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Abstract

Surfaces of many engineering structures are commonly fabricated as doubly curved
shapes to fulfill functional requirements such as hydrodynamic, aesthetic, cr struc-
tural. Given a three-dimensional design surface, the first step of the fabrication
process is flattening or planar development of this surface into a planar shape so that
the manufacturer can not only determine the initial shape of the flat plate but also
estimate the strain distribution required to form the shape. In this thesis, we develop
an algorithm for optimal development of a general doubly curved surface in the sense
that the strain from the surface to its planar development is minimized. A planar
development corresponding to minimum stretching or shrinkage is highly desirable
for the following reasons: (1) it saves material; (2) it reduces the work needed to form
the planar shape to the doubly curved design surface. The development process is
modeled by tensile strains along isoparametric directicns, or alorg principal curva-
ture directions from the curved surface to its planar development. The distribution
of the appropriate minimum strain field is obtained by solving a constrained non-
linear programming problem. Based on the strain distribution and the coefficients
of the first fundamental form of the curved surface, another unconstrained nonlinear
programming problem is solved to obtain the optimal developed planar shape. Con-
vergence, complexity, and accuracy of the algorithm are studied. Examples show the
effectiveness of this algorithm.
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Chapter 1

Introduction

1.1 Motivation and problem statement

In engineering applications, there exist two kinds of surfaces, developable and non-
developable surfaces, which are also called singly and doubly curved surfaces, re-
spectively. A developable surface has zero Gaussian curvature at all points, while a
non-developable surface has non-zero Gaussian curvature at least in some region. A
developable surface is highly favorable in metal forming since it can be formed only
by bending without tearing or stretching. For this reason, developable surfaces are
widely used in manufacturing parts whose materials are not amenable to stretching.
However, surfaces of many engineering structures are commonly fabricated as doubly
curved shapes to fulfill functional requirements such as hydrodynamic, aesthetic, or
structural. For example, a large portion of the shell plates of ship hulls or airplane
fuselages are doubly curved surfaces.

Given a three-dimensional design surface, the first step of the fabrication process
is flattening or planar development of this surface into a planar shape so that the
manufacturer can not only determine the initial shape of the flat plate but also es-
timate the strain distribution required to form the shape. Then the planar shape is
formed into the design surface by various approaches such as forming by matching
dies, by continuous hammering, or by line heating using oxyacetylene torch, laser or

heat by induction. This planar shape is usually not unique since theoretically, a large
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variety of initial planar shapes can be deformed into the curved surface if adequate
stretching or shrinkage is allowed. However, in real practice, a planar development
corresponding to minimum stretching or shrinkage is highly desirable for the follow-
ing reasons: (1) it saves material; (2) it reduces the work needed to form the planar
shape to the doubly curved design surface.

In this thesis, we develop an algorithm for optimal development of a general
doubly curved surface in the sense that the strain from the surface to its planar
development is minimized. A tensile strain (stretching) from the curved surface to its
planar development is assumed which corresponds to forming from the planar shape

to curved surface by the line heating approach.

1.2 Overview of metal forming

Forming takes place in a metal any time it is subjected to stresses that are greater
than the yield point or when the deformation stress moves from the elastic to the
plastic range. The two methods currently used for forming steel plates into curved
shells, which may be classified according to the mechanisms used to bend the plates,
are mechanical forming and thermo-mechanical forming.

In mechanical forming of a steel plate, the steel plate, which is initially flat at
room temperature, is formed into the desired shape by producing plastic deforma-
tions in appropriate amount and distributions. One of the most common methods of
producing the necessary plastic deformation is to press the plate to a die of proper
shape. Another method is to feed the plate through a set of rollers (cold rolling) to
produce the desired shape.

When a plate is being thermo-mechanically formed, plastic deformation is pro-
duced by the thermal stresses generated during the heating and subsequent cooling
of the plate. The thermo-mechanical process involved in plate bending is based on
the principle of heating one side of a plate while the other side is kept cool. The tem-
perature gradient in the material causes the metal to deform in the negative direction

(opposite to final desired shape). During this transient state, the expanded metal is
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constrained by the surrounding cooler metal, and compressive stresses result. When
the heat is removed, the plate cools and the metal contracts. The plate will then

deform in the direction reverse to that when it was heated, as shown in F igure 1-1.

] | Initial Shape

_Heated area

g
Heating Path Intermediate
Shape
L

Heated area

Figure 1-1: Line heating mechanism

Compared with mechanical pressing, thermo-mechanical forming, using an oxy-
acetylene torch, is more versatile and less expensive. Steel plates can also be formed
with complex double curvatures, and the resulting residual stresses are minimal. An-
other type of heat source is a laser. The stability and controllability of the laser beam

make it preferable as a heat source for automation.

1.3 Previous work

Early surface development procedures were implemented in shipyards based on geodesic
development during the last three decades, mainly for ship hull plates whose Gaus-
sian curvature is very small. More recently, Letcher [15] presents a basic geometric
theory for flattening and fabrication of doubly curved plates. The mapping from the
curved surface to its planar development is modeled by adding in-plane strains to
the curved surface. The strain field is obtained by solving a generalized Poisson’s
equation with the source term equal to the Gaussian curvature. However, since the
problem is formulated as a boundary value problem, a good solution relies on a well
specified boundary condition which is hard to know beforehand. Also, the differential

equation is formulated in an orthogonal coordinate system and it is not trivial to
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formulate in a non-orthogonal coordinate system. Ueda et al. [22] investigate the
relation between the final shape of a plate and the inherent strain. They compute
the strain caused by deformation from the initial configuration to the final one using
large deformation elastic FEM analysis. Since the initial configuration is rectangular,
their approach can only be applied to the cases when the 3D surface is relatively
flat, i.e. the curvature is small. Manning [17] developed a procedure for surface de-
velopment based on an isometric tree. A tree of lines with a spine and branches is
first drawn on the curved surface. Then the spline and the branch curves are devel-
oped isometrically onto planar curves, using the geodesic curvature of the spine and
branches on the surface as the curvature of the planar curves. The envelope of the
developed pattern forms the planar developed shape. Obviously, the shape of the
planar development depends on the choice of the spline and branch curves, since in
this development scheme, the stretching along both the spline and branch curves is
zero. This procedure is applied in the shoemaking industry and may not be appli-
cable in metal forming. Another disadvantage of this procedure is that it does not
provide the field of strain (deformation). Hinds et al. [12] develop doubly curved
surfaces by first approximating them by quadrilateral facets, then flattening these
platelets allowing some gaps in the developed patterns. This method is applied in
the clothing industry. The disadvantage of this methcd is that the developed shape
depends on the starting edge chosen and again if used in metal forming, it is not
guaranteed that the forming process is realizable from the planar shape to the curved
surface. Azariadis and Aspragathos [1] extend the work by Hinds et al. [12] to re-
duce the gaps by minimizing the Euclidean distances of pairs of corresponding points
between two successive strips. The quality of the development approaches in [12] [1]
largely depends on the choice of guide-strip or starting edge. Cho et al. [4] present
an algorithm to approximately develop a doubly curved surface by minimizing the
mapping error function for locally isometric mapping between a given and developed
surface net. The method has been applied to construct an auxiliary planar domain of
triangulation for tessellating trimmed parametric surface patches, which sufficiently

preserves the shape of triangles when mapped into three-dimensional space. Again,
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the applicability of Cho’s method [4] for metal forming is unclear. The disadvantage
of the available literature is that there is no general algorithm for optimal development

of general curved surfaces for metal forming process.

1.4 Thesis outline

The remaining of the thesis is arranged as follows:

Chapter 2 reviews differential geometry of surfaces, the representation of surfaces
in B-spline form, as well as the derivation of some important theorems on the gradient
of the first fundamental form coefficients across the offset direction.

Chapter 3 presents the algorithms for surface development based on the strains
along isoparametric lines.

Chapter 4 presents the algorithms for surface development based on the strains
along principal curvature directions.

Chapter 5 analyzes the complexity and the accuracy of the algorithms with respect
to the number of grid points.

Chapter 6 illustrates the performance of the surface development algorithms by
means of several examples. Surfaces with positive, negative, and mixed Gaussian
curvature are developed into two-dimensional shapes.

Chapter 7 concludes the thesis and presents suggestions for future research.

16



Chapter 2

Surface theory

2.1 Review of differential geometry of surfaces

This section reviews differential geometry of surfaces, which provides the background
for surface development algorithms. For further detail we refer to classical differential

geometry books such as [20, 14, 23, 16, 7].

2.1.1 Definition of surfaces

A surface can be defined in three different ways. They are:

(1) Implicit surface given by a function F(z,y,z) = 0. For example, the equation
Z—: + %; + ‘z—z = 1 represents an ellipsoid with half axes a, b, c in x, y, z directions

respectively.

(2) Ezplicit surface, which is obtained by solving the implicit equation F(z,y, z)=0
for one of the variables as a function of the other two. For example, z =
3(az® + By?) represents an explicit quadratic surface. When a8 < 0, the
suiface is a hyperbolic paraboloid; when a8 > 0, it is an elliptic paraboloid;

and when either @ = 0 or § =0, it is a parabolic cylinder.

(3) Parametric surface represented by z = z(u,v), y = y(u,v), z = z(u, v).

Here functions z(u, v), y(u, v), z(u, v) have continuous partial derivatives of the

17



r** order, and the parameters u and v are restricted to some intervals (i-e.,
up S u < up, vy < v < vy) leading to parametric surface patches. This
rectangular domain D of u, v is called parametric space and it is frequently the
unit square. If derivatives of the surface are continuous up to the rt* order, the

surface is said to be of class r, denoted by C”. In vector notation:
r =r(u,v) (2.1)

where r = (z,y,2), r(u,v) = (z(u,v),y(u,v), z(u, v))

Generally speaking, it is difficult to trace implicit surfaces, while it is easy to trace
the other two surfaces; it is easy to check if a point lies on an implicit or an explicit
surface, while it is difficult to check this for a parametric surface; a multi-valued
surface can be represented as an implicit surface or a parametric surface, but this is
not directly possible for an explicit surface. The rest of the thesis uses parametric

expressions of surfaces.

2.1.2 First fundamental form (arc length)

Consider a curve on a surface r = r(u(t), v(t)), which corresponds to a curve g(t) =
(u(t),v(t)) in the parametric plane. The arc length of the curve on the surface is

given by (7]

ds = |f|dt = |r,u+ r,0|dt

= \/(rud +ry0) - (Tul + r,0)dt

= \/ (ry - r,)du? + 2r,r,dudv + (r, - r,)dv?

= VEdu? + 2Fdudv + Gdv? (2.2)

18



where
EF =rr,, F=r,-r,, G=r1,-r, (2.3)

are called coefficients of the first fundamental form; overdot () denotes derivative
with respect to parameter ¢t and subscripts u, v denote partial derivatives with respect

to u,v. The first fundamental form is defined as
I = dr - dr = Edu® + 2Fdudv + Gdv® (2.4)

Note that E=r,-r, >0and G=r, -1, >0ifr, # 0 and r, # 0, and the first
fundamental form [ is positive definite. That is I > 0 and I = 0 if and only if du = 0

and dv = 0 since

and
EG - F? = (ry -1,)(ry - 1,) — (Fy - 1,)% = |1, X 1)2 > 0. (2.6)

It can be seen that I depends only on the surface and not on the parametrization.

The differential area of the surface is
dA = |r,du X r,dv| = |ty x 1, |dudv

By using Equation (2.6), we obtain

A= [[aa

[ [ VEG=T duav 2.7)
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2.1.3 Tangent plane and normal vector

Tangent plane at a point r(uo, vg) is the union of tangent vectors of all curves on the
surface passing through r(u,, v,), as shown in Figure 2-1. Since the tangent vectcr of
a curve on a parametric surface is given by f = r,u + r,7, the tangent plane is the

plane of the vectors r, and r,. The equation of the tangent plane is
Tp(uo, vo) = r(uo, vo) + Ary(uo, ve) + ury (uo, vo) (2.8)

where A and p are real variables parameterizing the plane.

