studies on the PASM prototype for other types of applications (with different
computational characteristics) include [10,27-29].

In Ref. [10], a practical image-processing algorithm, an edge-guided thresholding
algorithm, was used to study the phase optimization technique, where the pro-
grammer makes an implicit assumption that by combining the the best version of
each phase the optimal implementation will be achieved. Results of the study
demonstrate that the phase-optimized approach can result in a suboptimum mixed-
mode implementation, due to the effects of the temporal juxtaposition of phases of
the algorithm at execution, resulting in the macro-level “max of sums’’/“sum of
maxs’’ effect discussed in Section 3. Thus, if a phase optimization approach is used, it
is important to be sure this detrimental effect does not occur.

The phase-optimized approach is used here to find an implementation that makes
effective use of computational modes to reduce overall execution time. For the
computation required for this task and the assignment of modes discussed below, the
phase optimization was beneficial.
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Fig. 8. Method for performing all transfers needed to calculate a 3-by-3 window operation on square
subimages using two network settings (PE and row/column numbers omitted for clarity).

In determining the optimal parallel mode of execution for each phase of the
segmentation algorithm, four basic trade-offs were considered (described in Sec-
tion 3:

1. Variable instruction execution times (“‘max of sums’’/“sum of maxs”).

2. Non-uniform program flow (includes if — then — else statements).
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3. CU/PE overlap.

4. Inter-PE transfer synchronization advantage.

While (3) and (4) favor SIMD mode, (1) and (2) favor MIMD mode.

Counteracting trade-offs must be quantified. For example, most of the calcula-
tions in the segmentation algorithm involve floating point data that may require
data-dependent instruction execution times, as is the case for the PASM prototype,
invoking trade-off (1). Conversely, many of the calculations are required for every
pixel in the image, rendering the algorithms that perform them highly iterative. The
CU/PE overlap (3) ability of SIMD or mixed-mode can be utilized by letting the CU
execute the loop iterations while the PEs are calculating the desired result.

Table 1 lists the various phases of the segmentation algorithm in the required
order of execution along with their optimal parallel mapping mode, determined
through experimentation. The underlying reasons behind the mode choice are also
listed. To demonstrate how this was done, five of the phases are described below,
particularly, coefficient calculation, squared error calculation, smoothing and type
selection, and the contraction and expansion of the surface-type map.

In the segmentation algorithm, after a particular phase is completed data transfers
may be performed prior to the execution of the next phase (e.g., prior to the best
offset selection, squared error data must be transferred). Transfers are better per-
formed in the SIMD mode of operation, as described in Section 3.

In the first phase, object surfaces in the range image are locally approximated
using second-order bivariate polynomials of the form

z=ax* + by  +cxy+dv+ey+f.

The coefficients a, b, ¢, d, e, and f are determined for each pixel in the original
image by a least-squares method. For each pixel (i, j) in the original image, six
convolution operations are performed for a u-by-v window centered at pixel (i, j) (for
this study, u = v = 5). Each convolution is a running sum of element-wise multi-
plications between a distinct operator and the original range data [20]. The range
image is initially distributed among the PEs, and necessary data transfers are per-
formed before the coefficient calculations. Results of operations for pixels on the top

Table 1

Optimal parallel mode selection for each phase of the segmentation algorithm

Phase Optimal mode Reason
Coefficient calculation MIMD 1
Squared error calculation MIMD 1
Inter-PE data transfers SIMD 4

Best offset selection MIMD 2
Smoothing and type selection MIMD 1,2
Inter-PE data transfers SIMD 4
Contraction of surface map mixed-mode 2,3
Expansion of surface map mixed-mode 2,3,4
Boundary pixel selection mixed-mode 2,3
Roof and jump edge selection map superimposing MIMD 1,2
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and bottom borders of the original image are discarded (only the bottom border is
computed unnecessarily with the one network setting approach).

The convolution operators exhibit coherence in their structure, and partial results
from one convolution for a pixel can be used on subsequent convolutions for the
same pixel. It becomes advantageous to perform all six convolutions for the same
pixel in one routine, because the number of floating point calculations is decreased
due to the use of partial results. Additionally, if the individual loops for each con-
volution are unrolled (i.e., separate sections of code are used, one for each convo-
lution), the extra effort for the loop increment and test is eliminated. The routine
contains a sequence of floating point operations, whose execution time is dependent
on the data. The sum of all the execution times varies considerably between PEs,
which makes synchronization between loop iterations expensive.

Because floating-point multiplication and addition operations are data-depen-
dent, an MIMD implementation can take advantage of the “sum of maxs” vs. “max
of sums” rule, i.e., no synchronization is required between successive operations.
Conversely, because loop overhead operations can be performed on the CU while
calculations are being performed on the processing elements, an SIMD implemen-
tation may also be beneficial. Both an MIMD and an SIMD version of the coefficient
calculation phase were coded. Timing measurements for this phase indicate that the
MIMD advantages outweigh the SIMD advantages for this portion of the algorithm
with the SIMD version taking 10% longer than the MIMD.

