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Abstract

In the framework of fully permutable loops, tiling has been extensively studied as a source-

to-source program transformation. However, little work has been devoted to the mapping and

scheduling of the tiles on physical processors. Moreover, targeting heterogeneous computing

platforms has to the best of our knowledge, never been considered. In this paper we extend

static tiling techniques to the context of limited computational resources with di�erent-speed

processors. In particular, we present e�cient scheduling and mapping strategies that are as-

ymptotically optimal. The practical usefulness of these strategies is fully demonstrated by MPI

experiments on a heterogeneous network of workstations. Ó 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Tiling is a widely used technique to increase the granularity of computations and
the locality of data references. This technique applies to sets of fully permutable
loops [23,18,13]. The basic idea is to group elemental computation points into tiles
that will be viewed as computational units (the loop nest must be permutable so that
such a transformation is valid). The larger the tiles, the more e�cient are the com-
putations performed using state-of-the-art processors with pipelined arithmetic units
and a multilevel memory hierarchy (this feature is illustrated by recasting numerical
linear algebra algorithms in terms of blocked Level 3 BLAS kernels [14,10]). Another
advantage of tiling is the decrease in communication time (which is proportional to
the surface of the tile) relative to the computation time (which is proportional to the
volume of the tile). A disadvantage of tiling may be an increased latency; for ex-
ample, if there are lots of data dependences, the ®rst processor must complete the
whole execution of the ®rst tile before another processor can start the execution of
the second one. Tiling also presents load-imbalance problems: the larger the tile, the
more di�cult it is to distribute computations equally among the processors.

Tiling has been studied by several authors and in di�erent contexts (see, for ex-
ample, [17,22,21,6,19,1,9]). Rather than providing a detailed motivation for tiling,
we refer the reader to the papers by Calland, Dongarra and Robert [8] and by
H�ogsted, Carter and Ferrante [16], which provide a review of the existing literature.
Brie¯y, most of the work amounts to partitioning the iteration space of a uniform
loop nest into tiles whose shape and size are optimized according to some criterion
(such as the communication-to-computation ratio). Once the tile shape and size are
de®ned, the tiles must be distributed to physical processors and the ®nal scheduling
must be computed.

A natural way to allocate tiles to physical processors is to use a cyclic allocation of
tiles to processors. Several authors [19,16,4] suggest allocating columns of tiles to
processors in a purely scattered fashion (in HPF words, this is a CYCLIC(1) dis-
tribution of tile columns to processors). The intuitive motivation is that a cyclic
distribution of tiles is quite natural for load-balancing computations. Specifying a
columnwise execution may lead to the simplest code generation. When all processors
have equal speed, it turns out that a pure cyclic columnwise allocation provides the
best solution among all possible distributions of tiles to processors [8] ± provided
that the communication cost for a tile is not greater than the computation cost. Since
the communication cost for a tile is proportional to its surface, while the compu-
tation cost is proportional to its volume, 2 this hypothesis will be satis®ed if the tile is
large enough. 3

2 For example, for two-dimensional tiles, the communication cost grows linearly with the tile size while

the computation cost grows quadratically.
3 Of course, we can imagine a theoretical situation in which the communication cost is so large that a

sequential execution would lead to the best result.
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However, the recent development of heterogeneous computing platforms
poses a new challenge: that of incorporating processor speed as a new parameter
of the tile allocation problem. Intuitively, if the user wants to use a heterogeneous
network of computers where, say, some processors are twice as fast as some
other processors, we may want to assign twice as many tiles to the faster
processors. A cyclic distribution is not likely to lead to an e�cient implementa-
tion. Rather, we should use strategies that aim at load-balancing the work
while not introducing idle time. The design of such strategies is the goal of this
paper.

The motivation to using heterogeneous networks of workstations is clear: such
networks are ubiquitous in university departments and companies. They represent
the typical poor man's parallel computer: running a large PVM or MPI experiment
(possibly all night long) is a cheap alternative to buying supercomputer hours. The
idea is to make use of all available resources, namely slower machines in addition to
more recent ones.

The major limitation to programming heterogeneous platforms arises from the
additional di�culty of balancing the load when using processors running at
di�erent speed. Distributing the computations (together with the associated data)
can be performed either dynamically or statically, or a mixture of both. At ®rst
sight, we may think that dynamic strategies like a greedy algorithm are likely to
perform better, because the machine loads will be self-regulated, hence self-bal-
anced, if processors pick up new tasks just as they terminate their current
computation (see the survey paper of Berman [5] and the more specialized refer-
ences [2,12] for further details). However, data dependences may lead to slow the
whole process down to the pace of the slowest processor, as we demonstrate in
Section 4.

The rest of the paper is organized as follows. In Section 2 we formally state the
problem of tile allocation and scheduling for heterogeneous computing platforms.
All our hypotheses are listed and discussed and we give a theoretical way to solve
the problem by casting it in terms of an integer linear programming (ILP)
problem. The cost of solving the linear problem turns out to be prohibitive in
practice, so we restrict ourselves to columnwise allocations. Fortunately, there
exist asymptotically optimal columnwise allocations, as shown in Section 3,
where several heuristics are introduced and proved. In Section 4 we provide
MPI experiments that demonstrate the practical usefulness of our columnwise
heuristics on a network of workstations. Finally, we state some conclusions in
Section 5.

