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Abstract

In the dynamic analysis of structures using �nite element methods

very often prohibitively many degrees of freedom are required to

model the structure su�ciently accurate� Condensation methods are

often used to reduce the number of unknowns to manageable size�

Substructuring and choosing the master variables as the degrees of

freedom on the interfaces of the substructures yields data structures

which are well suited to be implemented on parallel computers� In

this paper we discuss the use of additional non nodal masters in sub�

structuring� The data structure is preserved such that the condensed

problem can be determined substructurewise�

Keywords� eigenvalue problem� condensation� parallel method

� Introduction

In the analysis of the dynamic response of a linear structure using �nite ele�
ment methods very often prohibitively many degrees of freedom are needed
to model the behaviour of the system su�ciently accurate� In this situa�
tion condensation methods are employed to economize the computation of
a selected group of eigenvalues and eigenvectors� These methods which were
introduced by Guyan ��	 and Irons �
	 choose from the degrees of freedom
a small number of master variables which appear to be representative� In a
Gaussian elimination type procedure the rest of the variables �termed slaves�
is eliminated leaving a much smaller problem for the master variables only�

Partitioning the structure under consideration into substructures and
choosing the degrees of freedom on the interfaces of the substructures as






masters leads to data structures and formulae which are well suited to be
implemented on distributed memory MIMD parallel computers� Taking ad�
vantage of these properties Rothe and the second author obtained a fully
parallel condensation method for generalized eigenvalue problems �cf� �

	�

Usually the approximation properties of condensation methods are not
very good and only few eigenvalues at the lower end of the spectrum are
obtained with su�cient quality� Several attempts have been reported in
the literature to improve the accuracy of the eigenvalue and eigenvector
approximations�

In a recent paper ��	 the authors generalized Guyan�s method to en�
able general degrees of freedom to be master variables� This allows a priori
information about the desired eigenvectors to be introduced into the con�
densation process� and the method can be enhanced considerably� Examples
demonstrating this improvement using modal masters are contained in ��	�
�
�	 and �

	�

In this paper we carry over the parallelization concept from �
�	 to
condensation in the presence of general masters� If the structure under con�
sideration is partitioned into substructures� if all degrees of freedom on the
interfaces are chosen as masters� and if we additionally consider general
masters the supports of which are contained in a single substructure each
then the condensed eigenvalue problem can be determined substructurewise�
and therefore in parallel�

The paper is organized as follows� In Section � we brie�y sketch nodal
condensation and its parallelization taking advantage of substructuring� Sec�
tion � reviews the results from ��	 demonstrating that non nodal condensa�
tion can be performed without explicit access to the slave part of general
coordinates� Section 
 discusses the parallelization of non nodal condensa�
tion using substructuring� Section � demonstrates the gain of accuracy using
known exact eigenvectors of a similar problem as general masters�

� Nodal Condensation

The following matrix eigenvalue problem results from the �nite element
analysis of a structure undergoing free harmonic oscillations

Kx � �Mx� �
�

Here the sti�ness matrix K � IR�n�n� and the mass matrix M � IR�n�n� are
real symmetric and positive de�nite� x is the vector of modal displacements�
and � � �� where � denotes the natural frequencies of the system� To
describe the structure accurately enough the mathematical model �
� often
requires a very large number n of degrees of freedom� and reduction of the

�



number of unknowns is required before proceeding to the calculation of the
required frequencies and modal shapes�

To reduce the number of the degrees of freedom to manageable size the
vector x is partitioned into a set of variables xs �termed slaves� which are
to be eliminated and the remaining variables xm �termed masters� which
are to be retained� After reordering the unknowns and equations system �
�
obtains the following block form�

�
Kmm Kms

Ksm Kss

� �
xm
xs

�
� �

�
Mmm Mms

Msm Mss

� �
xm
xs

�
���

Solving the second row of equation ��� for xs one obtains

xs��� � ��Kss � �Mss�
���Ksm � �Msm�xm �� S���xm� ���

Thus� if �xm is the master portion of an eigenvector �x corresponding to the
eigenvalue ��� and if �� is not in the spectrum of the slave eigenvalue problem