In the next phase, the squared error value for each pixel is calculated using the
obtained coefficients. Let z(x,y) denote the original image value for pixel (x, y). Then

[squared error|(x, y:a, b, ¢, d, e, f)
2
— Z Z[auz—I—bvz+cuv+du+ev—|—f—z(x+u, y+0)

v=—2 u=—

The structure of the operation can be exploited and the inner summation loops
can be unrolled, as is the case for the coefficient calculations. This restructuring
produces an algorithm that closely resembles the coefficient calculation phase, and
thus similar considerations about the choice of operating mode apply.

One possible mixed-mode approach for these two phases is to execute the loop
control overhead on the CUs in SIMD mode, and perform the loop body in MIMD
mode. In this case, the mixed-mode implementation performs faster than the SIMD
version, but more slowly than the MIMD version. No synchronization occurs
among the PEs within the loop body, but each PE must still wait at the beginning of
the next loop iteration until all of the PEs have executed the current loop iteration,
because loop control is performed in SIMD mode. Although the operation is iter-
ative, the penalty for synchronizing the PEs after each iteration to overlap the loop
operation on the CU becomes significant as the macro “max of sums’/*‘sum of
maxs”’ rule dictates.

In the “smoothing and type selection” phase, the smoothing, surface normal
computation, and surface type selection for each pixel are performed. Each PE has
all the necessary data required to perform these three operations. Synchronization of
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the PEs between these operations is not necessary because no transfers are required.
The smoothing operation for each pixel (x, y) is obtained by first computing the
relative offset (1, v) from pixel (x, y) of the pixel within its 5-by-5 neighborhood that
has the minimum squared error value determined in the best offset selection phase.
The new ““fitted” value, z(x, y), for pixel (x, y) is computed using the coefficient
values of the pixel(x — u, y — v):

2(x,y) = a(x — u,y — v)u* + b(x — u,y — 0)v* + c(x —u,y — v)uv
+dx—u,y—vutelx—uy—vv+f(x—uy-—uv).

From the derivatives of the above equation, the Gaussian and mean curvature
values are obtained for each pixel (x, y). The surface type for pixel (x, y) can now be
computed from these curvature values through a series of conditional statements.
The normal vector for each pixel, 7(x, y), is also computed from the derivatives.

The surface type classification requires conditional clauses to determine which of
the eight surface primitives to use for the pixel. For this portion of the algorithm,
SIMD mode has the disadvantage of requiring each conditional then and else clause
to be performed serially. Because there is only one control stream, only those PEs for
which a condition clause is to be executed are active, while the other PEs in the
system are disabled.

The operations are combined in one routine and performed in MIMD mode
because of the large number of floating point calculations involved in the smoothing
and normalization phases, the conditional statements in the surface type selection,
and the fact that no synchronization is required. The PEs are synchronized at the
completion of these operations by switching to SIMD mode, to perform inter-PE
transfers of the newly computed data.

Four implementations for the smoothing and type selection phase were consid-
ered. In the first, the entire algorithm was mapped to MIMD mode. In the second
implementation the outer loop was performed in SIMD on the CU and the contents
of the loop were performed on the PEs in MIMD mode; the mixed-mode took 35%
longer than the MIMD. In the third implementation the outer loop was performed in
SIMD mode on the CU, floating point calculations were also performed in SIMD on
the PEs, and only the conditional statements were performed in MIMD on the PEs.
These mixed-mode implementations, intended to overlap the PE execution with the
CU loop operations in SIMD, failed to produce faster execution times than the pure
MIMD version. This is once again due to the macro “sum of maxs” effect observed in
the coefficient calculation phase. The pure SIMD version suffered from both ineffi-
cient conditional statement execution and the “max of sums”/“sum of maxs” effect
on the data-dependent execution times, resulting in a time 51% longer than MIMD.

In the contraction and expansion phases of the range image segmentation algo-
rithm, portions of the range image are grouped together to form segments consisting
of contiguous sets of pixels that have the same surface primitive classification. In the
contraction operation, any pixel in the image that has as its neighbor a pixel with a
surface primitive classification different from its own is removed from the image and
replaced with a void surface classification. In the expansion operation, the opposite
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occurs: any void-classified pixel is replaced with the classification of a non-void
neighbor. Contraction may be performed multiple times before the first expansion
occurs.

The obtained initial surface type map is contracted and expanded to eliminate
small regions typically due to noise (this occurs in the “surface type map” compo-
nent of Fig. 1). A conditional test is required to determine the contraction status of
each pixel. The instructions that precede the test are bit-wise operations and are
executed in SIMD mode. The mode-switching capability provided by PASM is used
to switch to MIMD mode, perform the conditional test, and then switch back to
SIMD mode.

Although mixed-mode operation is used, only two instructions are performed in
MIMD, and the rest in SIMD. This allows the loop execution to be performed on the
CU in an overlapped fashion, providing an additional degree of parallelization and
enhancing the performance of the algorithm.

Each PE “tags” the contracted pixels, counts the number of tagged pixels, and
stores the final count in a variable to be used in the expansion stage. The global sum
of these counts are examined by the CU in SIMD mode to determine whether to
continue processing. The expansion routine is executed in MIMD on each PE where
the count is greater than zero. Each contracted pixel must be expanded, based on the
most common classification value of its neighboring pixels. A series of conditional
statements is performed to obtain the most common value. Thus, MIMD mode is
chosen for this part of the phase due to the conditional nature of the operation.

Several iterations of the expansion algorithm may be required to remove all ex-
isting void-classified pixels, and inter-PE data transfers are required between each
iteration. Because MIMD transfers require expensive synchronization protocols, the
transfers are performed in SIMD mode.

For this case, a mixed-mode implementation performs better than MIMD, be-
cause in mixed-mode the loop operations and array index calculation are performed
on the CU in SIMD mode, and the PEs switch to MIMD to perform the conditional
statement (then or else depending on local data). The mixed-mode implementation is
better than pure SIMD due to the inefficient execution of conditional statements (as
discussed in Section 3 in the latter mode. Specifically, MIMD took 51% longer than
mixed mode and SIMD took 110% longer than mixed mode.

Between the squared error calculation and best offset selection phases of the
segmentation algorithm, data must be transferred between neighboring PEs. The
optimal mode for data transfers (as discussed in Section 3) is SIMD. However, an
advantage of using MIMD transfers here is that the PEs are not forced to syn-
chronize at the end of the squared error calculation phase and may proceed with the
best offset selection without paying the synchronization cost of switching from
MIMD to SIMD mode. Although this cost may make the phase optimized approach
unsuitable for some algorithms [10,23], experimental results have shown that the
variability in completion times among PEs after the squared error calculation is not
large. Thus, the synchronization cost of switching to SIMD mode is minimal, and
the benefit of performing the transfers in SIMD is more significant for this algo-
rithm.
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The execution time for this portion of the algorithm (coefficient and squared error
calculations plus transfers) is 6% faster than the pure MIMD-with-SIMD-transfers
version when executed on a 64-by-64 image with 16 PEs. The same is true for the
second data transfer phase and the two mixed-mode phases in the segmentation
algorithm. Thus, the entire algorithm is implemented using the phase optimization
approach.

Results on a 128-by-128 image are shown in Fig. 9. Because PASM is a parti-
tionable machine, experiments could be conducted on 4-PE and 8-PE mixed-mode
submachines, as well as on an all 16 PEs. Results for larger images are expected to be
similar. Most phases of the algorithm, with the exception of the surface-type map
expansion, can be performed without the collection of global data. Additionally, all
data transfers performed in the algorithm can be performed in parallel, i.e., all PEs
send and receive data at the same time. As the image size increases, the amount of
data that must be collected at a global level, and the amount of image data trans-
ferred between PEs, relative to the total amount of image data, decreases. Thus, the
speedup obtained is closer to ideal for larger images, if the number of processors
used remains fixed.

With the recent inclusion of pipelined arithmetic units in microprocessors, data-
dependent instruction execution times are becoming less prevalent. A mixed-mode
parallel machine that incorporates such processors can benefit from this fact that
eliminates variable instruction execution times and thus limits the MIMD advan-
tages in SPMD (single program, multiple data) implementations to non-uniform
program flow (i.e., conditional statements). Phases that benefit from the variable
instruction execution times can now benefit from CU/PE overlap. The phases that
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Fig. 9. Obtained speedup for segmentation algorithm (M = 128).
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incorporate the variable instruction execution times (e.g., smoothing and type se-
lection in the segmentation algorithm) can be implemented in mixed mode to also
benefit from CU/PE overlap.

6. Summary

The use of parallel processors to reduce the execution time of image processing
tasks such as range image segmentation must be conducted with attention to detail if
the full potential of the target parallel system is to be achieved. Mapping the algo-
rithm onto the architecture is not always straightforward. Among other factors, the
initial distribution of data, allocation of operations to individual processors, choice
of parallel architecture, and choice of computational mode (for the entire algorithm
or for individual phases) can impact the overall execution time of the algorithm. In
this study, the usefulness of a striped data distribution technique was demonstrated
and quantified by examining the trade-offs between minimizing the number of data
elements transferred between PEs and minimizing the number of calculations for the
given application due to the homogeneous distribution of edge pixels, independent of
the mode of parallelism. A new general technique was developed that uses a par-
ticular allocation of work to PEs in the machine to reduce the number of network
settings by one half for window-based operations. Finally, the trade-offs of different
modes of computational parallelism were quantitatively examined for different
phases of a range image segmentation algorithm, and the advantages of the mixed-
mode approach were demonstrated. The results of this study are useful for both
image processing and parallel processing researchers.
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