2. Problem statement

In this section, we formally state the scheduling and allocation problem that we
want to solve. We provide a complete list of all our hypotheses and discuss each in
turn.
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2.1. Hypotheses

(H1) The computation domain (or iteration space) is a two-dimensional rectangle 4

of size N1 � N2. Tiles are rectangular and their edges are parallel to the axes (see
Fig. 1). All tiles have the same ®xed size. Tiles are indexed as Ti;j, 06 i < N1,
06 j < N2.
(H2) Dependences between tiles are summarized by the vector pair

1
0

� �
;

0
1

� �� �
:

In other words, the computation of a tile cannot be started before both its left and
lower neighbor tiles have been executed. Given a tile Ti;j, we call both tiles Ti�1;j

and Ti;j�1 its successors, whenever the indices make sense.
(H3) There are P available processors interconnected as a (virtual) ring. 5 Proces-
sors are numbered from 0 to P ÿ 1. Processors may have di�erent speeds: let tq be
the time needed by processor Pq to execute a tile, for 06 q < P . While we assume
the computing resources are heterogeneous, we assume the communication net-
work is homogeneous: if two adjacent tiles T and T 0 are not assigned to the same
processor, we pay the same communication overhead Tcom, whatever the proces-
sors that execute T and T 0.

4 In fact, the dimension of the tiles may be greater than 2. Most of our heuristics use a columnwise

allocation, which means that we partition a single dimension of the iteration space into chunks to be

allocated to processors. The number of remaining dimensions is not important.

Fig. 1. A tiled iteration space with horizontal and vertical dependences.

5 The actual underlying physical communication network is not important.
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(H4) Tiles are assigned to processors by using a scheduling r and an allocation
function proc (both to be determined). Tile T is allocated to processor proc�T �,
and its execution begins at time-step r�T �. The constraints 6 induced by the depen-
dences are the following: for each tile T and each of its successors T 0, we have

r�T � � tproc�T �6 r�T 0� if proc�T � � proc�T 0�;
r�T � � tproc�T � � Tcom6 r�T 0� otherwise:

The makespan MS�r; proc� of a schedule-allocation pair �r; proc� is the total
execution time required to execute all tiles. If execution of the ®rst tile T0;0 starts at
time-step t� 0, the makespan is equal to the date at which the execution of the last
tile is executed:

MS�r; proc� � r�TN1;N2
� � tproc�TN1 ;N2

�:

A schedule-allocation pair is said to be optimal if its makespan is the smallest
possible over all (valid) solutions. Let Topt denote the optimal execution time over all
possible solutions.

2.2. Discussion

We survey our hypotheses and assess their motivations, as well as the limitations
that they may induce.

Rectangular iteration space and tiles. We note that the tiled iteration space is the
outcome of previous program transformations, as explained in Refs. [22,21,6]. The
®rst step in tiling amounts to determining the best shape and size of the tiles, as-
suming an in®nite grid of virtual processors. Because this step will lead to tiles
whose edges are parallel to extremal dependence vectors, we can perform a uni-
modular transformation and rewrite the original loop nest along the edge axes. The
resulting domain may not be rectangular, but we can approximate it using the
smallest bounding box (however, this approximation may impact the accuracy of
our results).

Dependence vectors. We assume that dependences are summarized by the vector
pair V � f�1; 0�t; �0; 1�tg. Note that these are dependences between tiles, not be-
tween elementary computations. Hence, having such dependences is a very general
situation if the tiles are large enough. Technically, since we deal with a set of fully
permutable loops, all dependence vectors have nonnegative components only, so
that V permits all other dependence vectors to be generated by transitivity. Note
that having a dependence vector �0; a�t with a P 2 between tiles, instead of having
vector �0; 1�t, would mean unusually long dependences in the original loop nest,

6 There are other constraints to express (e.g., any processor can execute at most one tile at each time-

step). See Section 2.3 for a complete formalization.
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while having �0; a�t in addition to �0; 1�t as a dependence vector between tiles is
simply redundant. In practical situations, we might have an additional diagonal
dependence vector �1; 1�t between tiles, but the diagonal communication may be
routed horizontally and then vertically, or the other way round and even may be
combined with any of the other two messages (because of vectors �0; 1�t and
�1; 0�t).

Computation±communication overlap. Note that in our model, communications
can be overlapped with the computations of other (independent) tiles. Assuming
communication±computation overlap seems a reasonable hypothesis for current
machines that have communication coprocessors and allow for asynchronous
communications (posting instructions ahead or using active messages). We can think
of independent computations going along a thread while communication is initiated
and performed by another thread [20]. An interesting approach has been proposed
by Andonov and Rajopadhye [4]: they introduce the tile period Pt as the time elapsed
between corresponding instructions of two successive tiles that are mapped to the
same processor, while they de®ne the tile latency Lt to be the time between corre-
sponding instructions of two successive tiles that are mapped to di�erent processors.
The power of this approach is that the expressions for Lt and Pt can be modi®ed to
take into account several architectural models. A detailed architectural model is
presented in Ref. [4] and several other models are explored in Ref. [3]. With our
notation, Pt � ti and Lt � ti � Tcom for processor Pi.