Kss� � �Mss� �
�

then S�����xm is the slave part of �x� Hence� if we are interested in eigenvalues
close to ��� it is reasonable to project the eigenvalue problem ��� to the linear
space ��

I

S����

�
xm � xm � IRm

�
�

i�e� to consider the projected eigenvalue problem

P tKPxm � �P tMPxm� P ��

�
I

S����

�
� ���

To keep the paper at reasonable length we only consider the statically con�
densed eigenproblem which was introduced by Guyan ��	 and Irons �
	 and
which is obtained for �� � ��

K�xm � �M�xm ���

where

K� �� Kmm �KmsK
��
ss Ksm�

M� �� Mmm �KmsK
��
ss Msm �MmsK

��
ss Ksm �KmsK

��
ss MssK

��
ss Ksm�

Notice� however� that the method to be developed applies to dynamic ��� �� �
�xed�� spectral �cf� ��	�� and exact condensation ��� variable� as well�

Usually in the literature approximations to some of the smallest eigen�
values of �
� and to the master portions xm of the corresponding eigenvectors
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are obtained from the statically condensed problem ���� and the slave por�
tions xs are calculated by equation ���� Observe however� that in many cases
only very few eigenmodes are derived from ��� with su�cient accuracy� Sev�
eral attempts have been made to enhance their quality most of them being
very time consuming since an iterative process is involved �cf� ��	� ��	� ��	��
In ��	 we improved eigenvalue and eigenvector approximations substantially
by condensation�projection� A di�erent approach which takes advantage of
the Rayleigh functional of the exactly condensed problem was introduced
in �
�	� �
�	�

The condensation can be performed completely in parallel if the slave
variables can be chosen such that the matrices Kss and Mss are block diag�
onal �cf� �

	�� Suppose that r substructures are considered and that they
connect to each other through the master variables on the interfaces only�
If the slave variables are numbered appropriately� then the sti�ness matrix
is given by

K �

�
��������

Kmm Kms� Kms� � � � Kmsr

Ksm� Kss� O � � � O
Ksm� O Kss� � � � O
���

���
���

� � �
���

Ksmr O O � � � Kssr

�
							

�

and the mass matrixM has the same block form�

Taking advantage of the blockstructure of K and M the reduced matri�
ces K� and M� can be calculated substructurewise� and hence� completely
in parallel� Obviously�

K� � Kmm �
rX

j��

Kmmj �� Kmm �
rX

j��

KmsjK
��
ssjKsmj

and

M� �Mmm �
rX

j��

Mmmj �

where

Mmmj �� KmsjK
��
ssjMsmj �MmsjK

��
ssjKsmj �KmsjK

��
ssjMssjK

��
ssjKsmj �

� Non nodal masters in condensation

We already mentioned that static condensation usually allows accurate ap�
proximations only at the lower end of the spectrum� The approximation
properties can be enhanced considerably if we introduce a priori knowl�
edge about the eigenvectors via general masters� For instance in component






mode synthesis �
	 vibration modes of subsystems are already known� and
in eigenvalue reanalysis �
�	 eigenvectors of similar problems have been ob�
tained in previous calculations� Either of them may serve as general� non
nodal masters�

These general masters could be incorporated in the condensation process
in the following straightforward manner�

Let fz�� � � � � zmg be a set of linearly independent mastervectors and
ym��� � � � � yn be a complementary basis of

fz�� � � � � zmg
� �� fy � ytV zj � �� j � 
� � � � �mg

where V � IR�n�n� is a positive de�nite metric matrix�

We put Z �� �z�� � � � � zm� � IR�n�m� and Y �� �ym��� � � � � yn� � IR�n�n�m��
Then every vector x � IRn can be written as x � Zxm�Y xs� xm � IRm� xs �
IRn�m� Going with this representation into equation �
� and multiplying
with the regular matrix �Z� Y �t from the left one obtains the eigenvalue
problem �

Kzz Kzy

Kyz Kyy

��
xm
xs

�
� �

�
Mzz Mzy

Myz Mzz

��
xm
xs

�
���

where

Lzz �� Z tLZ� Lzy �� Z tLY� Lyz �� Lt
zy� Lyy �� Y tLY� L � fK�Mg� ���

In the special case that V � I is the identity and the columns of Z and
Y consist of coordinate vectors corresponding to the master and slave vari�
ables� respectively� then equation ��� reproduces the splitting in ����

The decomposition in ��� could serve as a basis for condensation using
general masters� However� there is a strong practical objection to this naive
approach� For large systems the small number of general masters z�� � � � � zm
will usually be accessible whereas the �large number of� complementary
vectors yn�m� � � � � yn are de�nitely not�

In ��	 the authors presented a general method to perform condensation
using only the master vectors z�� � � � � zm� The following theorem contains a
method for computing the condensed problems in the presence of general
masters without using the complementary basis yn�m� � � � � yn�

Theorem �� Let Z � IR�n�m� have full rank m� and let V � IR�n�n� be
a symmetric and positive de�nite metric matrix� Then with X �� V Z the
statically condensed problem with general masters z�� � � � � zm is given by

P tKPxm � �P tMPxm

where
P � K��X�X tK��X���X tZ� ���

�



�X tK��X���X tZ � IR�m�m� is a nonsingular matrix� Hence the column
space of P is spanned by the columns of K��V Z as well� and with V �M
static condensation is nothing else but one step of simultaneous inverse
iteration with initial vectors z�� � � � � zm�

The following alternative characterization of the projection matrix P
from ��	 is the key to determining the condensed eigenvalue problem sub�
structurewise in the presence of general masters�

Theorem �� Let z�� � � � � zm � IRn be linearly independent� and let V �
IR�n�n� be a symmetric and positive de�nite metric matrix� Then the statically
condensed eigenvalue problem corresponding to problem ��� is given by

P tKPxm � �P tMPxm �
��

where the matrix P � IR�n�m� can be calculated from

�
K �V Z

�Z tV O

� �
P
S

�
�

�
O
�Im

�
� �

�

Moreover� if Z tV Z � Im then the condensed sti�ness matrix is given by

P tKP � S� �
��

� General masters and substructuring

We consider the free vibrations of a structure which is decomposed into r
substructures� Let the vibration problem be discretized �by �nite elements
or �nite di�erences� in correspondence to the substructure decomposition�
i�e� kij � � and mij � � whenever i and j denote indices of interior nodes of
di�erent substructures� We choose as nodal masters those degrees of free�
dom which are located on the boundaries of the substructures� and addi�
tionally we allow general masters� We assume that the supports of any of
the general masters are contained in exactly one substructure each� Here we
have in mind nodal interior masters� or modal masters� i�e� eigenvectors of
the eigenvalue problem restricted to the substructure under consideration�
or restrictions of global approximations of eigenvectors �for instance from
reanalysis� to the substructures �cf� Section ���

In this section we demonstrate how the condensed problem can be com�
puted substructurewise� This is the basis of a fully parallel condensation
algorithm in the presence of general masters�

�



We number the variables in the usual way where the coupling of the
boundary masters �i�e� the nodal masters on the boundaries of the sub�
structures� is given by Kmm and Mmm� and the interaction of the interior
degrees of freedom of the j�th substructure and the boundary masters is
given by Ksmj � K t

msj and Msmj �M t
msj � The general masters correspond�

ing to the j�th substructure are collected in the matrix Zj � IR�sj �mj� where
sj denotes the number of interior degrees of freedom of the j�th substruc�
ture and mj the number of general masters having their support in the j�th
substructure�

Finally� we assume that the metric matrix V is block diagonal

V � diag fIm� V�� � � � � Vrg�

Then the condensed eigenvalue problem is given by

P tKP� � �P tMP��

and by Theorem � the matrix

P �� �P ���� P ���� � � � � P �r��� P ��� � IR�n�m�� P �j� � IR�n�mj�� j � 
� � � � � r�

can be calculated from the linear system

�
����������������

Kmm Kms� � � � Kmsr �Im O � � � O
Ksm� Kss� � � � O O �V�Z� � � � O
���

���
� � �

���
���

���
� � �

���
Ksmr O � � � Kssr O O � � � �V rZr

�Im O � � � O O O � � � O
O �Z t

�V� � � � O O O � � � O
���

���
� � �

���
���

���
� � �

���
O O � � � �Z t

rVr O O � � � O

�
															


�

�
��������������

P ��� P ��� � � � P �r�

S��� S��� � � � S�r�

�
													

�

�
����������������

O O � � � O
O O � � � O
���

���
� � �

���
O O � � � O
�Im O � � � O
O �Im�

� � � O
���

���
� � �

���
O O � � � �Imr

�
															


where P ��� contains that part of the matrixP which belongs to the boundary
masters� and P �j� denotes the part of the masters belonging to the general
masters of the j�th substructure�

�



Partitioning P ��� and S��� as

P ��� ��

�
������
P
���
�

P
���
�
���

P ���
r

�
					
 and S��� ��

�
������
S
���
�

S
���
�
���

S���
r

�
					


the �rst �block�� column yields the linear system

KmmP
���
� �

rX
j��

KmsjP
���
j � S

���
� � O �
��

KsmjP
���
� �KssjP

���
j � VjZjS

���
j � O� j � 
� � � � � r �

�

�P
���
� � �Im �
��

�Z t
jV jP

���
j � O� j � 
� � � � � r �
��

From equation �
�� one obtains P ���
� � Im� and therefore �

� and �
�� can

be rewritten to r systems of equations

�
Kssj �VjZj

�Z t
jVj O

� �
P
���
j

S
���
j

�
�

�
�Ksmj

O

�
� j � 
� � � � � r �
��

which are independent of each other�

Since the matrices Kssj are positive de�nite� and since the matrices Zj

have full rank� the coe�cient matrix of system �
�� is nonsingular� and the

matrices P
���
j and S

���
j can be computed substructurewise�

If the general masters are orthonormal with respect to V � i�e� if Z t
jVjZj �

Imj
� j � 
� � � � � r� then the condensed sti�ness matrix equals S� and we

determine from equation �
�� that

S
���
� � Kmm �

rX
j��

KmsjP
���
j �

For k � 
� � � � � r the matrices

P �k� ��

�
������
P
�k�
�

P
�k�
�
���

P �k�
r

�
					
 and S��� ��

�
������
S
�k�
�

S
�k�
�
���

S�k�
r

�
					


satisfy the system of equations

KmmP
�k�
� �

rX
j��

KmsjP
�k�
j � S

�k�
� � O �
��

�



KsmjP
�k�
� �KssjP

�k�
j � VjZjS

�k�
j � O� j � 
� � � � � r �
��

�P
�k�
� � O ����

�Z t
jVjP

�k�
j � O� j � 
� � � � � r� j �� k ��
�

�Z t
kVkP

�k�
k � �Imk

����

From equation ���� one obtains P
�k�
� � O� and therefore for j � 
� � � � � r�

j �� k eqns� �
�� and ��
� decouple to r homogeneous linear systems

�
Kssj �VjZj

�Z t
jVj O

� �
P
�k�
j

S
�k�
j

�
�

�
O
O

�
� j � 
� � � � � r� j �� k� ����

from which we obtain P
�k�
j � O and S

�k�
j � O for j � 
� � � � � r� j �� k�

For j � k we get

�
Kssk �VkZk

�Z t
kVk O

� �
P
�k�
k

S
�k�
k

�
�

�
O

�Imk

�
� ��
�

from which the matrices P �k�
k and S

�k�
k � too� can be determined substruc�

turewise� Notice that the coe�cient matrices in �
�� and ��
� are identical�
Hence� a decomposition of the matrix in �
�� can be reused to solve ��
��

The matrix P has the following form�

P �

�
������

I O � � � O

P
���
� P

���
� � � � O

���
���

� � �
���

P ���
r O � � � P �r�

r

�
					
 ��

�
�����

I O � � � O
P� Q� � � � O
���

���
� � �

���
Pr O � � � Qr

�
				
 �

Thus the reduced mass matrixM� � P tMP is given by

�
������

I � � � P t
j � � �

���
O diag�Qt

j�
���

�
					


�
������

Mmm � � �Mmsj � � �
���

Msmj diag�Mssj�
���

�
					


�
������

I � � �O � � �
���
Pj diag�Qj�
���

�
					
 �

�
��������

Mmm �
rP

j��
�MmsjPj � P t

jMsmj � P t
jMssjPj� � � �MmsjQj � P t

jMssjQj � � �

���
���

Qt
jMsmj �Qt

jMssjPj diag�Qt
jMssjQj�

���
���

�
							


If Z t
jVjZj � Imj

� j � 
� � � � � r� then by the last part of Theorem � the
condensed sti�ness matrix satis�esK� �� P tKP � S� SinceK� is symmetric

�



the matrices S�k�
� � �S���

k �t need not be computed from equation �
��� and

K� �

�
���������

S
���
� �S

���
� �t �S

���
� �t � � � �S���

r �t

S
���
� S

���
� O � � � O

S
���
� O S

���
� � � � O

���
���

���
� � �

���
S���
r O O � � � S�r�

r

�
								

�

Otherwise K� � P tKP has to be determined in the same way as the con�
densed mass matrixM��

Details of the implementation of the algorithm on a distributed memory
transputer system are given in �
�	�

� A numerical example

The transversal vibrations of a tapered cantilever beam of length 
 with
area of cross section Ax �� A��
 � ���x��� � � x � 
� are governed by the
eigenvalue problem

��
� ���x��y����� � ��
 � ���x��y� � � x � 
�

y��� � y���� � y���
� � y����
� � ��

where � � ���A�	�EI��� A� and I� are the area of the cross section and the
moment of inertia at x � �� respectively� � is the mass per unit volume� E
is the modulus of elasticity and � denotes the natural circular frequencies
of the beam�

We discretized the problem by �nite elements with cubic hermite splines
�beam elements�� We divided the beam into � substructures of the same
length and subdivided each substructure into �� elements of the same
length� Thus� problem �
�� has dimension n � 
�� and is condensed to
dimension m � ��

Additionally we introduced as general masters modes of the uniform
cantilever beam

y��� � �y� � � x � 
� y��� � y���� � y���
� � y����
� � �

which are assumed to be known from previous calculations� Let vj be the
eigenvector corresponding to the j�smallest eigenvalue of the uniform can�
tilever beam problem discretized by �nite elements with beam elements on
a uniform grid with stepsize 
	���


�



Let wj ��Mvj where M denotes the mass matrix of the discretized ta�
pered beam�We partition these vectors corresponding to the substructuring�
i�e�

zj�� �� wj�
 � ���� zj�� �� wj�

 � ���� zj�	 �� wj��
 � 

���

Table 
 contains the � smallest eigenvalues in its �rst column� the relative
errors of the approximate eigenvalues obtained by nodal condensation using
� boundary masters in its second column� and the relative errors if we add 
�
� or � general masters in each substructure obtained from the eigenmodes
of the uniform beam as described above� As metric matrix we chose the
identity matrix V � I�

j �j nodal c� 
 general m� � general m� � general m�

 ��
����
E�
 ����E � �
 
���E � �� 
���E � 

 
���E � 


� ����
���E�� 
���E � �� 
���E � �
 ����E � �� ��
�E � 
�
� ������

E�� ����E � �� ���
E � �� ����E � �� 
��
E � ��

 ��
�����E�� ��
�E � �
 
���E � �� ���
E � �� ��

E � ��
� ����
�
�E�
 ����E � �
 ����E � �� 
�
�E � �� ���
E � �

� 
�������E�
 
���E � �� 
��
E � �
 ��
�E � �� ��
�E � ��

Tab� ��

For comparison we give in Table � the relative errors which are obtained
if we add in each substructure � uniformly distributed displacements as inte�
rior nodal masters and � modal masters �i�e� the eigenvectors corresponding
to the � smallest eigenvalues of the clamped substructures�� respectively� In
the latter case we chose the mass matrices of the substructures as metric
matrices Vj �

j � general � interior � modal
masters nodal m� masters


 
���E � 

 
�

E � �� ����E � ��
� ��
�E � 
� ���
E � �� ����E � ��
� 
��
E � �� ���
E � �
 ����E � �


 ��

E � �� 
�
�E � �� ���
E � �

� ���
E � �
 
���E � �� ����E � �

� ��
�E � �� 
��
E � �� 
���E � ��

Tab� ��

Further examples demonstrating the superiority of modal masters to nodal
masters for membrane and plate problems are contained in ��	� �
�	 and �

	�







References

�
	 R�R� Craig and M�C�C� Bampton� Coupling of Substructures for Dy�
namic Analysis� AIAA Journal � �
���� 
�
� � 
�
�

��	 R�J� Guyan� Reduction of sti�ness and mass matrices� AIAA Journal
� �
���� ���

��	 T� Hitziger� W� Mackens� and H� Voss� A condensation�projection
method for generalized eigenvalue problems� in H� Power and C�A�
Brebbia �eds��� High Performance Computing 
� pp� ��� � ���� Else�
vier� London 
���

�
	 B� Irons� Structural eigenvalue problems� elimination of unwanted vari�
ables� AIAA Journal � �
���� ��
 � ���

��	 Y�T� Leung� An accurate method of dynamic condensation in structural
analysis� Internat� J� Numer� Meth� Engrg� 
� �
���� 
��� � 
�
�

��	 Y�T� Leung� An accurate method of dynamic substructuring with sim�
pli�ed computation� Internat� J� Numer� Meth� Engrg� 

 �
���� 
�


� 
���

��	 W� Mackens� H� Voss� Non nodal condensation of eigenvalue problems�
To appear in ZAMM

��	 V�V� Mokeyev� A frequency condensation method for the eigenvalue
problem� Comm� Numer� Meth� Engrg� 

 �
���� 
 � �

��	 M� Paz� Dynamic condensation� AIAA Journal �� �
��
� ��
 � ���

�
�	 K� Rothe and H� Voss� Improving condensation methods for eigenvalue
problems via Rayleigh functional� Comp�Meth� Appl� Mech� Engrg� 



�
��
� 
�� � 
��

�

	 K� Rothe and H� Voss� A fully parallel condensation method for gener�
alized eigenvalue problems on distributed memory computers� Parallel
Computing �
 �
���� ��� � ��


�
�	 K� Rothe and H� Voss� Modal and interior nodal masters in parallel con�
densation methods for generalized eigenvalue problems� In A� Sydow
�ed��� Proceedings of 
�th World Congress on Scienti�c Computing�
Modelling and Applied Mathematics� Vol� 
� pp� ��
 � ���� Wis�
senschaft � Technik Verlag� Berlin 
���

�
�	 H� Voss� An error bound for eigenvalue analysis by nodal condensation�
in J� Albrecht� L� Collatz� W� Velte �eds��� Numerical Treatment of
Eigenvalue Problems �� Internat� Series Numer� Math� ��� pp� ��� �
�

� Birkh�auser� Stuttgart� 
���


�



�

	 H� Voss� Interior and modal masters in condensation methods for eigen�
value problems� In H� Power� J�J� Casares�Long �eds��� Applications of
High Performance Computing in Engineering V� pp� �� � ��� Compu�
tational Mechanics Publications� Southampton 
���

�
�	 B�P� Wang and W�D� Pilkey� Eigenvalue reanalysis of locally modi�ed
structures using a generalized Rayleigh�s method� AIAA Journal �

�
���� ��� � ���


�


