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Abstract

We present an efficient algorithm to obtain a triangulated graph surface for scat-
tered points (x; y;)T, i = 1...n, with associated function values f;. The maximal
distance between the triangulated graph surface and the function values is measured
in z-direction (z = f(z, y)) and lies within a user-defined tolerance. The number
of triangles is minimized locally by adapting their shapes to different second-degree
least squares approximations of the underlying data. The method consists of three
major steps: (i) subdividing the given discrete data set into clusters such that each
cluster can be approximated by a quadratic polynomial within a prescribed toler-
ance; (ii) optimally triangulating the graph surface of each quadratic polynomial;
and (iii) “stitching” the triangulations of all graph surfaces together. We also discuss
modifications of the algorithm that are necessary to deal with discrete data points,
without connectivity information, originating from a general two-manifold surface,
i.e., a surface in three-dimensional space that is not necessarily a graph surface.

Key words: triangulation, data-dependent triangulation, approximation,
hierarchical approximation, quadratic polynomials, clustering.

1 Introduction

Many problems in scientific visualization deal with the representation of sur-
faces. Examples are shock waves in three-dimensional fluid dynamic simu-
lations, isosurfaces of certain scalar parameters of simulated hydrodynamics
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data, or geographic height fields. In many cases, these surfaces are known only
at certain points that either lie on a regular, uniform grid or that are randomly
located without any connectivity. We refer to these points as scattered data.

Even in those cases where a continuous, analytical surface representation is
available, its evaluation may be too inefficient for visualization purposes and a
new discrete representation needs to be generated for the original surface. To
visualize surfaces efficiently, modern graphics hardware requires a surface rep-
resentation to consist of polygonal patches, preferably triangles. The number
of triangles to be rendered has a major impact on the efficiency of the visu-
alization process. In most applications, approximation error estimates should
also be known for the triangulated surfaces.

z . Ji
o)

Fig. 1. Scattered points with associated function values.

The specific problem for which we provide a constructive solution can be stated
as follows: Given a set of scattered points (z; y;)T, i = 1...n, with associated
function values f;, determine a linear, triangular spline function s(z,y) which
approximates the given scattered data within a user-defined tolerance ¢ such
that

maz {|fi — s(zi, )|}y < 6, (1)

see Figure 1.

1.1 Related Work

A variety of triangulation approaches optimizing different geometrical crite-
ria or analytic cost functions exist. Some early approaches, e.g., [9] apply the
Delaunay triangulation, which leads to low aspect ratios of the resulting tri-
angles (the ratios between the radii of the circumscribed and inscribed circles
for all triangles). However, in the case of data-dependent triangulations, see
[4][7][23][28], the use of long and skinny triangles can reduce the approximation
error. To obtain a global optimum for a cost function, multidimensional opti-
mization methods, such as simulated annealing, can be applied, see [21][30].



A different class of algorithms does not rely on the original data points as
triangle vertices. Nadler [24] and D’Azevedo [1] apply a coordinate transfor-
mation to generate an optimal triangulation for a certain class of analytical
functions. This transformation is based on principal axes, which are also used
in our approach. Quak et al. [27] apply least squares fitting to linear splines to
approximate scattered data. Nielson [25] suggests the use of an affine-invariant
norm to obtain a triangulation that does not depend on a specific coordinate
system.

With the amount of data produced by modern computational simulations
and imaging technology growing rapidly, it becomes important to handle data
locally and on multiple levels of detail. A survey on multi-resolution methods
in the context of view-dependent rendering is given by Heckbert [15]. A variety
of view-dependent triangulation algorithms, especially useful for terrain data,
are discussed in [6][19][20][31]. For more general multiresolution triangulations,
we refer to [2][11][10][12][14].

Once a triangulation is constructed for a given scattered data set, the mesh
can be reduced to a coarser level of detail. Mesh reduction strategies are
described, for example, in [18][29]. Not only reduction of detail is possible but
also synthesis. In this context, the concept of the discrete wavelet transform
(DWT), see [22], which is a highly efficient method for signal processing and
data compression on regular grids, has been generalized to arbitrary triangular
meshes, see [5][13].

A more general problem than graph surface reconstruction from scattered
points in the plane with associated function values is the following one: Given
a set of scattered points in three-dimensional space, reconstruct a valid two-
manifold surface that may or may not be the graph surface of a bivariate
function. In this case, the surface topology needs to be recognized and mapped
locally to regions that can be treated as graph surfaces. Surface reconstruction
algorithms for arbitrary topology are discussed in [8][16][17].