>y

X

Figure 2-1: The tangent plane at a point on a surface.

The surface normal is the vector at point r(uo,vy) perpendicular to the tangent

plane, see Figure 2-2. Therefore the unit normal is given by

Iy, Xr
N— % v

- 2.9
Ty X 1y (2.9)

A regular (ordinary) point P on the surface is defined as one for which r, xr, # 0.
A point where r, xr, = 0 is called a singular point. The condition r, xr, 5 0 requires
that at point P the vectors r, and r, do not vanish and have different directions. In

the rest of this thesis, we assume that the surfaces we use include only regular points.

20



X

Figure 2-2: The normal to the point on a surface.

2.1.4 Second fundamental form 17

In order to quantify the curvatures of a surface S, we consider a curve C on S which
passes through a point P as shown in Figure 2-3. t is the unit tangent vector and n
is the unit normal vector of the curve C at point P. Then the curvature vector k of

the curve C can be expressed as:

dt
k—-d—s-fcn-k,,+kg (2.10)

where k,, is the normal curvature vector normal to the surface; k, is the geodesic

curvature vector tangent to the surface. Since k, is along the surface normal, it can

21



be written as

k., = kN, (2.11)

where &, is called the normal curvature of the surface at P in the direction t,and N
is the unit normal of the surface as defined in Equation (2.9).

The second fundamental form is given by

II = —dr - dN = Ldu? + 2Mdudv + Ndv? (2.12)

where
L=-1r,-N,=N-r, (2.13)
M=—(ry-N,+r1,-N,)=N-ry, (2.14)
N=-r,-N,=N-r,, (2.15)

are the coefficients of the second fundamental form. In deriving Equations (2.13-2.15)

above, the relations r, - N =0, r,-N = 0 are used. The normal curvature can be

expressed by

II _ L+2MA+ N
I E+2FA+GX

Kn = (2.16)

— dv
where \ = .

Suppose P is a point on a surface and @ is a point in the neighborhood of P.

Taylor’s expansion gives
r(u+ du,v + dv) = r(u,v) + rydu + r,dv + %(r,mdu2 + 2ry,dudv + 1, dv®) + H.O.T.
Therefore

PQ = r(v+du, v+dv)—r(u,v) = rudu+r,,dv+%(rwdu2+2r.,.,dudv+rwdv2)+H.O.T.

22



Thus, the projection of PQ onto N
d=PQ N = (rydu + rydv) - N + -;-11
and since r, - N =r, - N = 0, we obtain
1 1 2 2
d= 5[1: §(Ldu + 2Mdudv + Ndv®)

Therefore, the second fundamental form evaluated at a point P is a measure of the
distance from its neighboring points to the tangent plane of the surface at point P.

We want to observe in which situation d is positive and negative. When d = 0
Ldu® + 2Mdudv + Ndv? = 0

Then we solve for du

—M +\/(Mdv)2 — LNdv> _M +MZ=LN
du = I = T dv

(2.17)

We can have the following three situations:

Figure 2-4: (a) Elliptic point; (b) Parabolic point; (c) Hyperbolic point.

(1) If M> — LN < 0, there is no real root. That means there is no intersection
(locally) between the surface and its tangent plane except at point P. P is

called an elliptic point (Figure 2-4(a)).

(2) If M2 — LN =0, there is a double root. The surface intersects its tangent plane

(locally) with one line du = —%dv, which passes through point P. P is called
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a parabolic point (Figure 2-4(b)).

3) If M2 — LN > 0, there are two roots. The surface intersects its tangent plane
g

(locally) with two lines du = =MEVM"=LN g, which intersect at point P. P is

called a hyperbolic point (Figure 2-4(c)).

2.1.5 Principal curvatures

The extreme values of ,, can be obtained by evaluating %2 = 0 of Equation (2.16),

which gives:

(E+2FX+GX)(NX+ M) — (L+2MA+ NX?)(GA+ F)=0

Since

E+2FA+ G\ =
L+2MA+N)X =

Equation (2.18) can be reduced to
(E+ F))(M + N)X)

Thus

_ L+2MA+NX?

(E+ FA) + A(F+G)\)
(L+MX)+ MM+ N))

= (L + MX\)(F +G\)

_M+NXA_ L+ M

= E T 2FAT N

~ F+G)\N  E+F)\

Therefore &, satisfies the two simultaneous equations

(L — kpE)du +

(M — k,F)dv =0

(M — k. F)du+ (N - 6,G)dv =0
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These equations can be simultaneously satisfied if and only if

=0 (2.23)

L—k,FE M-k, F
M — gk, F N -k,G

where | | denotes the determinant of a matrix. Expanding and defining K and H as

LN - M?

K= % (2.24)
EN +GL-2FM

H = 7% (2.25)

we obtain a quadratic equation for k, as follows:
K2 —2HkK, + K =0 (2.26)

The values K and H are called Gauss (Gaussian) and mean curvature respectively.

The discriminant D of quadratic equation (2.26) can be expressed as follows:

D = H>-K
(EN + GL — 2FM)? — 4(EG — F2)(LN — M?)
4(EG — F2)2

By virtue of (2.6) and the fact that the surface includes only regular points, the
denominator is always positive, so we only need to investigate the numerator. The

numerator can be written as:
(EN+GL - 2FM)2 —4(EG - F2)(LN — M2)

R )
=4 (EETF_) (EM —FL)®)+[EN-GL - %(EM —FL) >0

Thus, D > 0.
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Upon solving Equation (2.26) for the extreme values of curvature, we have:

Kmaz = H+VH?2 - K (2.27)
Kmin = H - VH2 - K (2.28)

From equations (2.27), (2.28), it is readily seen that

K = KmazKmin (229)
H = K'ma:z:‘;'nmin (2.30)

From equation (2.24) (since EG — F? > 0, see Equation 2.6), we have:

(1) if K >0 then LN > M? which means this is an elliptic point
(2) if K =0 then LN = M? which means this is a parabolic point

(3) if K <0 then LN < M? which means this is a hyperbolic point

2.1.6 Gauss curvature

Alternatively, the Gaussian curvature K can be expressed as a function of F, F, G and
their derivatives [20]. After substituting Equation (2.9) into Equations (2.13-2.15)
and substituting Equation (2.13-2.15) into Equation (2.24), the Gaussian curvature is
expressed as a function of triple products of the derivatives of r. These triple products
are then expressed by products of the partial derivatives of the first fundamental form

coefficients, and the result is:

4(EG - F*y’K = E (E,G, — 2F,G, + G2)
+ F(E,G, - E,G, — 2E,F, + 4E,F, — 2F,G,)
+ G (EuGy —2E.F, + E?) — 2(EG — F?) (Eyy — 2Fyy + Go)  (2.31)
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2.2 Theorems on the gradients of the first funda-
mental form coefficients

In this section, some theorems are presented on the gradients of the first fundamental
form coefficients of the offset surface along the offset distance direction, which cor-
respond to the gradients of those coefficients across the thickness for a curved shell
plate. These theorems show that the gradients of the first fundamental form coef-
ficients of the offset surface provide the mechanism of surface curvature. In metal
forming, this means that the non-uniformity of the tensile or compressive strains
across the thickness generates surface curvature. To the author’s knowledge based
on a thorough literature search, these results have not been studied in the Computer
Aided Geometric Design community.

For a curved shell plate with thickness h, we consider r(u,v) as the mid-surface
if its offset surfaces with signed distances %/2 and —h/2 are the upper and lower
surfaces.

Theorem 2.2.1 The coefficients of the second fundamental form of a parametric

surface can be expressed by the derivatives of the coefficients of the first fundamental

form of its offset surface with respect to the offset distance d, evaluated at d = 0.

Proof: Let a progenitor parametric surface (called mid-surface) be defined by (2.1)
and the coefficients of its first fundamental form are shown in Equation (2.3). Then

the offset surface with signed distance d along the normal from the mid-surface is:
f(u,v) = r(u,v) + dN(u, v), (2.32)

where N is the unit normal vector of the surface r(u, v) at (u,v), as shown in Equation

(2.9). The first fundamental coefficients of the offset surface are functions of u, v, d:

E = #,-t, = (ty +dN,) - (r, + dN,) (2.33)
F = #,-# = (r, +dN,) - (r, + dN,) (2.34)
7 = &1, = (r, +dN,) - (r, + dN,) (2.35)
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Their derivatives with respect to d are:

SE
-a—q-‘ = 2(1‘,‘ + dNu) : Nu (2'36)
= (ru+dN) Ny + (5, +dN,) N, (2.37)
oG
50 = 2(r, + dN,) - N, (2.38)
At mid-surface, ie. for d=0
OE|  _ op, . N,=-2L (2.39)
od d=0
gE = Ty- Nu + Ty Nu = —2M (240)
od|,_,
oG .
% . = 2r,-N, = —2N (241)

Therefore, the second fundamental coefficients of the mid-surface can be expressed
by the derivatives of E, F, G, evaluated at the mid-surface. ]

A similar result can be derived for the metrics along princip=zl curvature directions.

Corollary 2.2.1 Let the parameters ciong mazimum principal curvature and mini-

mum principal curvature directions be s and t. Then

B(F, - £5) .
__—3?-2— o —ka“(rs . r3)|d=0 (2.42)
B(E; - £1) .
_ézt— » -—2k,m-n(rt . l‘t)ld=0 (2.43)

Proof: We have for the mid-surface defined by (2.1):

Ts = Tyl + TyUs (2.44)
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and

I Ty = (TulUs +Ty0;) -« (Futts + Tyvy)

= FEu?+ 2Fuv, + Gv? (2.45)

For the offset at distance d along the normal from the mid-surface, as defined in

Equation (2.32),
£, - 5 = Bu? + 2Fu,v, + Gv? (2.46)

Therefore, after taking partial derivatives of Equation (2.46) with respect to d, and

using Equations (2.39 — 2.41), we obtain

Off, - £,) = —2(Lu? + 2Mu,v, + Nv?) (2.47)
ad d=0

From Equation (2.20),

L+2MA+ NX  Lu? +2Mugv, + Nv?

fmas = T OFA+ GAZ Eu? + 2Fugv, + Gu2 (2.48)

which results in
Luj + 2Mu,v, + Nv2 = koo (Bu? + 2Fu v, + Gv?) (2.49)

Thus by substituting Equation (2.49) into Equation (2.47), and using Equation (2.45),
we have

O(fs - T5)

ad = —2kmaz(i.8 : f3)|d=0

id=0

Similarly, along the minimum principal curvature direction, where the parameter is

t, we obtain

O(fy - T4)
od

= —2kmin (ft : ft)la:o
d=0
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[ ]
Equations (2.39-2.41), (2.42, 2.43) play an important role in surface development
algorithms, since in engineering applications, curved plates have finite thickness, no

matter how thin they are.