Homogeneous communication network. We assume that the communication time
Tcom for a tile is independent of the two processors exchanging the message. This is a
crude simpli®cation because the network interfaces of heterogeneous systems are
likely to exhibit very di�erent latency characteristics. However, because communi-
cations can be overlapped with independent computations, they eventually have little
impact on the performance, as soon as the granularity (the tile size) is chosen large
enough. This theoretical observation has been veri®ed during our MPI experiments
(see Section 4.3).

Finally, we brie¯y mention another possibility for introducing heterogeneity into
the tiling model. We chose to have all tiles of same size and to allocate more tiles to
the faster processors. Another possibility is to evenly distribute tiles to processors,
but to let their size vary according to the speed of the processor they are allocated to.
However, this strategy would severely complicate code generation. Also, allocating
several neighboring ®xed-size tiles to the same processor will have similar e�ects as
allocating variable-size tiles, so our approach will cause no loss of generality.

2.3. ILP formulation

We can describe the tiled iteration space as a task graph G � �V ;E�, where ver-
tices represent the tiles and edges represent dependences between tiles. Computing an
optimal schedule-allocation pair is a well-known task graph scheduling problem,
which is NP-complete in the general case [11].

If we want to solve the problem as stated (hypotheses (H1)±(H4)), we can use an
integer linear programming formulation. Several constraints must be satis®ed by any
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valid schedule-allocation pair. In the following, Tmax denotes an upper bound on the
total execution time. For example, Tmax can be the execution time when all the tiles
are given to the fastest processor: Tmax � N1 � N2 � min06 i<P ti (here, the ti's are
integral multiples of the unit time step).

We now translate these constraints into equations. In the following, let
i 2 f1; . . . ;N1g denote a row number, j 2 f1; . . . ;N2g a column number, q 2 f0; . . . ;
P ÿ 1g a processor number, and t 2 f0; . . . ; Tmaxg a time-step.
· Number of executions. Let Bi;j;q;t be an integer variable indicating whether the ex-

ecution of tile Ti;j begins at time-step t on processor q: if this is the case, then
Bi;j;q;t � 1, and Bi;j;q;t � 0 otherwise. Each tile must be executed once and thus starts
at one and only one time-step. Therefore, the constraints are

8i; j; q; t; Bi;j;q;t P 0 and 8i; j;
XPÿ1

q�0

XTmax

t�0

Bi;j;q;t � 1:

· Execution place and date. Using Bi;j;q;t, we can compute the date Di;j at which tile
�i; j� starts execution. We can also check which processor q processes tile �i; j�. The
0/1 result is stored in Pi;j;q:

8i; j; Di;j �
XPÿ1

q�0

XTmax

t�0

t � Bi;j;q;t and 8i; j; q; Pi;j;q �
XTmax

t�0

Bi;j;q;t:

· Communications. There must be a communication delay between the end of execu-
tion of tile �iÿ 1; j� (resp. �i; jÿ 1�) and the beginning of execution of tile �i; j� if
and only if the two tiles are not executed by the same processor, that is, if and only
if there exists q such that Pi;j;q 6� Piÿ1;j;q (resp. Pi;j;q 6� Pi;jÿ1;q). The boolean result is
stored in vi;j (resp. hi;j): vi;j � 1 if tiles �iÿ 1; j� and �i; j� are not executed by the
same processor, and vi;j � 0 otherwise. We have a similar de®nition for hi;j using
tiles �i; jÿ 1� and �i; j�. The equations are:

8i P 2; j; q; vi;j P Pi;j;q ÿ Piÿ1;j;q; vi;j P Piÿ1;j;q ÿ Pi;j;q;

8i; j P 2; q; hi;j P Pi;j;q ÿ Pi;jÿ1;q; vi;j P Pi;jÿ1;q ÿ Pi;j;q:

Note that if a communication delay is needed between the execution of tile
�iÿ 1; j� and that of tile �i; j�, then vi;j will impose one. If none is needed, vi;j may
still be equal to 1, as long as this does not increase the total execution time.

· Precedence constraints. The execution of tile �iÿ 1; j� (resp. �i; jÿ 1�) must be ®n-
ished and the data transferred, before the beginning of execution of tile �i; j�:

8i P 2; j; Di;j P Diÿ1;j � vi;jTcom �
XPÿ1

q�0

Piÿ1;j;q tq;

8i; j P 2; Di;j P Di;jÿ1 � hi;jTcom �
XPÿ1

q�0

Pi;jÿ1;q tq:

· Number of tiles executed at any time-step. A processor executes (at most) one tile at
a time. Therefore processor q can start executing at most one tile in any interval of
time tq (as tq is the time to execute a tile by processor q):
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8q; tq ÿ 16 t6 Tmax;
Xt

t0�tÿtq�1

XN1

i�1

XN2

j�1

Bi;j;q;t0 6 1:

Now that we have expressed all our constraints in a linear way, we can write the
whole linear programming system. We need only to add the objective function: the
minimization of the time-step at which the execution of the last tile TN1;N2

is termi-
nated. The ®nal linear program is presented in Fig. 2. Since an optimal rational
solution of this problem is not always an integer solution, this program must be
solved as an integer linear program.