1.2 Our Approach

Most triangulation approaches operate directly on the data. In contrast, our
method is based on an intermediate data representation, which is a piecewise
quadratic least squares fit of the original data. The piecewise quadratic rep-
resentation significantly reduces noise that might be present in the data and
improves the quality of the final triangulation.

Quadratic polynomials have the property that their graph surfaces can be ap-
proximated by a “regular” triangulation in such a way that all triangles imply
the same approximation error. This property provides a method for rapidly



generating a set of optimally shaped triangles for each quadratic polynomial,
which makes our approach highly efficient.

Fig. 2. Left: scattered points sampled from smooth graph surface; middle: clusters
with optimal triangulations; right: final triangulation.

Our paper is organized as follows: In Section 2, we describe the clustering step,
which is needed to determine the subsets of scattered data to be approximated
by quadratic polynomials. This step uses a hierarchical subdivision method
based on piecewise quadratic approximation. Section 3 describes the core of
our method, the triangulation step used to generate the desired optimal, reg-
ular triangulations for each quadratic polynomial. We explain in detail how
quadratic graph surfaces of different types (elliptic, hyperbolic, and parabolic)
can be approximated by optimal triangulations. In Section 4, we discuss how
to stitch the individual triangulations for the quadratic polynomials together
to define a single triangulated graph surface by filling the remaining gaps with
triangles. In Section 5, we provide numerical results of our method. A discus-
sion of our algorithm and its generalization to arbitrary two-manifold surfaces
is provided in Section 6. Figure 2 illustrates the data and the steps involved
in the triangulation process.

2 Adaptive Clustering

Given a set of scattered points with associated function values, the first step is
to subdivide these into smaller subsets that can be approximated by quadratic
polynomials. The clustering method should be highly efficient to be applica-
ble to massive data sets, and it should yield clusters of almost maximal size
while maintaining a prescribed error bound. The clustering process produces
a decomposition of the plane into polygonal, non-overlapping regions, which
cover the entire domain of the surface that is eventually to be triangulated.
These regions should be convex to simplify the boundary treatment during
final stitching of the optimal triangulations corresponding to the individual
least squares quadratic polynomials.

We use a subdivision approach that results in a binary space partition tree



(BSP tree). The approach initially considers the whole data set as a single
cluster. The set of clusters is then recursively split into smaller clusters until
each of these can be approximated, within the given error bound, by a least
squares quadratic polynomial.

In the following, we summarize the splitting procedure for each cluster. First,
we compute a quadratic function

flz,y) = Yoo dyt = Y X (2)

g, k>0, j+k<2 0<ljl<2

for each cluster of data {(z; y;)7, fi}I,, employing least squares fitting, such
that the residual

re) = Y (fi— flanw) 3)

n
=1

is minimized among all coefficient vectors ¢ = (cgp c19 Co1 €11 C20 Co2)T- For a
description of least squares fitting we refer to [3]. Second, a cluster’s maximal
error, defined as max{|f; — f(@i, vi)|}?, is estimated to decide whether a
cluster needs to be subdivided or not. If the maximal error is within the given
tolerance, then subdivision is no longer performed.

For a cluster whose maximal error is above the given tolerance, a straight line
is constructed in the xy-plane along which the cluster is subdivided. We have
compared different methods to select this splitting line in order to minimize
the resulting number of clusters. Principal component analysis (PCA) can be
used for clustering, see [16], but, unfortunately, it does not depend on the error
distribution within a cluster. In the case of a nearly parabolic graph surface,
PCA produces too many clusters, since it does not generate skinny clusters. A
more expensive subdivision scheme, which minimizes the approximation error
for the two clusters resulting from a split, can lead to skinny clusters in the
limit, even when this is not justified by the data geometry.

We now describe an efficient subdivision approach that works well for all our
numerical examples. It is based on the idea of using weighted centers, called
pt and p~, which correspond to the positive and negative errors, respectively,
given by

L X v X fi— f(x), if fi— f(xi) >0

p - n + =
i=1 Wi 0, otherwise

g
@._‘_



and

- 2= W X f(xi) = fi, if fi— f(xi) <0

i=1 Wi 0, otherwise,

where x; = (z;,¥;). A cluster is subdivided along the perpendicular bisector
of the line segment pTp~ (Figure 3). If p* and p~ happen to be identical, the
direction of subdivision will be arbitrary.

y L -
H +

o fi —f(x; .yi )

L0y

o X
Fig. 3. Subdivision along perpendicular bisector between p™ and p~.