2.3 Review of B-spline surfaces

In the area of computer aided design, parametric surfaces are usually expressed as
NURBS (Non-Uniform Rational B-Spline) surfaces. NURBS surfaces are favored
because of their flexibility, generality and explicit incorporation in data exchange

standards [13]. NURBS surface patches are defined by

i=0 2 j=0 WijRij Nk (u) Njy(v)

o X720 Wi Vit (u) Nju (v) (2.50)

R(u,v) =

where weights w;; > 0. Rj; are (n + 1)(m + 1) control points; N; (), Nj(v) are
piecewise polynomial B-spline basis functions of order & (or degree k—1) with n > k—1
and [ (or degree [ — 1) with m > | — 1, respectively. The B-spline basis functions are
defined on a set T of non-decreasing real numbers which is called the knot vector, as

follows:

T={t.=t =T < St S Sty <tap =00 = tngx}
k equalvvalues n—k+1 int:rnal knots k equalvvalues (2 51 )

Given the knot vector, the B-spline basis functions N;(u) are defined recursively

based on the Cox-de Boor algorithm [13]

| 1 € ;L
Na(w) ={ - € lotin) (2.52)
0 u¢[titiz1)
u— t.' t; —Uu
Nij(u) = Nigor(u) + =N g1 (u) (2.53)
tivk—1 — t; tivk — tig1
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(set 3 = 0 above when it occurs)
NURBS forrulation allows for exact representation of quadrics, tori, surfaces of
revolution and very general free-form surfaces. If all wij = 1, the integral B-Spline

case is recovered.

A special case of a NURBS surface is the tensor product Bézier surface defined by

R(u,v) = iiR.ﬁBi,n(u)Bj,m('U) 0<u,v<1 (2.54)

i=0 j=0

where R;; are the control points creating a contro} polyhedron (net), and B;n(u)

represents the Rernstein polynomial basis functions of degree n. The definition of a

Bernstein polynomial is:

Bin(v) = ( n ) (1 -w)"? i=0,1,2,..n
]

b n _ n!
wiiere ; = m
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Chapter 3

Surface development along

isoparametric directions

In this chapter, algorithms for surface development are presented. The process of
surface development is expressed by tensile strains along u, v isoparametric directions.
This corresponds to forming a plate into a curved surface only by shrinkage which can
be realized by line heating process. We seek an optimal development of the doubly
curved surface in a sense that the strains are minimized. This is realized by solving a
nonlinear constrained optimization problem. After the tensile strains are computed, a
2D development can be determined based on the first fundamental form coefficients of
the 2D flattened shape. These first fundamental form coefficients of the 2D flattened

shape are functions of the strains and the first fundamental form coefficients of the

curved surface.

3.1 Determination of strain field

3.1.1 Formulation

We assume that the surface is defined by a parametric vector equation of the form

r =r(u,v) (3.1)
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The surface and its planar development are shown in Figure 3-1. The coefficients of

3D 2D

develogmenz

Y‘}

r=r(u,v)

z / R=R(uvv)
\}
4 /

>
—u

Figure 3-1: Curved surface and its planar development

the first fundamental form of the curved surface are given by Equation (2.3).
Assume that during metal forming by line heating, the normal strain along u
line is €*(u,v) < 0, and the normal strain along v line is €’(u,v) < 0. On the
contrary, the strains due to expansion from curved surface to its planar development
are €“(u,v) > 0 and €’(u,v) > 0, as shown in Figure 3-2. Normal strains are a
non-dimensional quantity defined by the ratio of extension or shrinkage of a fiber

and iis original length. After surface development a strain distribution £* (u,v) along

u line (v=const)

v line (u=const)

Figure 3-2: Strain distribution produced during surface development

isoparametric line v = const, and a strain distribution €”(u,v) along isoparametric
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line u = const are produced. Consequently an infinitesimal length |r,du| changes to
(1 +€*)|rydul, and an infinitesimal length |r,dv| changes to (1 + £?)|r,dv]|, according

to the definition of strain. Thus we have

Rl = (1+€")Irul, |Ry|=(1+¢")r,| (3.2)

where R(u,v) is the planar development. The first fundamental form coefficients of

the developed surface R(u,v) are given by
e=R, Ry f=R.-Ry, g=Ry R, (3.3)
After substituting Equation (3.2) and the relations
R, R, = |R.[>, R,-R, =R,/

into Equation (3.3), the coefficients of the first fundamental form of the planar devel-

oped surface are
e=(1+¢*)’E, f=(1+e*)(1+&")F, g=(1+¢")’G (3.4)

Here, in computing f, we assume the angle between r, and r, does not change after
surface development. This is equivalent to ignoring the effect of shear strain.

We then minimize the strains €*(u, v) and £?(u, v) which satisfy the condition that
after adding these strains to the doubly curved surface, it maps to a planar shape
on which Gaussian curvature is zero. This minimization is done in an integral sense

using the squares of the strains. Using Equation (2.31), this results into

min / /D {(€)2 + (€*)?}|ra x 1, |dudv =
min //{(e“)2 + (*)*}VEG - F2dudv (3.5)
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- s 1) (T2 + 53 e P (@9

e"(u,v) > 0;¢"(u,v) > 0; (u,v) € D

where D denotes the parametric domain. We keep the denominator in Equation (3.6)
(i-e. 4(eg— f?)?) so that the constraint essentially forces the Gaussian curvature to be
zero. It can be shown that minimizing the strains £*(u, v) and €’(u, v) is equivalent
to minimizing the magnitude of the strains €*(u,v) and €’(u,v). We choose to work
with €*(u, v) and €”(u, v) since we are starting from the curved design surface.
Alternatively, we can also use (¢ + €") instead of {(¢*)? + (¢¥)?} in the above
integral objective function. In this case, the objective function represents the area
difference between the doubly curved surface and the planar development to the first
order. We use the quadratic objective function {(£*)2+(£¥)?} here instead of the linear
one to make the solution easier. After substituting Equations (3.4) into the above
formulae, we obtain an optimization problem with respect to £*(u,v) and €?(u, v).
This constrained minimization problem is discretized by using the finite difference
method and trapezoidal rule of integration. A grid of Ny x N7 points in the parametric
domain are used in the discretization. Therefore, the total number of variables is
2NgN;. It can be shown that the approximations of partial derivatives are not
independent, if a finite difference method is applied to all the grid points. A simple
example for the one-dimensional case is the discretization of derivative y' = f—};{ at grid

point 0, 1, 2:

y'l =y1“y0 ,' =y2-yo 'l =y2—y1
0 Ar 7" 2Azx 2 Az
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so we have

V0 +y'l2=241x

Therefore, to guarantee the independence of each constraint, constraints are imposed
at the internal points of the grid, so there are (N3 — 2) x (N, — 2) constraints.

After discretization, the objective function becomes

Ng Ny
o3 aii((e)? + (63)°)y BiiGiy — FjAulv
i=1j=1

where following the trapezoid rule of integration [6]

7

o =1 when 1<i< N} 1<j<Ng

a;; = 0.5 when 1<i<N;‘;j=10rj=N;

{ @;j=05 when i=1lori=N;;1<j<Ng 3.7
a;; =025 wheni=j=0ori=Ng,j=N;

a;; =025 wheni= N}, j=00ri=0,7=Ng

.

W use the central difference method to approximate all the derivatives in Equa-

tion (3.6) at internal points of the grid.

ggl - (1 + 6;‘+1,j)2Ei+1,j - (1 + E;‘—l,j)zE'-—l,j (3 8)
ou™ 2Au .
@]-- _ (a+ €2511)°Eiji1 — (L+e¥;1)°Eij (3.9)
o 2Av :
?il.j _ (1 + ey ;) (L +efy ) Fivng — (1+el 1)+l )Fiy (3.10)
ou 2Au .
g.l — (L+el )1 +ed ) Fign — (1 +ef; )1 + eti_1)Fij-1 (3.11)
v 2Av :
99 (1+€8,)%Gip; — (L +e81,)°Gin

S = ) 3.12
3ul ! 2Au (3-12)
99 (L+¢€¥;,1)%Gijur — (1 +€¥;_1)%Gij

30 = = A (3.13)
ov 2Av

O (1+€2;,,)?Eigrn — 2(1+€},) By + (L +€351) Bij

ozl = By (3.14)
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_3if_|” _ (U +edhn) + et ) Fivin
oudv'” 4AuAv

+ (L+el_ 1) +et 1) Fic1ja
4AulAv

_ (T+el_ )X+l i) Ficrin

(1+¢ )?1A -:-LA:) )F;
€it1,5-1 €it1,j~1)Fi+1,5-1
B 4AuAv (3.15)
g, (1 +el;)’Ging — 201 +€4)Gi + (1 + el_17)°Gi1;

As Au, Av — 0, the errors in Equations (3.8)-(3.16) due to central difference approx-
imation are of the order (Au)? or (Av)?, or Au- Av as is well known [6].

After discretization, we obtain a nonlinear optimization problem with a convex
cost function and nonlinear polynomial constraints. This nonlinear programming
problem is solved by using the Fortran NAG routine EO4VDF [18], which is designed
to solve the nonlinear programming problem — the minimization of a smooth nonlinear

function subject to a set of constraints on the variables.

3.1.2 Solution method

The minimization problem in Section 3.1.1 is a special case of the following nonlinear

programming problem:

minimize  (q)

q
subject to 1< | Apq | <u (3.17)

c(q)

where 1(g) is a smooth nonlinear function, A, is a constant matrix, and ¢(q) is a
vector of smooth nonlinear constraint functions. The matrix A, and/or the vector
c(g) may be empty. This form allows full generality in specifying other types of

constraints. In particular, the i (th) constraint may be defined as an equality by
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setting l; = u;. If certain bounds are not present, the associated elements of [ or
u can be set to special values that will be treated as —oo or +0o. EO4VDF is an
implementation of a sequential quadratic programming (SQP) method [11] [2]. Let
go denote the initial estimate of the solution. During the k(th) “major iteration” of
E04VDF (k=0, 1,...), a new estimate is defined by

Gk+1 = Qr + Qi Py,

where the vector p; is the solution of a QP subproblem, to be described below. The
positive scalar ay, is chosen to produce a sufficient decrease in an augmented Lagrange
function; the procedure that determines oy is the line search method.
The QP subproblem that defines Dk 1s of the form
. r , 1o
minimize ¢'p+ 5P Hp
. F p _
subject to [ < <a (3.18)
Agp
where the vector g is the gradient of 9 at g;; the matrix H is a positive definite
quasi-Newton approximation to the Hessian of an augmented Lagrangian function.
Let mz denote the number of linear constraints (the number of rows in AL), and
my denote the number of nonlinear constraints (the dimension of ¢(g)). The matrix

Agq in (3.18) has my + myy rows, and is defined as

AL

Ag =
An

where Ay is the Jacobian matrix of c(q) evaluated at g;. Let [ in (3.17) be partitioned
into three sections: the first n component (denoted by Iz), corresponding to the
bound constraints; the next my, components (denoted by I), corresponding to the
linear constraints; and the last my components (denoted by In), corresponding to

the nonlinear constraints. The vector in (3.18) is partitioned in the same way, and
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is defined as

lp=lg—qr, Ip=1,— Apge, and Iy =Ily — ¢

where ¢ is c(g) evaluated at g;. The vector @ is defined in an analogous fashion.

In general, solving the QP subproblem for p is itself an iterative procedure. Hence
a “minor iteration” of EO4VDF corresponds to an iteration within the QP algorithm.
In our implementation, the starting point of the minimization is that all the strains

are chosen to be zero.