The main drawback of the linear programming approach is its huge cost. The
program shown on Fig. 2 contains more than PN1N2Tmax variables and inequalities.
The cost of solving such a problem would be prohibitive for any practical applica-
tion. Furthermore, even if we could solve the linear problem, we might not be
pleased with the solution. We probably would prefer non-optimal but ``regular''
allocations of tiles to processors, such as columnwise or rowwise allocations. For-
tunately, such allocations can lead to asymptotically optimal solutions, as shown in
the next section.

3. Columnwise allocation

In this section we present theoretical results on columnwise allocations. In the
next section we will use these results to derive practical heuristics. Before introducing
an asymptotically optimal columnwise (or rowwise) allocation, we give a small ex-
ample to show that columnwise allocations (or equivalently rowwise allocations) are
not optimal.

3.1. Optimality and columnwise allocations

Consider a tiled iteration space with N2 � 2 columns and suppose we have P� 2
processors such that t1 � 5� t0: the ®rst processor is ®ve times faster than the second

Fig. 2. Integer linear program that optimally solves the schedule-allocation problem.
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one. Suppose for the sake of simplicity that Tcom � 0. If we use a columnwise allo-
cation,
· either we allocate both columns to processor 0 and the makespan is MS � 2N1t0,
· or we allocate one column to each processor and the makespan is greater than N1t1

(a lower bound for the slow processor to process its column).
The best solution is then to have the fast processor execute all tiles. But if N1 is large
enough, we can do better by allocating a small fraction of the ®rst column (the last
tiles) to the slow processor, which will process them while the ®rst processor is active
executing the ®rst tiles of the second column. For instance, if N1 � 6n and if we
allocate the last n tiles of the ®rst column to the slow processor (see Fig. 3), the
execution time becomes MS � 11nt0 � �11=6�N1t0, which is better than the best
columnwise allocation. 7

This small example shows that our target problem is intrinsically more complex
than the instance with same-speed processors: as shown in Ref. [8], a columnwise
allocation would be optimal for our two-column iteration space with two processors
of equal speed.

3.2. Heuristic allocation by block of columns

Throughout the rest of the paper we make the following additional hypothesis:
(H5) We impose the allocation to be columnwise: 8 for a given value of j, all tiles
Ti;j, 16 i6N1, are allocated to the same processor.
We start with an easy lemma to bound the optimal execution time Topt:

Fig. 3. Allocating tiles for a two-column iteration space.

7 This is not the best possible allocation, but it is superior to any columnwise allocation.
8 Note that the problem is symmetric in rows and columns. We could study rowwise allocations as well.
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Lemma 1.

Topt P
N1 � N2PPÿ1

i�0 1=ti

:

Proof. Let xi be the number of tiles allocated to processor i, 06 i < P . Obviously,PPÿ1
i�0 xi � N1N2. Even if we take into account neither the communication delays nor

the dependence constraints, the execution time T is greater than the computation
time of each processor: T P xiti for all 06 i < P . Rewriting this as xi6 T =ti and
summing over i, we get N1N2 �

PPÿ1
i�0 xi6 �

PPÿ1
i�0 1=ti�T , hence the result. h

The proof of Lemma 1 leads to the (intuitive) idea that tiles should be allocated to
processors in proportion to their relative speeds, so as to balance the workload.
Speci®cally, let L � lcm�t0; t1; . . . ; tPÿ1�, and consider an iteration space with L col-
umns: if we allocate L=ti tile columns to processor i, all processors need the same
number of time-steps to compute all their tiles: the workload is perfectly balanced.
Of course, we must ®nd a good schedule so that processors do not remain idle,
waiting for other processors because of dependence constraints.

We introduce below a heuristic that allocates the tiles to processors by blocks
of columns whose size is computed according to the previous discussion. This
heuristic produces an asymptotically optimal allocation: the ratio of its makespan
over the optimal execution time tends to 1 as the number of tiles (the domain size)
increases.

In a columnwise allocation, all the tiles of a given column of the iteration space
are allocated to the same processor. When contiguous columns are allocated to the
same processor, they form a block. When a processor is assigned several blocks, the
scheduling is the following:
1. Blocks are computed one after the other, in the order de®ned by the dependences.

The computation of the current block must be completed before the next block is
started.