3.1.3 Strain gradients

After solving the strain distribution at the mid-surface, we can determine the gradient
of the strains across the thickness. As mentioned in Chapter 2, the strain gradients
provide the mechanism of surface curvature in metal forming process. Based on

Equation (3.4), and
F =r, -1, = |r,||ry|sin0 = VEVGsind (3.19)

where 0 is the angle between r, and r,, the coefficients of the first fundamental form

of the offset suiface of planar development at distance d from the mid-surface are:
é=(1+&2E, f=Q+&)A+)WEGsin(+A0), §=(1+)2C (3.20)

where E, F', G are the coefficients of the first fundamental form of the offset surface;
é, f »§ are the coefficients of the first fundamental form of its development; § is the
angle between isoparametric lines u = const and v = const on the offset surface; A
is the change of this angle after development. According to the assumption in this

chapter, Af = 0 at d = 0. Ideally, after development, the 2D shape is the same across
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the thickness, thus we have

96

5d = 0 (3.21)
aof

g‘? =0 (3.22)
9 _

5 = O (3.23)

After substituting é in Equation (3.20) into Equation (3.21), we have

o(1+é%)

2E(1 + &%) Y

+(1+6%)2:—=0 (3.24)

After dividing the above equation by (1+ £*) and using Equation (2.39), at d = 0,

P oid Gk | IR e¥)(—2L) = 0, (3.25)
od d=0
S0
dlln(1 + &¥)] L
5d " F (3.26)
Similarly, Equation (3.23) leads to
Alin(1 +£v)] _ N
e |, "¢C (3:27)

After substituting f in Equation (3.20) into Equation (3.22), we obtain

7] (\/E_észn(é + AB))

od

(1 +&%)(1 +&v)

VEGsin(d + A8) 53 +(1+&%)(1+¢) =0

(3.28)
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At d = 0, the above equation results in

W1 4 o ) (\/Egsin(é + Ao))
VEGsing2L )1 +¢%) + (1 +e%)(1+e%) =0
ad -0 ad
d=0 (3.29)
Since
OV EGsin(6 + A9) _0( EGsinfcosA9 + EGcosfsinAf) |
ad - ad
d= ) ) . =0
O0(F'cosAB) O(F cot9sinA§)
= — 4
ad =0 od d=o
_ OF a(A9)
= 34 —=c0SAf g — FsinA§—— od |,
+ FcotﬂcosAOa(Ao) + Msz’nAO
0d |, ad d=0
— —2M + Feot0220) (3.30)
ad |,
from Equation (3.29), we have
Fa(1+€ )1 +¢) +(14+e*)(1+¢&"){ —2M + Fco toa(M)
od d=0 od |,
(3.31)
or equivalently,
Olln(1 + €*) + In(1 + &?)] _2M cowa(AH) (3.32)
ad g F od |,_,

During the derivation of Equation (3.30), Equation (2.40) is used, as well as the

relation
Ablg—0 =0
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3.2 Determination of planar developed shape

After solving the nonlinear minimization problem, we obtain the strains £* and €? at
all grid points. We now determine the planar coordinates (Xij, Yi;) of the grid points
at the corresponding pianar development. Ideally, these coordinates (Xij,Y:;) should

satisfy the following equations at all grid points:
Ru'Rdt=e1 R'u'R'v=f1 R‘UR'VJ:g (333)

where R = (X,Y), and ¢, f, g are obtained from Equation (3.4) as functions of u and

v. Equations (3.33) can be expressed as

X2+Y2 = e
XuXy + .Y, = f
X24+Y? = g (3.34)

After discretization of the above equations (3.34) using finite difference method (cen-
tral difference for internal points, and forward or backward difference for boundary
points), we obtain a system of over-determined nonlinear polynomial equations. In-
stead of solving the system directly, we solve the following least squares error uncon-
strained mirimization problem

Ng Ny
min ) > (Ry-Rulij — €;)® + (Ru - Rylij — fij)? + (Ry - Ry s — 9i;)?

e et

= (3.35)
This optimization problem can be solved by using the quasi-Newton method [2] for
finding an unconstrained minimization of a sum-of-squares of M; nonlinear functions

in M, variables (M; > M,). This can be done by using the NAG Fortran library
routine EO4GBF [18]. In the implementation, rigid body motion of the developed
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planar shape is prohibited by forcing the coordinates of the grid points:
(Xij» Yij)li=0,=0) = (0,0), and Yij|;=04=1) =0

The starting points of the minimization are given by

?

(Xi5,Y35) = (N_;’

J . :
'N—g;) (=1, e NG5 3 =1,..,N)).
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Chapter 4

Surface development along

principal curvature directions

In Chapter 3, surface development is expressed by tensile strains along the isopara-
metric lines. The assumption made is that the angle between isoparametric directions
remains unchanged after a doubly curved surface is developed into a two-dimensional
shape. This assumption is reasonable when the angle between isoparametric direc-
tions is large and the strains are small. In the case when the angle between r, and
I, is small at some area of the surface, this assumption may cause errors which can
not be ignored.

In this chapter, algorithms for surface development based on strains along prin-
cipal curvature directions are presented. Since the principal curvature directions
are independent of the parametrization of surfaces and are unique except at umbilic
points, this surface development is more general. Also, since the angle between two
principal curvature directions is a right angle, the assumption that this angle does

not change after development is more reasonable.

4.1 Determination of strain field

We assume that the surface is defined by the parametric vector equation (3.1). The

surface and its planar development are shown in Figure 3-1. The coefficients of the
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first fundamental form of the curved surface are given by Equation (2.3). We further

assume that during the surface development process, the strains due to expansion

from curved surface to its planar development are £°(u,v) > 0 and £t(u,v) > 0, along

the maximum and minimum principal curvature directions, respectively. Therefore

an infinitesimal length |r,ds| changes to (1 + £°)|r,ds|, and an infinitesimal length

|r:dt| changes to (1 + £*)|r,d¢], according to the definition of strain. Thus we have

IRl = (1 +)rs], [Re| = (1+€")|r|

(4.1)

where R(u,v) is the planar development. R(u,v) can also be considered as a para-

metri: surface with first fundamental form coefficients defined by Equation (3.3).

Since

R,-R, = (R'uus + Rmvs) - (Ruus + Rmvs)

= eul + fuyv, + gv?
and

Iy Ty = (Tuls + Ty¥s) - (Tyus + 1yvy)

= Eu?+ Fuw, + Guv?
using the relations in Equation (4.1, 4.2, 4.3), we obtain
eu? + 2fusv, + gv? = (1 +€°)2(Eu? + 2Fu,v, + Gv?)
Similarly, along minimum principal curvature direction, we have

eu; + 2fugwy + gv = (1 +&')2(Eu? + 2Fugw, + Go?)
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We also assume that after development, the principal curvature directions remain

orthogonal, which gives
R, R; = (Rut, + Ryv,) - (Ryy, + Ryp,) = 0 (4.6)
Simplifying the above equation gives
eusu; + f(usvy + ugvs) + gugvy = 0 (4.7)

Then we have a system of three linear equations (4.4, 4.5, 4.7) in e, f, g whose solution
is given by

v [Bu? + 2Fuv, + Gv2] (1 + €°)? + v? [Eu? + 2Fuw, + Gu?] (1 + ¢)?

(vsut - usvt)2 (48)

_w [Bud 4+ 2Fugvs + Gu2] (1 + €°)? + ugv, [Eu? + 2Fugv, + Go2] (1 + €t)?
(vsue — usvy)?

f =
(4.9)
Ui [Euf + 2Fugv, + GvZ] (1 + €°)? + u? [Eu? + 2Fusw; + Gu? (1 + &t)?

4.10
(vsus — ugv)? (4.10)

We minimize the strains ¢°(u,v) and €!(u,v) which satisfy the condition that
after adding these strains to the doubly curved surface along principal curvature
directions, the surface maps to a planar shape on which Gaussian curvature is zero.

Using Equation (2.31), this results into

min /L{(e’)z' + (¢%)?}|ry X 1 |dudv =
min / / {()? + () }VEG = Fedudv (4.11)

46



_ fo(%.%0 00 80, 2a,
such that 0 = {e(av 3 26u 6v+(6u)

N f(ae 89 Oe Og 236 6f+466 of 26f ag)

Ou v Ov Ou ov Ov ou v ou Ou

Oe Og de 6f
+ g(%'%_zau v (811))
- 2er- ) (G224 28 o=

e*(u,v) > 0;€*(u,v) > 0; (u,v) € D

where D denotes the parametric domain. After substituting Equations (4.8-4.10) into
the above formulae, we obtain an optimization problem with respect to £°(u,v) and
€'(u,v). As shown in Chapter 3, this constrained minimization problem is discretized
by using the finite difference method and trapezoidal rule of integration. The final
formulation is similar to that in Chapter 3 except that €% £¥ are replaced by &°, £t.
Again, the nonlinear constrained minimization problem is solved by using the Fortran

NAG routine E04VDF [18].

4.2 Strain gradients

After solving the strain distribution at the mid-surface, we then can determine the
gradient of the strains across the thickness. As mentioned in Chapter 2, the strain
gradients provide the mechanism of surface curvature in metal forming process. Based
on Equations (4.4, 4.5), the relations of the first fundamental form coefficients of the

offset surface of distance d along the normal from the mid-surface are:

éu? +2fuu, +gv2 = (1+&°)(Eu? +2Fu, + Go?) (4.13)
éuf + 2fu + gv; = (1+&Y2(Eu? + 2Fuw, + Go?) (4.14)
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Since after development, the 2D shape is the same across the thickness, we have

O(éu? +2 fugv, + gv?)

q 7 =9 (4.15)
A(eu? + 2 fuy + gvd) _
3d =0 {4.16)
By using the expression (2.46), we have
9 14+&)%(#,-£,)) =0 4.17
5&'(( +€)(rs'rs))— (4.17)
Expanding the above equation, we obtain at d = 0,
801 +e) . 020 - 1) _
21 +¢&°%) 5 (Fs - £5) d=0+ (1+¢%) 5 d=0—0 (4.18)
This results in
Iin(1 +&%)] 1 0, -8,)|
ad |, -, o0d |, ™= (419)

The last equality comes from Equation (2.42). Similarly,

[in(1 + £Y)]
od

1 A, &)

d=0

d=0

After solving €° and ¢! by the first nonlinear constrained optimization, and subse-
quently e, f, g in the second optimization, the reverse process of determining E, F, G
can not be achieved by solving E, F, G from the three equations (4.8, 4.9, 4.10). We

have the following results:

Theorem 4.2.1 The determinant of the linear system (4.8, 4.9, 4.10) for solving for
E F,Gis 0.

Proof: Denote a = (1+¢°)? and 3 = (1+¢)%. The determinant of the linear system

48



(4.8, 4.9, 4.10) for solving for E, F,G is

utvla + uiv?B  2ugvia+ 2uw?f vivia +vivip
det = | ywula + uv,u28  2uvsumv(a+ B)  wvvia + uwwif

2”3(‘1 + :3) 211:3'0311,?0: + 2’"::’01:11%,3 ’U o+ uzvf,B (4.21)

We expand the determinant in Equation (4.21) according to the second row, and

cancelling out similar terms, we obtain

det = 2(uweula + uwsufB)(udvsv) + viujv, — usviuiv; — wviuwy)af

- 2(usUsupvia + usvou v B) (ulvf + ugv? — 2utuiviv?)ep
+ 2uwvla + uw,vi0) (uluw? + uvduf — vviudv, — wdvulv?)as

= 0B+ caB? (4.22)

where the coefficients

a = 2uwul(uduw? +viedy, — uvdue? — uivluwd)
—  2usu(ulvf + ufv? — 2uluZv0})

+ 2uwv? (uduwd + uvduf — v2o2udv, — ud v,,ut 2v2)

=0 (4.23)
2 = 2u,wul(udvf + v4uf‘vt usv3uv? — ulviuwd)
- 2uvuv(utv) + ujv — 2u2u20? 202)

2(,.4, .3 3,4 .22 3
+ 2uw,v? (uluwd + uvdul — vviudv, — wdvulv?)

=0 (4.24)

The last equalities of Equations (4.23) and (4.24) are obtained by expanding all terms.
Therefore,
det =0
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Geometrically, this means that there are multiple solutions for E, F, G to Equa-
tions (4.8, 4.9, 4.10) if other parameters are given; i.e., if only the stretches at two
principal directions are given, the stretches along two isoparametric lines and the
change of the angle between them are indeterminate.

We thus choose to determine E, F, G from the following equations instead, ie., we
force the principal directions in the parametric domain to be the same for both the

reconstructed surface and the original surface:

[Euf + 2Fugv, + G’vf] (1+¢%)? = [euf + 2fu,u, + gvf] (4.25)
[Euf + 2Fuv; + G’vf] 1+’ = [euf + 2 fu, + g'vf] (4.26)
Eugus + F(vsu; + usvy) + Gugu, = 0 (4.27)

where Equations (4.25) and (4.26) come from Equations (4.4) and (4.5), and Equation
(4.27) is the orthogonality conditior for s, ¢ being the principal directions. The
reconstructed surface is the surface which is produced from the planar development
and the strains by metal forming, which is the reverse process of surface development.

The obtained E, F, G can be used to reconstruct the surface to see the error due
to surface development and reconstruction processes, which is equivzlent to the error

between the manufactured surface and the design surface.
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Chapter 5

Analysis of the algorithms

In this chapter, we discuss convergence, complexity, and accuracy of the algorithms
presented in Chapters 3 and 4. The symbols in this chapter follow the general practice
in the optimization literature, especially, vectors are expressed as a normal letter

insteud of a bold one.

5.1 Convergence analysis

In this section, we analyze the convergence of the surface development algorithm, i.e,
the convergence of the discrete solution to the continuous solution £%(x, v), £(u, v) to

the optimization problem (3.5).

Theorem 5.1.1 The error on the right side of Equation (3.6) due to discretization
is O((Au)?, (Av)?, Aulw).

Proof: Let h(c*(u,v),e"(u, v)) be the right side of Equation (3.6), then discretiza-
tion introduces errors O((Au)?), O((Av)?), or O(AuAv) into all the derivatives in
h(e*(u, v), €*(u,v)). By substituting 9¢ with 2¢ + O((Au)?), & 2 with 22 + O((Av)?),
etc. and expand the right side of Equation (3.6), we obtain

h(e*(u,v), €°(u, v)) = h(e*(u, v), °(u, v)) + O((Au)?, (Av)?, AuAv)
(5.1)
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where h is the constraint after discretization. 2

Theorem 5.1.2 The equations and inequalities satisfied by the discrete solution €%ij,
£¥|ij to the optimization problem (3.5 - 8.6} converge to those satisfied by the contin-

uous solution €*(u,v),e"(u,v) as Au— 0, Av — 0.

Proof: Before discretization, problem (3.5 - 3.6) is a constrained minimization of a

functional, i.e., function of functions. Let
J(e*(u, v), £"(u, v)) = / / {(")? + (€")2)VEG = Fadudv (5.2)

be the objective functional, and the constraints be

h(e*(u,v),e%(u,v)) =0 (5.3)
e*(u,v) >0 (5.4)
e'(u,v) >0 (5.5)

where h(c*(u,v), €"(u, v)) is the right side of Equation (3.6), which is also a functional

of %(u,v),e"(u,v). Let us denote
¢(e",e") = {(e")* + ()"} VEG — F? (5.6)
then the constrained minimization is equivalent to minimize [9)]

J(e*(u,v), €% (u,v)) = / / [#(e*, €”) + A(u, v)h(e¥, €%) + w (u, v)e* + pa(u, v)e’] dudv
(5.7)

where A(u,v), u1(u,v), p2(u,v) are Lagrange multipliers. From the theory of varia-

tional calculus, the stationary functions ¢*(u, v),e"(u,v) and the corresponding La-
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grange multipliers A(u, v), p1(u, v), p2(u, v) of problem (3.5 - 3.6) satisfy [9]

¢€u +/\h5u +[l,]_+A h5=)+A%(hsg) =0

a (

o
h(u, v,a",e”,e:,e,,,su,s,,) =0
ety =0
€' =0

>0 e'>0

m<0 p<9

de*  Jev g

(5.8)

(5.9)
(5.10)
(5.11)
(5.12)
(5.13)
(5.14)

where €%, €5, €2, €} denote 2~ au s B0 30 55 Tespectively, and hcy, hey, hez, hey denote

the derivatives of & with respect to the corresponding subscript.

If we denote

Dh oh 0 0
Dee = peu t ggthet) T 55 (het)
Dh oh ad 0
Dov = gt ‘a;(hea) + ‘55(’15:)

then the system of equations and inequalities (5.8-5.14) becomes

Pen (u, v) + A(uw, v) (u, v) + p1(u,v) =
bev(u,v) + A, 'v)%(u, v) + pa(u,v) = 0
h(e*,e’) =0

e¥(u, v)pa (1, v) = 0

e’ (u, v)pz(u,v) =0

e*(u,0) >0 €¥(u,v) >0

pm(w,v) <0 pa(u,v) <0

(5.15)

(5.16)

(5.17)

(5.18)
(5.19)
(5.20)
(5.21)
(5.22)
(5.23)

These are the equations and inequalities that the solution of the discrete version of

the optimization problem satisfies approximately. Let &7}, &j;, ij, f1)ij, B2|ij be this

53



soluticn, then it satisfies

el + Ny el + b + O((Aw)?) = 0 (.29
e + Mg meli + Bialy + O((Av)?) =0 (5.25)
B, vi5, €%, %) + O((Aw)?, (Av)?, AuAv)) = 0 (5.26)
£l =0 (5.27)
Elalij =0 (5.28)
220 ;>0 (5.29)
li; <0 @} <0 (5.30)

Therefore, as Au — 0, Av — 0, these equations and inequalities converge to those
satisfied by the continuous optimization solution. (]
We now discuss about the errors of the variables €ij» €1; and the objective function
due to the error in constraints coming from discretization.
If the solution to the system of equations and inequalities (5.17-5.23) is unique,
then this solution evaluated at grid points (u;, v;) satisfies the following system of

equations and inequalities:

Gew (Ui, v;) + A(w;, vj)gg—’z(u,-, v;) + pa(ui, v;) =0 (5.31)
Gev (i, v;) + Mu;, UJ’)‘D?E’%('U;‘, v;) + p2(u;, vi) =0 (5.32)
h(e"(ui,v;),€"(usi,v5)) =0 (5.33)
€% (us, v) 1 (ui, v;) =0 (5.34)
&*(ui, vj) pa(ui, vj) = 0 (5.35)
e(ui,v) >0 €%(uiyv;) >0 (5.36)
pa(ui,v) <0 po(u;,v;) <0 (5.37)

Denote V* all the free variables; i.e., variables £*(u;, v;), €% (i, v5), g1 (wi, v5), pa(us, vj)

which are nonzero, and all A(u;,v;). Further denote the equations that these free
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variables satisfy as
AV®)=0 (5.38)

Then by keeping the zero variables in the system (5.24-5.30) be the same as those in
(5.31-5.37), the remaining variables satisfy

A(V) = A(V*) + VAV*)'(V = V*) + O(IV — V*[)) = O((Au)?, (Av)?, AuAv)5.39)
Therefore, when the Jacobian matrix VA(V*) is nonsingular, we have
V - V* =0((Au)?, (Av)?, Aulv) (5.40)

This means that the discrete solution €%|ij,€"]i; converges to the continuous solution
€*(ui, vj),€%(us,v;) as Au — 0,Av — 0, and the error of variables £ij> €1; due to
discretization error is of the order O((Au)?, (Av)?, AuAv). The error of e, f, g in
(3.33) is also of the second order, which means the error of the final X, Y coordinates
of the developed shape is of the second order with respect to Au = Av. Since the
error of variables €5, €;; due to discretization error is of the second order, the error

of the objective function is also of the second order.

5.2 Complexity analysis

5.2.1 The algorithm for strain determination

As shown in Section 3.1.2, the first constrained optimization (strain determination
algorithm) involves solution of a sequential quadratic programming problems. Oper-

ations include
1. In the major iteration, operations mainly include

(1) Formulation of the H matrix, a positive definite quasi-Newton approxima-

tion to the Hessian of an augmented Lagrangian function L.
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(2) Computation of the vector g, gradient of 1(q).

-(3) Determination of the step ay by line search.

The dominant operations are in formulation of the H matrix by quasi-Newton

method:

pt = gl g

y* = VLa(d"*') - VLa(d")
Ck _ pk(pk)r _ Hkykyk’Hk
Py  y* HEyk

HFY = fgF 4 Ok

and H is an arbitrary positive definite matrix.

The total number of operations is O(n®), where n is the dimension of ¢. In
our problem, n = 2(N} — 2)(N? — 2), so the total number of operations is

O((NyN7)?).

2. Solving the QP subproblem (3.18). The method has two distinct phases. In
the first (the LP phase), an iterative procedure is carried out to determine a
feasible point. The second phase (the QP phase) generates a sequence of feasible
iterates in order to minimize the quadratic objective function. In both phases,
a subset of the constraints - called the working set - is used to define the search
directicn at each iteration; typically, the working sét includes constraints that

are satisfied within the corresponding tolerance.

Let pi denote the estimate of the sclution at kth iteration, and the next iterate
be defined by
Pk+1 = Pk + BiPr

The general procedures for a typical iteration in the QP phase are [18]

(1) Assume that the working (active) set contains #; linearly independent con-
straints, and C}, (size tx xn) denotes the matrix of coefficients of the bounds

and general constraints in the current working set.
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(2) Solve for Z;, a n x 7: matrix whose columns form a basis for the null
space of C, so that CiZi, =0. n, = — tk. Zy is obtained from the TQ

factorization of Cy in which C} is represented as
CiQr = (0Ty)

and 7. is taken as the first n, columns of Qx.

(3) The search direction
Pr = Zyp,

and the vector p, is obtained by solving the equations
Z{HZkp, = -ZT(c + Hpy)
This is solved by using the Cholesky factorization
ZIHZ, = I,

where L; is upper triangular.

(4) Determine 3, by line search.

The LP phase for determining a feasible point need only be carried out once
in each major iteration, and possibly less than once, when the solution from the
previous major iteration is feasible. The cost of linear programming depends on the
method used; so let us assume the simplex method is used. Though the worst case
performance of the method is exponential [3], this method operates op a m X n matrix
to generate a solution usually in O(m?n) time [8]. The constraint matrix in problem
(8.18) is of the size [2NyNY + (NVy - 2)(N? - 2)] x 2NNy, therefore, the LP takes
0((N;‘Ng”)3) time.

In the QP phase, step (2) takes O(n®) operations for the first iteration, and O(n?
operations for remaining iterations, Step (3) takes O(n.n?) operations for cdmputing

the matrix Z, H Z¢ in the first iteration, and O(n;n) for updating the matrix ZyHZ,
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in each of the remaining iterations. Cholesky factorization takes O(n3) operations in
the first iteration [5], and updating it takes O(n2) operations in each of the remaining
iterations. After Cholesky factorization, solving for p, takes O(n?) operations in each
iteration. Since in each of the early minor iterations, a bound constraint leaves the
active set, and when the active constraint set is the same as that for the solution, the
convergence is superlinear, the average number -.: minor iterations should be O(n).
Thus steps (2) and (3) both take O(n?®) time. For the strain determination problem,
n = 2Ny Ny, therefore, the QP phase takes O(n®) = O((N*N?)%) time.

In summary, each major iteration takes O((NzN?)%) time.

5.2.2 The algorithm for planar developed shape determina-
tion

The uncoustrained minimization problem (3.35) is a least square minimization of m =
3Ny N; equations with n = 2Ny N; variables. The general algorithm for nonlinear

least-square problems [10]
F(@) =Y [f(2)l, z€E", m<n
i=1

where the gradient vector g(z) and Hessian matrix G(x) of F(z) are given by 2J(z)T f(x)
and 2(J(z)TJ(x) + B(z)) respectively, J(z) is the m x n Jacobian matrix of f(z) =
(f1(@), s fm(2))T, B(z) = E2, fi(z)Gi(z) and Gi(x) is the Hessian matrix of f;(z),

follows:

1. Set (@, fO j© apd g = 2JO@OT fO.

2. If ) is an adequate approximation to a stationary point, the algorithm is

terminated. Otherwise continue at step 3.
3. Compute the singular-value decomposition of J®):
so g | } vT
0
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4. Select r, the grade of J*). The value of r is generally equal to the number of

dominant singular values of J and is rarely significantly less than n.

5. Compute the Gauss-Newton direction in the space spanned by V;:
m=-WSTf

6. If a correction to the Gauss-Newton direction is not required, set p, = 0 and
continue at step 7. Otherwise compute or approximate the matricesY = VZTB(")

and @ = YV,. Use the modified LDLT factorization to solve the equations
(S3+Q)y = —S2fa — Yoy,

and set p, = Vay.

The matrix B*) is approximated by H*) using a quasi-Newton approximation:

H*+D — gk) +C®

1 ®)T 1

S S O W (5 L N 2 (W W (5 27 111
a®By®ETpw Y Y pEwEE PP W,

HO — 0, C®) =
where W) = J&+1)T j(k+1) + H®) and y(k) — J(k+1)Tf(k+l) - J(k)Tf(k)_

7. Set p*) = p; + pa. Let o(o > 0) be a small pre-assigned scalar:
if —g®p®)/(]|g®|| |Ip®)]]) < o and 7 > 0 then set r = 0 and return to step 5

to recompute p*.

8. Compute a step length a*) such that
F® = F(a® +a®p®) > g (~g®p®/((1g)] [15*]))

where ¢(t) is a function such that lim_,o ¢(tx) = 0 implies limy_,o tx = 0

9. Compute zk+1) = gk) 4 o*)p*k)  fk+1) jtk+1) and gk+1). got k = k + 1 and

otinue at step 2.
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We can see that the relatively expensive steps are steps 1, 3, 5, 6. Step 1 takes
O(nm?) operations; step 3 is the singular value decomposition, and is usually solved
by a two-phased computation: first reduce the matrix to bidiagonal form, and then the
bidiagonal matrix is diagonalized [21]. Phase 1 involves O(mn?) operations. Phase
2 in principle requires an infinite number of operations, but the standard algorithms
converge superlinearly, so convergence is achieved in O(n) iterations, and each iter-
ation requires only O(n) operations. Phase 2 therefore requires O(n2) operations all
together. Thus step 3 requires O(mn?) operations. In step 5, since matrix S; is 2
diagonal matrix, only O(nr) = O(n?) operations are needed. In step 6, computing
C® requires O(mn?) operations, and solving the equation by using LDLT factoriza-
tion requires O((n — r)3) = O(n®). Therefore, since m = 3NgN; and n = 2NN,
overall, in each iteration of the non-constrained minimization, the required number

of operations is O((N2NyY)3).
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Chapter 6

Examples

In this chapter, we demonstrate how the algorithms work for surface development
based on strains along isoparametric lines and along lines of curvature. The surfaces in
the examples include surfaces with all elliptical points (positive Gaussian curvature),
surfaces with all hyperbolic points (negative Gaussian curvature), and more complex
surfaces that have both positive and negative Gaussian curvature regions. Compared
to the surfaces in shipbuilding industry, the surfaces used in the examples have much
larger absolute value of Gaussian curvature and hence they are more difficult to
develop. All examples were run on a Silicon Graphics workstation O, R5000 running

at 200 MHz.

6.1 Results on surface development along isopara-

metric lines

6.1.1 Example 1

We use this example to demonstrate the complexity and accuracy of the algorithms.

The first surface is a bicubic Bézier surface r(u,v) = £¥, ¥3_, r;;B;3(u)B;3(v),
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where all the points on the surface are-élliptic. The control points are given as follows:

(0,0,0)  (0,1/3,0.15) (0,2/3,0.15)  (0,1,0)
(1/3,0,0.25) (1/3,1/3,0.5) (1/3,2/3,0.5) (1/3,1,0.25)
(2/3,0,0.25) (2/3,1/3,0.5) (2/3,2/3,0.5) (2/3,1,0.25)

(1,0,0)  (1,1/3,0.15) (1,2/3,0.15)  (1,1,0)

Equivalently, this surface can be expressed as an explicit surface
z = 0.35625 — 0.975(z — 0.5) — 0.675(y — 0.5)% + 0.9(z — 0.5)*(y — 0.5)?

where0<z<land 0<y <1
The surface along with its control polygon is shown in Figure 6-1. The constrained
minimization problem (3.5-3.6) is discretized at 13 x 13 grid points which are equally

distributed in u, v domain. Figure 6-2 shows the strain distribution after the con-

Figure 6-1: The bi-cubic Bézier surface in Example 1

strained minimization problem was solved using tolerances 107> for the constraints
and 10~ for the objective function. The strains are scaled to fit into the figure. The
extreme values of the strain field are located at (u,v) = (0,0.5) or (u,v) = (1.0,0.5)

with (¢*,€?) = (0.0012101,0.203391), and at (u,v) = (0.5,0) or (u,v) = (0.5,1.0)
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with (¢%,€") = (0.242961, 0.00136569). The objective function converges to the value
of 6.3857 x 10~% at the solution, and all the constraints are within the tolerance of

1.0 x 1073.

il

Figure 6-2: The strain distribution of the surface in Example 1, developed along
isoparametric lines (length of line segments at grid points shows the scaled magnitude
of the two strains £* and &)

After development, the planar shape is shown in Figure 6-3. The four end points
have coordinates of (0,0), (-0.14799,1.10615), (1.18199,0.15838), (1.03399,1.26452)

respectively. The final value of the formula (3.35) is less than 10~* of the value

AL ﬁl (eZ; + fZ +¢%;), the sum of the squares of the right side of system (3.34) at

=1

all grid points.

Figure 6-4 and Figure 6-5 show the ideal strain gradient a['"(;;"eu)] and 81’"(;;'”5”)]
evaluated at grid points.
In order to estimate the accuracy of this surface development algorithm, we com-

puted E, F, G based on the e, f, g and the strains €%, £” and strain gradients we
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Figure 6-3: The planar development of the surface in Example 1, developed along
isoparametric lines

vy 05 02

Figure 6-4: Logarithmic strain gradient along u-isoparametric line of the surface in
Example 1, developed along isoparametric lines
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Figure 6-5: Logarithmic strain gradient along v-isoparametric line of the surface in
Example 1, developed along isoparametric lines

obtained after the surface development. Then we solved a reverse problem

ru'ru=E
ry ' r,=F
rv'rv=G

Ty (fu X Ty) = LVEG — F?
Ty (Tu X Ty) = MVEG — F?
Ty - (Tu X Ty) = NVEG — F?

to obtain r = (z,y, z) using the least squares error minimization as follows:

Ny N,
min 33 (ru- rulij — Bij)? + (xu - volij — Fij)® + (to - Tolij — Gij)?

i=1j=1

— 2
+ (l‘uu + (Pu X T)lij — Lijy/ EyGij — FG)
2
+ (ruv + Ty X Ty)|ij — Mij/Ei;Gij — FZ)
2
+ (rm, - (Tu X To)lij — Nij [ EyGij — FZ%) (6.1)
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We fixed 6 variables to avoid the rigid body motion in the surface reconstruction
process. We set (r,y,z) = (0,0,0) at (u,v) = (0,0), (z,y) = (0,0) at (u,v) =
(0,1), and 2z = 0 at (u,v) = (1,0). After solving the problem (6.1), the obtained
reconstructed surface is shown in Figure 6-6 (solid line) along with the original surface
(dotted line). We see an excellent match of the reconstructed surface with the original
surface. The maximum error (distance) between the grid points of reconstructed

surface and that of the origina! surface is 0.00459319.

/___/- —
—
"1
—1 B
—’4/
z ] L
S—

Figure 6-6: The reconstructed (solid line) and the original surfaces (dotted line) in
Example 1, when developed along isoparametric lines

Table 6.1 shows the CPU time spent on each optimization for various numbers of
grid points, objective functions, etc., where Ng is the number of grid points in both
u and v directions; Niterl is the number of iterations in the first optimization; obj1l
is the converged value of the objective function in the first optimization; CPU1 is the
CPU time spent on the first optimization; CPU1/Niter1 is the CPU time per iteration
in the first optimization; Niter2 is the number of iterations in the second optimization;

CPU2 is the CPU time spent on the second optimization; and CPU2/Niter?2 is the
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CPU time per iteration in the second optimization. For various numbers of grid

points, the tolerance for constraints is 107°, and the tolerance for objective function

is 104,

Table 6.1: CPU time for each optimization at various number of grid points (Example
1, development along isoparametric lines)

Ng | Niterl | objl (10~°) | CPU1 (s) | CPU1/Niterl (s) | Niter2 | CPU2 (s) | CPU2/Niter2 (s)
7 2 6.658 0.71 0.355 11 5.86 0.533

9 8 6.492 8.53 1.066 6 12.67 2.112

11 7 6.428 34.72 4.960 ) 37.00 7.400

13 18 6.386 177.49 9.861 5 110.66 22.132

15 13 6.359 401.26 30.866 6 323.23 55.538

17 15 6.341 1097.28 73.152 5 658.71 131.742

19 33 6.327 3869.18 117.25 5 1390.80 278.16

21 37 6.317 8168.48 220.77 G} 2761.26 555.25

The CPU time per iteration for each optimization is shown in Figures 6-7 and 6-8.
We see from Figures 6-7 that the CPU time per iteration in the first optimization
agrees well with the theoretical results in Chapter 5; i.e., when Ng = N; = Ny, the
CPU time per iteration in the first optimization is O(N:). However, the performance
observed for the second optimization is slightly worse than the theoretical results.
Instead of O(N) CPU time per iteration, we observed O(Ng*) time per iteration.
It is not clear why this happened. One possibility may be because the NAG routine
uses iterative methods inside each iteration, so that as N, increases, the problems are
increasingly ill-conditioned, thus requiring more mini-iterations. A thorough track of
the running time for different phases of the algorithm may be used to resolve this
problem.

Table 6.2 and Figure 6-9 show the maximum crror due to the development and
reconstruction process for various numbers of grid points. A data fitting process was

carried cut which fitted the data in Table 6.2 with the function

E = e°(Au)®
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CPU time per iteration (seconds)
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10° 10’ 10
Number of grid points in u and v directions

Figure 6-7: CPU time per iteration for 1st optimization for the surface in Example
1, developed along isoparametric lines

CPU time per iteration (seconds)

2 : R o : ;
10° 10' 10
Number of grid points in u and v directions

Figure 6-8: CPU time per iteration for 2nd optimization, for the surface in Example
1, developed along isoparametric lines

68



(where e = 2.71828...) or equivalently,
InE = aln(Au) +c (6.2)

We solve the coefficients a and ¢ by minimizing the errors in Equation (6.2) for all

the data points, which gives out the following two equations:

8
> (InE; — alnAu; — ¢)lnAu; = 0

=0
8
Y (InE; — alnAu; —c) = 0
i=0
The solution is
a=1.9397 ¢ = —0.5641

The fitted curve is also plotted in Figure 6-9. Here we see the error function due to
the surface development and reconstruction process is of the order a < 2. This is
partly because the assumption that the angle between isoparametric lines does not

change after development introduces extra errors.

Table 6.2: Accuracy of the surface development process (Example 1, development

along isoparametric lines)

Grid number 7 9 11 13 15 17 19 21
Au = Av 1/6 1/8 11/10 | 1/12 | 1/14 | 1/16 | 1/18 | 1/20

Error (x10~%) | 17.763 [ 9.935 | 6.580 | 4.549 | 3.428 [ 2.612 | 2.113 | 1.697
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d and the original surfaces
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Figure 6-9: Error due to development and reconstruction process for various numbers
of grid points for the surface in Example 1, developed along isoparametric lines
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6.1.2 Example 2

We use this example to show how the algorithms work and the convergence of the
objective function during the process.