2. The tiles inside a given block are computed in a rowwise order: if, say, 3 consec-
utive columns are assigned to a processor, it will execute the three tiles in the ®rst
row, then the three tiles in the second row and so on. Note that (given 1.) this
strategy is the best to minimize the latency (for another processor to start next
block as soon as possible).
The following lemma shows that dependence constraints do not slow down the

execution of two consecutive blocks (of adequate size) by two di�erent-speed pro-
cessors:

Lemma 2. Let P1 and P2 be two processors that execute a tile in time t1 and t2,
respectively. Assume that P1 was allocated a block B1 of c1 contiguous columns and that
P2 was allocated the block B2 consisting of the following c2 columns. Let c1 and c2

satisfy the equality c1t1 � c2t2.
Assume that P1, starting at time-step s1, is able to process B1 without having to wait

for any tile to be computed by some other processor. Then P2 will be able to process B2
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without having to wait for any tile computed by P1, if it starts at time
s2 P s1 � c1t1 � Tcom.

Proof. P1 (resp. P2) executes its block row by row. The execution time of a row is c1t1

(resp. c2t2). By hypothesis, it takes the same amount of time for P1 to compute a row
of B1 than for P2 to compute a row of B2. Since P1 is able to process B1 without
having to wait for any tile to be computed by some other processor, it ®nishes
computing the ith row of B1 at time s1 � ic1t1.

P2 cannot start processing the ®rst tile of the ith row of B2 before P1 has computed
the last tile of the ith row of B1 and has sent that data to P2, that is, at time-step
s1 � ic1t1 � Tcom. Since P2 starts processing the ®rst row of B2 at time s2, where
s2 P s1 � c1t1 � Tcom, it is not delayed by P1. Later on, P2 will process the ®rst tile of
the ith row of B2 at time s2 � �iÿ 1�c2t2 � s2 � �iÿ 1�c1t1 P s1 � c1t1 � Tcom�
�iÿ 1�c1t1 � s1 � ic1t1 � Tcom; hence P2 will not be delayed by P1. h

We are ready to introduce our heuristic.
Heuristic. Let P0; . . . ; PPÿ1 be P processors that respectively execute a tile in time

t0; . . . ; tPÿ1. We allocate column blocks to processors by chunks of
C � L�PPÿ1

i�0 1=ti, where L � lcm�t0; t1; . . . ; tPÿ1� columns. For the ®rst chunk, we
assign the block B0 of the ®rst L=t0 columns to P0, the block B1 of the next L=t1

columns to P1, and so on until Ppÿ1 receives the last L=tp columns of the chunk. We
repeat the same scheme with the second chunk (columns C � 1 to 2C) ®rst and so on
until all columns are allocated (note that the last chunk may be incomplete). As
already said, processors will execute blocks one after the other, row by row within
each block.

Lemma 3. The di�erence between the execution time of the heuristic allocation by
columns and the optimal execution time is bounded by

T ÿ Topt6 �P ÿ 1�Tcom � �N1 � P ÿ 1�lcm�t0; t1; . . . ; tPÿ1�:

Proof. Let L � lcm�t0; t1; . . . ; tPÿ1�. Lemma 2 ensures that, if processor Pi starts
working at time-step si � i�L� Tcom�, it will not be delayed by other processors. By
de®nition, each processor executes one block in time LN1. The maximal number of
blocks allocated to a processor is

n � N2

L�PPÿ1
i�0 1=ti

& '
:

The total execution time, T , is equal to the date the last processor terminates exe-
cution. T can be bounded as follows: 9

T 6 sP � n� LN1:

9 Processor PPÿ1 is not necessarily the last one, because the last chunk may be incomplete.
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On the other hand, Topt is lower bounded by Lemma 1. We derive

T ÿ Topt6 �P ÿ 1��L� Tcom� � LN1

N2

L�PPÿ1
i�0 1=ti

& '
ÿ N1 � N2PPÿ1

i�0 1=ti

:

Since dxe6 x� 1 for any rational number x, we obtain the desired formula. h

Proposition 1. Our heuristic is asymptotically optimal: letting T be its makespan, and
Topt be the optimal execution time, we have

lim
N2!�1

T
Topt

� 1:

The two main advantages of our heuristic are (i) its regularity, which leads to an
easy implementation; and (ii) its guarantee: it is theoretically proved to be close to
the optimal. However, we will need to adapt it to deal with practical cases, because
the number C � L�PPÿ1

i�0 1=ti of columns in a chunk may be too large.

4. Practical heuristics

In the preceding section, we described a heuristic that allocates blocks of columns
to processors in a cyclic fashion. The size of the blocks is related to the relative speed
of the processors and can be huge in practice. Therefore, a straightforward appli-
cation of our heuristic would lead to serious di�culties, as shown next in Section 4.1.
Furthermore, the execution time variables ti are not known accurately in practice.
We explain how to modify the heuristic (computing di�erent block sizes) in Sec-
tion 4.2.

4.1. Processor speed

To expose the potential di�culties of the heuristic, we conducted experiments on a
heterogeneous network of eight Sun workstations. To compute the relative speed of
each workstation, we used a program that runs the same piece of computation that
will be used later in the tiling program. Results are reported in Table 1.