The second surface is a bicubic Bézier surface r(u,v) =33, 3°-'=0 rijB;3(u) B; 3(v),
where all the points on the surface are hyperbolic. The control points of the saddie-

shaped surface are given by:

(0,0,0.25) (0,1/3,0.1) (0,2/3,-0.1)  (0,1,-0.25)
(1/3,0,0.1)  (1/3,1/3,0.05) (1/3,2/3,-0.05) (1/3,1, ~0.1)
(2/3,0,-0.1) (2/3,1/3,-0.05) (2/3,2/3,0.05) (2/3,1,0.1)

(1,0,-0.25)  (1,1/3,-0.1) (1,2/3,0.1) (1,1,0.25)

The surface is shown in Figure 6-10. Again, 13 x 13 grid points are used in dis-

cretization. Figure 6-11 shows the strain distribution after the constrained minimiza-

Figure 6-10: The bicubic Bézier surface in Example 2

tion problem was solved using tolerances of 10~5 for the constraints and 10~ for the
objective function. The strains are scaled to fit into the figure. The extreme values of
the strain field are located at (u, v) = (0.5,0.5) with (&, ev) = (0.0867214, 0.0886954).

The objective function converges to the value of 4.005672 x 10~3 at the solution, and
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all the constraints are within the tolerance of 1075,

Figure 6-11: The strain distribution of the surface in Example 2, developed along
isoparametric lines (length of line segments at grid points show the scaled magnitude
of the two strains * and &?)

After development, the planar shape is shown in Figure 6-12. The four end points
have coordinates of (0,0), (-0.09223, 1.11186), (1.11534,0.09258), (1.02311, 1.20444),
respectively. The final value of the formula (3.35) is less than 10~% of the value
Z,-A;;l Z;El (e?j + ,‘; + g?j), the sum of the sduares of the right side of system (3.34) at
all grid points. Here we see a planar development similar to that in Example 1.

Table 6.3 and Figure 6-13 show the variation of the objective function in the
first optimization with respect to Au(= Av) and number of grid points. As pointed
in Chapter 5, a quadratic convergence is observed in the objective function of the
first optimization. If we allow extrapolation, we can estimate the objective function

approaches 0.003909 as Au = Av — 0.

Table 6.3: The objective function of the 1st optimization (Example 2, development

along isoparametric lines)

Grid number 7 9 11 13 15 17 19 21
Au = Av 1/6 1/8 [ 1/10 | 1/12 [ 1/14 | 1/16 | 1/18 | 1/20

objl (x107°) | 4.2831 | 4.125 | 4.038 | 4.006 | 3.970 | 3.964 | 3.953 | 3.945
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Figure 6-12: The planar development of the surface in Example 2, developed along
isoparametric lines
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Figure 6-13: Variation of objective function in 1st optimization for the surface in
Example 2, developed along isoparametric lines
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6.1.3 Example 3

This example shows how the algorithms work for a surface with both positive and
negative Gaussian curvature regions.
One eighth of a torus as shown in Figure 6-14 can be expressed as a rational

biquadratic B-spline surface [13] [19]

r(u,v) = Z’?:zo %0 rijwijNi,?o(“)Nj,a(U)
i=0 2j=0 Wij Ni3(u) N 3(v)

with the following control points and weights (z, y, z, w):

(15,0,0,1)  (15,0,5%2) (10,0,5,1) (5,0,5,%2) (5,0,0,1)
(15,15,0,%2) (15,15,5,0.5) (10,10,5,%2) (5,5,5,0.5) (5,5,0,%2)
(0,15,0,1)  (0,15,5,%%)  (0,10,5,1) (0,5,5,%2) (0,5,0,1)

The knot vector in u direction is (00 011 1) and that in v direction is (0 0 0 0.5 0.5
111).

Figure 6-14: Part of a torus surface in example 3

Figure 6-15 shows the strain distribution after the constrained minimization prob-

lem was solved using the tolerance of 10~% for constraints and 10~* for objective
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function. The objective function converges to the value of 1.1641 at the solution,

and all the constraints are within the tolerance of 108, After the unconstrained

Figure 6-15: Strain distribution of the torus in example 3, developed along isopara-
metric lines (length of line segments at grid points show the scaled magnitude of the
two strains e* and £?)

nonlinear minimization was solved, the planar development was obtained as shown
in Figure 6-16. The final value of the formula (3.35) is less than 10~* of the value
P Zﬁ’l(efj + ff + %), the sum of the squares of the right side of system (3.34) at
all grid points.

We use this example also to illustrate the performance of the algorithms. For both
optimization problems, the number of equations and/or the number of constraints
increase with the increment of the number of grid points. We solved the surface
development problem for various number of grid points and recorded the CPU time
spent on each optimization. Table 6.4 shows the CPU time on each optimization at
various numbers of grid points. A polynomial estimation of CPU time can be found
from Figure 6-17 and Figure 6-18. Again, the CPU time per iteration for the first
optimization is O(N_f) while that for the second optimization is slightly worse than

that.
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Figure 6-16: The planar development of the torus in example 3

Table 6.4: CPU time for each optimization at various numbers of grid points (Example
3, development along isoparametric lines)

Ng [ Niterl | objl | CPU1 (s) | CPU1/Niterl (s) | Niter2 | CPU2 (s) | CPU2/Niter2 (s)
7 15 1.0966 1.72 0.1146 10 5.01 0.501
9 27 1.1495 12.81 0.4744 11 24.68 2.244
11 17 1.1796 32.41 1.9065 7 54.13 7.733
13 10 1.1641 70.39 7.0390 9 206.63 22.959
15 8 1.1894 | 170.09 21.261 7 424.76 60.680
17 5 1.1245| 305.58 61.116 8 1094.76 136.845
19 ) 1.0491 | 676.56 135.31 7 1964.05 280.579
21 5 0.9829 | 1232.20 246.44 8 4496.91 562.114
25 53 0.8568 | 18892.05 356.45 11 19358.88 1759.90
31 83 |0.7464| 100383 1209.43 9 59900.63 6655.63
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Average CPU time per iteration (seconds)

1]
Number of grid points

Figure 6-17: Average CPU time per iteration for 1st optimization at various numbers
of grid points for the surface in Example 3, developed along isoparametric lines

Average CPU time per iteration (seconds)
3

1
Number of grid points

Figure 6-18: Average CPU time per iteration for 2nd optimization at various numbers
of grid points for the surface in Example 3, developed along isoparametric lines
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6.1.4 Example 4

This example shows the performance of the algorithms on a general B-spline surface.

A wave-like bicubic integral B-spline surface

r(u,v) = i 24: ri; Nia(u)Nja(v)

1=0 j=0

on a uniform knot vector with the following control points (z,y, z)

(0,0,0) (0,0.25,0) (0,0.5,0) (0,0.75,0) (0,1,0)
(0.25,0,0) (0.25,0.25,0.2) (0.25,0.5,0) (0.25,0.75,—0.2) (0.25,1,0)
(0.5,0,0)  (0.5,0.25,0)  (0.5,0.5,0)  (0.5,0.75,0)  (0.5,1,0)
(0.75,0,0) (0.75,0.25,—0.2) (0.75,0.5,0) (0.75,0.75,0.2) (0.75,1,0)
(1,0,0) (1,0.25,0) (1,0.5,0) (1,0.75,0) (1,1,0)

is shown in Figure 6-19. 17 x 17 grid points are used in discretization. Figure 6-20

1
]

T 71T,

T /1]

[ 1]

Figure 6-19: A wave-like B-spline surface in example 4

shows the strain distribution after the constrained minimization problem was solved
using tolerances of 10~7 for the constraints and 10~* for the objective function. The

strains are scaled to fit into the figure. The objective function converges to the
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value of 0.000984842 at the solution, and all the constraints are within the tolerance

of 1677. After development, the planar shape is shown in Figure 6-21. The four

Figure 6-20: The strain distribution of the surface in Example 4, developed along

isoparametric lines (length of line segments at grid points show the scaled magnitude
of the two strains €* and &?)

end points have coordinates of (0,0), (0.00315,1.03617), ( 1.03618,-0.00312), (1.03933,
1.03306), respectively. The strains at the center of the surface (u,v) = (0.5,0.5) are
(e¥,€%) = (0.0555,0.0550). The final value of the formula (3.35) is about 10~ of the
value N9, Zj-vjl (€% + fZ + g%), the sum of the squares of the right side of system
(3.34) at all grid points.

Table 6.5 shows the number of iterations and CPU time spent on each optimiza-
tion, as well as the objective functions. Figures 6-22 and 6-23 show the CPU time

per iteration for each optimization problem for various numbers of grid points.
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Figure 6-21: The planar development of the surface in Example 4, developed along
isoparametric lines

Table 6.5: CPU time for each optimization at various numbers of grid points (Example
4, development along isoparametric lines)

Ng [ Niterl | obj1 (10~%) | CPU1 (s) | CPU1/Niterl (s) | Niter2 | CPU2 (s) | CPU2/Niter2 (s)
7 10 9.362 8.96 0.898 9 4.35 0.483

9 13 8.453 38.25 2.942 12 25.01 2.084

11 13 9.434 110.05 8.465 6 43.54 7.257

13 20 8.873 348.69 17.435 6 129.20 21.533

15 32 10.192 1269.36 39.668 6 329.66 54.943

17 23 9.848 1788.00 77.739 5 659.31 131.862

19 8 10.457 1877.89 234.736 5 1360.02 272.00

21 17 10.441 5157.98 303.411 5 2681.23 536.246

25 22 10.729 19387.45 881.247 5 8294.06 1658.812
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Figure 6-22: CPU time per iteration for the first optimization for the surface in
Example 4, developed along isoparametric lines

CPU time per iteration (seconds)

L
10° 10' 10
Number ot grid points in u and v directions

Figure 6-23: CPU time per iteration for the second optimization for the surface in
Example 4, developed along isoparametric lines
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6.2 Results on surface development along princi-

pal curvature directions

6.2.1 Example 1

In this example, we use the surface whose points are all elliptic as in example 1
of Section 6.1, but allow it to stretch along principal curvature directions. The
surface along with its control polygon is shown in Figure 6-1. The constrained
minimization problem (4.11-4.12) is discretized at 13 x 13 grid points which are
equally distributed in u, v domain. Figure 6-24 shows the strain distribution af-
ter the constrained minimization problem was solved using tolerances 10~ for the
constraints and 10~* for the objective function. The strains are scaled to fit into
the figure. The extreme values of the strain field are located at (u,v) = (0,0.5) or
(v,v) = (1.0,0.5) with (¢°,¢') = (0.1808969, 0.006270948), and at (u,v) = (0.5,0)
or (u,v) = (0.5,1.0) with (g% ¢*) = (0.001567142,0.1790917). The objective function
converges to 6.78804 x 102 at the solution, and all the constraints are within the

tolerance of 1.0 x 1075,

\\\\
-||||
//ll

Figure 6-24: The strain distribution of the surface in Example 1, developed along the
principal curvature directions (length of line segments at grid points show the scaled
magnitude of the two strains €* and &?)
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After development, the planar shape is shown in Figure 6-25. The four end points
have coordinates of (0,0), (-0.11802,1.09373), (1.17949,0.12786), (1.06147,1.22159)
respectively. The final value of the formula (3.35) is less than 2 x 10~ of the value
ng"l Zﬁl(e?j + fZ + gZ), the sum of the squares of the right side of system (3.34) at

all grid points.
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Figure 6-25: The planar development of the surface in Example 1, developed along
the principal curvature directions

Figure 6-26 and Figure 6-27 show the ideal strain gradient a[l"(al;'e’)] and a[zng;et)]
evaluated at grid points.

After solving ™% and ¢™" by the first nonlinear constrained optimization, and
subsequently e, f, g in the second optimization, we can then compute E, F, G by
Equations (4.25-4.27). Under the condition of ideal strain gradient and E, F, G eval-
uated by Equations (4.25-4.27), the surface reconstruction process is equivalent to
solving Equation (6.1). After getting rid of the rigid body motion, the obtained re-
constructed surface is shown in Figure 6-28 (solid line) along with the original surface
(dotted line). We see an excellent match of the reconstructed surface with the origi-
nal surface. The maximum error (distance) between the grid points of reconstructed
surface and that of the original surface is 0.00509951.

Table 6.6 shows the CPU time spent on each optimization for various number of
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Figure 6-26: Logarithmic strain gradient along maximum curvature direction for the
surface in Example 1, developed along the principal curvature directions

Figure 6-27: Logarithmic strain gradient along minimum curvature direction for the
surface in Example 1, developed along the principal curvature directions
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Figure 6-28: The reconstructed (solid line) and the original surfaces (dotted line) for
the surface in Example 1, developed along the principal curvature directions
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grid points, objective functions, etc.

Table 6.6: CPU time for each optimization at various numbers of grid points (Example

1, development along principal curvature directions)

Ng | Niterl | obj1 (10~%) | CPUi(s) | CPU1/Niterl{s) | Niter2 | CPU2(s) | CPU2/Niter2(s)
7 6 6.389 1.45 0.242 11 5.66 0.515
9 6 6.610 6.52 1.087 6 11.84 1.973
11 9 6.703 - 32.16 3.573 6 41.75 6.958
13 13 6.788 124.99 9.615 ) 106.97 21.394
15 16 6.826 413.91 25.870 5 298.96 59.792
17 15 6.842 942.79 62.853 5 682.85 136.57
19 18 6.846 2341.75 130.10 5 1419.11 283.82
21 28 6.850 5770.87 206.10 5 2761.5 552.30

The CPU time per iteration for each optimization is shown in Figures 6-29 and

6-30. The straight line in Figure 6-30 was obtained by data fitting using Equation

CPU time per iteration (seconds)

1

10

Number of grid points in u and v directions

Figure 6-29: CPU time per iteration for 1st optimization for the surface in Example

1, developed along the principal curvature directions

(6.2). The solution is

a=6.4623 c= —13.4212

(6.3)

We see from Figures 6-29 that the CPU time per iteraticn in the first optimization

agrees well with the theoretical results in Chapter 5; i.e., When Ny = NJ = N, the
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CPU time per iteration (seconds)

Number of grid points in u and v diractions

Figure 6-30: CPU time per iteration for 2nd optimization for the surface in Example
1, developed along the principal curvature directions

CPU time per iteration in the first optimization is O(N?). However, the performance
observed for the second optimization is slightly worse than the theoretical results.
Instead of O(NE) CPU time per iteration, we observed O(INS-“°) time per iteration.
Table 6.7 and Figure 6-31 show the maximum error due to the development and
reconstruction process for various number of grid points. Again, a data fitting process

was carried out which fitted the data in Table 6.7 with the function
FE = e(Au)®

Here we also see the error function due to the surface development and reconstruction
process is of the order a < 2. This is partly because the assumption that the angle
between curvature directions does not change after development introduces extra

errors.

Table 6.7: Accuracy of the surface development process (Example 1, development
along principal curvature directions)

Grid number 7 9 11 13 15 17 19 21

Au=Av 176 1/8 | 1/10 | 1/12 | 1/14 | 1/16 | 1/i18 | 1/20

Error (x1073) | 18.1004 | 9.9129 | 7.1817 | 5.0995 | 3.9349 | 3.0282 | 2.4936 | 1.9664
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Figure 6-31: Error due to development and reconstructed process for various number
of grid points for the surface in Example 1, developed along the principal curvature
directions

6.2.2 Example 2

In this example, we use the same surface whose points are all hyperbolic as in exam-
ple 2 of Section 6.1, but allow it to stretch along principal curvature directions. The
surface is shown in Figure 6-10. The constrained minimization problem (4.11-4.12)
is discretized at 13 x 13 grid points which are equally distributed in u, v domain.
Figure 6-32 shows the strain distribution after the constrained minimization problem
was solved using tolerances 10~° for the constraints and 10~ for the objective func-
tion. The strains are scaled to fit into the figure. As a comparison with the results
in Section 6.1, the strains at (u,v) = (0.5,0.5) are (&*,et) = (0.05627,0.05581). The
objective function is 2.791 x 103 at the solution, and all the constraints are within
the tolerance of 1.0 x 1075.

After development, the planar shape is shown in Figure 6-33. The four end points
have coordinates of (0,0), (-0.09909,1.11083), (1.11505,0.09953), (1.01596,1.21035)
respectively. The final value of the formula (3.35) is less than 3 x 1075 of of the value
Zﬁl Z;-le (€2 + f% + 9%), the sum of the squares of the right side of system (3.34) at
all grid points.
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Figure 6-32: The strain distribution of the surface in Example 2, developed along the
principal curvature directions (length of line segments at grid points show the scaled
magnitude of the two strains £° and &%)

Figure 6-33: The planar development of the surface in Example 2, developed along
the principal curvature directions
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Figure 6-34 and Figure 6-35 show the ideal strain gradient a[zn(;;ee)J and aﬂ"g; )

evaluated at grid points.
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Figure 6-34: Logarithmic strain gradient along maximum curvature direction for the
surface in Example 2, developed along the principal curvature directions

Table 6.8 and Figure 6-36 shows the variation of the objective function in the
first optimization with respect to Au(= Av) and number of grid points. As pointed
in Chapter 5, a quadratic convergence is observed of the objective function of the
first optimization. If we allow extrapolation, we can estimate the objective function

approaches 0.002689 as Au = Av — 0.

Table 6.8: The objective function of the 1st optimization (Example 2, development
along principal curvature directions)

Grid number 7 9 11 13 15 17 19 21

Au=Av | 1/6 | 1/8 | 1710 | 1/12 | 1/14 | 1/16 | 1/18 | 1/20

obj1 (x107°) | 3.1611 [ 2.93382 | 2.8422 | 2.7909 | 2.7661 | 2.7486 | 2.7388 | 2.7331
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Figure 6-35: Logarithmic strain gradient along minimum curvature direction for the
surface in Example 2, developed along the principal curvature directions
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Figure 6-36: Variation of objective function in 1st optimization for the surface in
Example 2, developed along the principal curvature directions
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6.2.3 Example 4

In this example, we use the same wave-like B-spline surface as in example 4 of Sec-
tion 6.1, but develop it by using strains along principal curvature directions. The
surface is shown in Figure 6-19. The constrained minimization problem (4.11-4.12)
is discretized at 17 x 17 grid points which are equally distributed in u, v domain.
Figure 6-37 shows the strain distribution after the constrained minimization problem
was solved using the tolerance of 1078 for the constraints and 10~ for the objective
function. The strains are scaled to fit into the figure. As a comparison with the re-
sults in Section 6.1, the strains at (u,v) = (0.5,0.5) are (¢, ¢t) = (0.08258, 0.08267).
The objective function is 1.6018 x 103 at the solution, and all the constraints are

within the tolerance of 1.0 x 107%. After development, the planar shape is shown
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Figure 6-37: The strain distribution of the surface in Example 4, developed along the
principal curvature directions (length of line segments at grid points show the scaled
magnitude of the two strains £* and £?)

in Figure 6-38. The four end points have coordinates of (0,0), (0.01073, 1.03467),
(1.03467, —0.01074), (1.04540, 1.02393), respectively.

Table 6.9 shows the number of iterations and CPU time spent on each optimiza-
tion, as well as the objective functions. Figures 6-39 and 6-40 show the CPU time

per iteration for each optimization problem for various number of grid points.
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Figure 6-38: The planar development of the surface in Example 4, developed along

the principal curvature directions

Table 6.9: CPU time for each optimization at various numbers of grid points (Example

4, development along principal curvature directions)

Ng [ Niterl | obj1 (10~3) [ CPU1(s) | CPU1/Niterl(s) | Niter2 | CPU2(s) | CPU2/Niter2(s)
7 11 1.1857 1.70 0.1545 15 7.40 0.493

9 11 1.2901 9.66 0.878 8 16.81 2.101

11 27 1.2652 69.06 2.558 8 60.60 7.575

13 20 1.520 174.96 8.748 7 157.61 22.516

15 48 1.371 892.42 18.592 7 406.91 58.13

17 80 1.602 3099.44 38.743 8 1050.71 131.339

19| 35 1.537 3423.56 97.816 6 1584.16 264.027

21 49 1.576 7742.83 158.017 ) 2697.65 539.53

25| 63 1.550 20482.15 467.97 5 | 8364.47 1672.894
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Figure 6-39: CPU time per iteration for the first optimization for the surface in
Example 4, developed along the principal curvature directions
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Figure 6-40: CPU time per iteration for the second optimization for the surface in
Example 4, developed along the principal curvature directions
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6.3 Discussion

The exampiles in this chapter show that the algorithms for surface development along
isoparametric lines and principal curvature directions work well geometrically. The
strains obtained and the CPU time spent on both methods are at the same magni-
tude. The 2D developed shapes are similar. Physically, however, development along
principal curvature directions is more realizable. This can be seen from the equations
that the strain gradients must satisfy. In chapter 3, the ideal strains ¢* and ¢” must
satisfy Equations (3.26), (3.27) and (3.32). Since the left hand side of Equation (3.32)
equals the sum of the left hand sides of Equations (3.26) and (3.27), we have

E G F od (64)

d=0

This gradient of the angle change -"-’%d—al im0 is hard to control during metal forming
process, since Q(é—,éf—) o is not directly related to the strain gradients. A@ is due to
shear strain, which is of the second order compared with the normal strains, and is
not simply related to the temperature distribution during metal forming process by
line heating. The gradients of the ideal principal strains in Equations (4.19, 4.20),
however, are easier to control by controlling the temperature gradient throughout the

plate thickness.
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Chapter 7

Concluding remarks

An algorithm based on nonlinear optimization for development of a doubly curved
surface has been presented in this thesis. Examples of development of a surface with
all elliptical points, a surface with all hyperbolic points, a torus and a general B-
spline surface show the effectiveness of the algorithm. Compared with the available
algorithms for surface development, the algorithm proposed here always finds a solu-
tion that only stretching is required from curved surface to its planar development,
or only shrinkage is required from planar development to the curved surface. This
corresponds to forming of the surface by using (laser or torch) line heating. For other
manufacturing process, the formulation of the minimization problem only needs to be
slightly modified to take account of dilations from a planar shape to a curved surface.

Comparison of the two surface development methods along isoparametric lines
and principal curvature directions shows no significant difference between their per-
formance, although development along principal curvature directions gives out strain
gradients which are more realizable.

The examples show that the algorithm is quite time-consuming when the number
of grid points is large. An improvement may be possible if we explore the banded
properties of the Jacobian matrix after discretization of the constraints in the first
optimization and the least squares functions of the second optimization. Because
of the finite difference method in approximating all derivatives, after discretization,

the constraint in the first optimization or the least squares function in the second
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optimization only involve the variables at the neighboring points. We may also sub-
divide a surface into a number of subpatches and optimally develop each of them
sequentially. This way, the total CPU time would be cut significantly. Of course
the continuity between neighboring subpatches needs to be enforced, and the final

solution may not be a global optimal solution. These are tasks for future research.
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