To use our heuristic, we must allocate chunks of size C � L
P7

i�0 1=ti columns,
where L � lcm�t0; t1; . . . ; t7� � 34; 560; 240. We compute that C � 8; 469; 789 col-
umns, which would require a very large problem size indeed. Needless to say, such a
large chunk is not feasible in practice. Also, our measurements for the processor
speeds may not be accurate, 10 and a slight change may dramatically impact the value
of C. Hence, we must devise another method to compute the sizes of the blocks

10 The eight workstations were not dedicated to our experiments. Even though we were running these

experiments during the night, some other users' processes might have been running. Also, we have

averaged and rounded the results, so the error margin roughly lies between 5% and 10%.

558 P. Boulet et al. / Parallel Computing 25 (1999) 547±568



allocated to each processor (see Section 4.2). In Section 4.3, we present simulation
results and discuss the practical validity of our modi®ed heuristics.

4.2. Modi®ed heuristic

Our goal is to choose the ``best'' block sizes allocated to each processor while
bounding the total size of a chunk. We ®rst de®ne the cost of a block allocation and
then describe an algorithm to compute the best possible allocation, given an upper
bound for the chunk size.

4.2.1. Cost function
As before, we consider heuristics that allocate tiles to processors by blocks of

columns, repeating the chunk in a cyclic fashion. Consider a heuristic de®ned by
C � �c0; . . . ; cPÿ1�, where ci is the number of columns in each block allocated to
processor Pi:

De®nition 1. The cost of a block size allocation C is the maximum of the block
computation times (citi) divided by the total number of columns computed in each
chunk:

cost�C� � max06 i6 Pÿ1 citiP
06 i6 Pÿ1 ci

:

Considering the steady state of the computation, all processors work in parallel
inside their blocks, so that the computation time of a whole chunk is the maximum
of the computation times of the processors. During this time, s �P06 i6 Pÿ1 ci

columns are computed. Hence, the average time to compute a single column is
given by our cost function. When the number of columns is much larger than the
size of the chunk, the total computation time can well be approximated by
cost�C� � N2, the product of the average time to compute a column by the total
number of columns.

4.2.2. Optimal block size allocations
As noted before, our cost function correctly models reality when the number of

columns in each chunk is much smaller than the total number of columns of the
domain. We now describe an algorithm that returns the best (with respect to the
cost function) block size allocation given a bound s on the number of columns in a
chunk.

Table 1

Measured computation times showing relative processor speeds

Name Nala Bluegrass Dancer Donner Vixen Rudolph Zazu Simba

Description Ultra 2 SS 20 SS 5 SS 5 SS 5 SS 10 SS1 4/60 SS1 4/60

Execution time ti 11 26 33 33 38 40 528 530
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We build a function that, given a best allocation with a chunk size equal to
nÿ 1, computes a best allocation with a chunk size equal to n. Once we have this
function, we start with an initial chunk size n � 0, compute a best allocation for
each increasing value of n up to n � s and select the best allocation encountered so
far.

First we characterize the best allocations for a given chunk size s:

Lemma 4. Let C � �c0; . . . ; cPÿ1� be an allocation, and let s �P06 i6 Pÿ1 ci be the
chunk size. Let m � max06 i6 Pÿ1 citi denote the maximum computation time inside a
chunk.

If C veri®es

8i; 06 i6 P ÿ 1; tici6m6 ti�ci � 1�; �1�
then it is optimal for the chunk size s.

Proof. Take an allocation verifying the above Condition 1. Suppose that it is not
optimal. Then there exists a better allocation C0 � �c00; . . . ; c0Pÿ1� withP

06 i6 Pÿ1 c0i � s, such that

m0 � max
06 i6 Pÿ1

c0iti < m:

By de®nition of m, there exists i0 such that m � ci0 ti0 . We can then successively
derive

ci0 ti0 � m > m0P c0i0 ti0 ;

ci0 > c0i0 ;

9i1; ci1 < c0i1 because
X

06 i6 Pÿ1

ci

 
� s �

X
06 i6 Pÿ1

c0i

!
;

ci1 � 16 c0i1 ;

ti1�ci1 � 1�6 ti1 c0i1 ;

m6m0 �by definition of m and m0�;
which contradicts the non-optimality of the original allocation. h

There remains to build allocations satisfying Condition (1). The following algo-
rithm gives the answer:
· For the chunk size s� 0, take the optimal allocation �0; 0; . . . ; 0�.
· To derive an allocation C0 verifying Eq. (1) with chunk size s from an allocation C

verifying Eq. (1) with chunk size sÿ 1, add 1 to a well-chosen cj, one that veri®es

tj�cj � 1� � min
06 i6 Pÿ1

ti�ci � 1�: �2�

In other words, let c0i � ci for 06 i6 P ÿ 1; i 6� j, and c0j � cj � 1.
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Lemma 5. This algorithm is correct.

Proof. We have to prove that allocation C0, given by the algorithm, veri®es Eq. (1).
Since allocation C veri®es Eq. (1), we have tici6m6 tj�cj � 1�. By de®nition of j

from Eq. (2), we have

m0 � max
06 i6 Pÿ1

tic0i � max tj�cj

�
� 1�; max

16 i6 q;i6�j
tici

�
� tjc0j:

We then have tjc0j6m06 tj�c0j � 1� and

8i 6� j; 16 i6 q; tic
0
i � tici6m6m06 tjc0j � min

06 i6 Pÿ1
ti�ci � 1�6 ti�ci � 1�

� ti�c0i�1�;
so the resulting allocation does verify Eq. (1). h

To summarize, we have built an algorithm to compute ``good'' block sizes for the
heuristic allocation by blocks of columns. Once an upper bound for the chunk size
has been selected, our algorithm returns the best block sizes, according to our cost
function, with respect to this bound.

The complexity of this algorithm is O�Ps�, where P is the number of processors
and s, the upper bound on the chunk size. Indeed, the algorithm consists of s steps
where one computes a minimum over the processors. This low complexity allows us
to perform the computation of the best allocation at runtime.

A small example. To understand how the algorithm works, we present a small ex-
ample with P� 3, t0� 3, t1� 5 and t2� 8. In Table 2, we report the best allocations
found by the algorithm up to s� 7. The entry ``Selected j'' denotes the value of j that
is chosen to build the next allocation. Note that the cost of the allocations is not a
decreasing function of s. If we allow chunks of size not greater than 7, the best
solution is obtained with the chunk (3,2,1) of size 6.

Finally, we point out that our modi®ed heuristic ``converges'' to the original as-
ymptotically optimal heuristic. For a chunk of size C � L�PPÿ1

i�0 1=ti, where
L � lcm�t0; t1; . . . ; tPÿ1� columns, we obtain the optimal cost

Table 2

Running the algorithm with 3 processors: t0� 3, t1� 5 and t2� 8

Chunk size c0 c1 c2 Cost Selected j

0 0 0 0 0

1 1 0 0 3 1

2 1 1 0 2.5 0

3 2 1 0 2 2

4 2 1 1 2 0

5 3 1 1 1.8 1

6 3 2 1 1.67 0

7 4 2 1 1.71
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costopt � L
C
�

X
06 i6 Pÿ1

1

ti

 !ÿ1

;

which is the inverse of the harmonic mean of the execution times divided by the
number of processors.

4.2.3. Choosing the chunk size
Choosing a chunk size s is not easy. A possible approach is to slice the total

work into phases. We use small-scale experiments to compute a ®rst estimation of
the ti, and we allocate the ®rst chunk of s columns according to these values for the
®rst phase. During the ®rst phase we measure the actual performance of each
machine. At the end of the phase we collect the new values of the ti and we use
these values to allocate the second chunk during the second phase and so on. Of
course a phase must be long enough, say a couple of seconds, so that the overhead
due to the communication at the end of each phase is negligible. Hence the size s of
the chunk is chosen by the user as a trade-o�: the larger s, the more even the
predicted load, but the longer the delay to account for variations in processor
speeds.

4.2.4. Remark on the multidimensional approximation problem
Our algorithm is related to the multidimensional approximation problem where

one wants to approximate some real numbers with rationals sharing the same de-
nominator. Many algorithms exist to solve this problem (see Ref. [7], for example),
but these algorithms focus on ®nding a ``best approximation'' with respect to the real
numbers while we want ``good'' approximations made up with small numbers.

4.3. MPI experiments

We report several experiments on the network of workstations presented in
Section 4.1. After comments on the experiments, we focus on cyclic and block-cyclic
allocations and then on our modi®ed heuristics.

4.3.1. General remarks
We study di�erent columnwise allocations on the heterogeneous network of

workstations presented in Section 4.1. Our simulation program is written in C using
the MPI library for communication. It is not an actual tiling program, but it sim-
ulates such behavior: we have not inserted the code required to deal with the
boundaries of the computation domain. Actually, our code only simulates the
communications generated by a tiling, it does fake computations (hence, no data
allocation). The tiling is assumed given. Our aim is not to ®nd the ``best'' tiling. The
tile domain has 100 rows and a number of columns varying from 200 to 1000 by
steps of 100. An array of doubles of size the square root of the tile area is com-
municated for each communication (we assume here that the computation volume is
proportional to the tile area while the communication volume is proportional to its
square root).
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The actual communication network is a coax type Ethernet network. It can be
considered as a bus, not as a point-to-point connection ring; hence our model for
communication is not fully correct. However, this con®guration has little impact on
the results, which correspond well to the theoretical conditions.

As already pointed out, the workstations we use are multiple-user workstations.
Although our simulations were made at times when the workstations were not
supposed to be used by anybody else, the load may vary. The timings reported in the
®gures are the average of several measures from which aberrant data have been
suppressed.

In Figs. 4 and 6, we show for reference the sequential time as measured on the
fastest machine, namely, ``nala''.

4.3.2. Cyclic allocations
We have experimented with cyclic allocations on the 6 fastest machines, on the 7

fastest machines and on all 8 machines. Because cyclic allocation is optimal when all
processors have the same speed, this will be a reference for other simulations. We
have also tested a block cyclic allocation with block size equal to 10, in order to see
whether the reduced amount of communication helps. Fig. 4 presents the results 11

for these 6 allocations (3 purely cyclic allocations using 6, 7 and 8 machines, and 3
block-cyclic allocations).

Fig. 4. Experimenting with cyclic and block-cyclic allocations.

11 Some results are not available for 200 columns because the chunk size is too large.
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We comment on the results of Fig. 4 as follows:
· With the same number of machines, a block size of 10 is better than a block size of

1 (pure cyclic).
· With the same block size, adding a single slow machine is disastrous and adding

the second one only slightly improve the disastrous performances.
· Overall, only the block cyclic allocation with block size 10 and using the 6 fastest

machines gives some speedup over the sequential execution.
We conclude that cyclic allocations are not e�cient when the computing speeds

of the available machines are very di�erent. For the sake of completeness, we
show in Fig. 5 the execution times obtained for the same domain (100 rows and
1000 columns) and the 6 fastest machines, for block cyclic allocations with dif-
ferent block sizes. We see that the block-size as a small impact on the perfor-
mances, which corresponds well to the theory: all cyclic allocations have the same
cost.

We point out that cyclic allocations would be the outcome of a greedy master-
slave strategy. Indeed, processors will be allocated the ®rst P columns in any order.
Re-number processors according to this initial assignment. Then throughout the
computation, Pj will return after Pjÿ1 and just before Pj�1 (take indices modulo p),
because of the dependences. Hence computations would only progress at the speed
of the slowest processor, with a cost max tp=P .

4.3.3. Using our modi®ed heuristic
Let us now consider our heuristics. In Table 3, we show the block sizes computed

by the algorithm described in Section 4.2 for di�erent upper bounds of the chunk
size. The best allocation computed with bound u is denoted as Cu.

The time needed to compute these allocations is completely negligible with respect
to the computation times (a few milliseconds versus several seconds).

Fig. 5. Cyclic allocations with di�erent block sizes.
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Fig. 6 presents the results for these allocations. Here are some comments:
· Each of the allocations computed by our heuristic is superior to the best block-cy-

clic allocation.
· The more precise the allocation, the better the results.
· For 1000 columns and allocation C150, we obtain a speedup of 2.2 (and 2.1 for al-

location C50), which is very satisfying (see below).
The optimal cost for our workstation network is costopt � L=C � �34; 560; 240�=

�8; 469; 789� � 4:08. Note that cost�C150� � 4:12 is very close to the optimal cost.
The peak theoretical speedup is equal to �miniti�=�costopt� � 2:7. For 1000 col-
umns, we obtain a speedup equal to 2.2 for C150. This is satisfying considering
that we have here only 7 chunks, so that side e�ects still play an important role.
Note also that the peak theoretical speedup has been computed by neglecting all
the dependences in the computation and all the communications overhead. Hence,

Fig. 6. Experimenting with our modi®ed heuristics.

Table 3

Block sizes for di�erent chunk size bounds

Nala Bluegrass Dancer Donner Vixen Rudolph Zazu Simba Cost Chunk

C25 7 3 2 2 2 2 0 0 4.44 18

C50 15 6 5 5 4 4 0 0 4.23 39

C100 33 14 11 11 9 9 0 0 4.18 87

C150 52 22 17 17 15 14 1 1 4.12 139
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obtaining a twofold speedup with eight machines of very di�erent speeds is not a
bad result at all!

5. Conclusion

In this paper, we have extended tiling techniques to deal with heterogeneous
computing platforms. Such platforms are likely to play an important role in the
near future. We have introduced an asymptotically optimal columnwise allocation
of tiles to processors. We have modi®ed this heuristic to allocate column chunks of
reasonable size and we have reported successful experiments on a network of
workstations. The practical signi®cance of the modi®ed heuristics should be em-
phasized: processor speeds may be inaccurately known, but allocating small but
well-balanced chunks turns out to be quite successful: in practice we approach the
peak theoretical speedup.

Heterogeneous platforms are ubiquitous in computer science departments and
companies. The development of our new tiling techniques allows for the e�cient use
of older computational resources in addition to newer available systems.

The work presented in this paper is only a ®rst step towards using heteroge-
neous systems. Heterogeneous networks of workstations or PCs represent the low
end of the ®eld of distributed and heterogeneous computing. At the high end of
the ®eld, linking the most powerful supercomputers of the largest supercomputing
centers through dedicated high-speed networks will give rise to the most powerful
computational science and engineering problem-solving environment ever assem-
bled: the so-called computational grid. Providing desktop access to this ``grid'' will
make computing routinely parallel, distributed, collaborative and immersive [15].
In the middle of the ®eld, we can think of connecting medium-size parallel servers
through fast but non-dedicated links. For instance, each institution could build its
own specialized parallel machine equipped with application-speci®c databases
and application-oriented software, thus creating a ``meta-system''. The user is
then able to access all the machines of this meta-system remotely and
transparently, without each institution duplicating the resources and the exploi-
tation costs.

Whereas the architectural vision is clear, the software developments are not so
well understood. Lots of e�orts in the area of building and operating meta-systems
are targeted to infrastructure, services and applications. Not so many e�orts are
devoted to algorithm design and programming tools, while (we believe) they rep-
resent the major conceptual challenge to be tackled.
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