Even though the subdivision scheme generates two clusters of almost equal size
after each split, it may happen that some of the final clusters become very
small. If a cluster contains less than six points, or if the points are arranged
such that the determinant of the least squares fitting problem vanishes, the
approximating quadratic function will not be uniquely defined. In this case,
a reduced set of linear basis functions is utilized for the least squares fitting
step.

To reduce the computational cost of the initial clustering step, we limit the
number of points which contribute to the least squares fit to a user-defined
maximal number n,,,;. For a cluster containing more than n,,,, points, only
a subset of 7., randomly selected points is considered for the quadratic
approximation problem. If a cluster needs to be subdivided, the points p™*
and p~ are estimated from the same subset of selected points. If a cluster
containing more than n,,,, points is not subdivided, this decision needs to be
verified based on all its points. 7,4, should be selected large enough such that
this case is rare.

This modification reduces the computational cost of each least squares fit-
ting step to a constant. Since less than n cluster subdivisions are necessary,
the overall cost of the least squares fitting is O(n). Each cluster subdivision
still requires one to process all points in the cluster, which leads to a total
cost of O(n log m), where m is the number of clusters generated for n data
points. However, the splitting operations for building the BSP tree are very



inexpensive, and one could execute them in parallel.

3 Triangulating Quadratic Functions

Once the set of approximating quadratic polynomials has been determined,
we construct an optimal triangulation for the corresponding regions in the
xy-plane. We call a triangulation “optimal” if it satisfies a given approxima-
tion error with respect to the quadratic polynomial and covers the associated
convex region in the domain with a minimal number of triangles. The final
maximal errors for all triangulated regions are bounded by the sums of the
maximal errors for the quadratic least squares approximations and the errors
introduced by the optimal triangulations.

The construction of an optimal triangulation for a quadratic graph surface
is discussed in [26], which provides the basis of our constructive approach.
It is shown in [26] that there exists an optimal triangulation composed of
congruent triangles in the xzy-plane for every quadratic polynomial. The basic
idea is to exploit affine invariance of the error norm to transform a quadratic
graph surface to a prototype for which a regular triangulation satisfying an
error bound is known. In this Section, we review the essential ideas related to
the optimal triangulation step and provide necessary implementation details.

There are three fundamental observations that motivate our constructive ap-
proach:

(1) Two approximating triangles whose corresponding edge pairs have the
same lengths and are parallel in the xy-plane and whose vertices have
the same approximation errors (measured in z-direction) share the same
maximal error, see Figure 4.

(2) The maximal error of an approximating triangle is invariant under affine
transformations in the zy-plane.

(3) The ratio of two triangle areas in the zy-plane is invariant under affine
transformations.

The first observation is due to the fact that the second-order partial derivatives
of a quadratic graph surface are constant. This implies that a triangle can be
translated in the zy-plane without changing its error profile. The second and
third observations guarantee that the affine map of an optimal triangulation
is also optimal. This allows us to transform the graph surface to a prototype
for which an optimal triangulation consisting of congruent triangles can be
constructed.
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Fig. 4. Error functions for two triangles approximating a quadratic polynomial.
The corresponding edges ab and a’t', bc and b/'c’, and ac¢ and a'c’ are parallel and
have same lengths. Error profiles along corresponding, parallel line segments are the
same.

3.1 Principal Azis Transformation

In matrix notation a quadratic function can be written as

C20 C11 z z
flz,y) = (zy) + (c10 co1) + Coo- (4)
C11 Co2 Yy Yy

To analyze its principal axes, i.e., the directions of minimal and maximal
second derivative (or curvature), we can neglect the constant and linear terms
that do not affect the approximation error. Thus, we only need to consider
the quadratic form

C20 C11 z

(z y) = xI'Cx = 0. (5)

C11 Co2 Yy

The graph surface’s principal curvatures are implied by the eigenvalues \; and
Ao of the matrix C' and the principal axes are determined by the corresponding
eigenvectors e; and e, see [3]. Depending on the sign of the eigenvalues, we
have to distinguish between three different surface types:

e The surface is elliptic if A;A\y > 0.
e The surface is hyperbolic if A; Ay < 0.

e The surface is parabolic if A{A\y = 0.

For each type, a different optimal triangulation scheme is used.



3.2 The Elliptic Case

The graph surface of a quadratic function f of elliptic type is equivalent to
the graph surface of the paraboloid

9(z,y) = T +7, (6)

i.e., there exists a linear transformation for the arguments of g that produces
the same graph surface as f, neglecting linear and constant terms. In the case
of positive eigenvalues, this transformation is given by

X

D
)
=

8|

€11

|
ey
= =

1
\/3_2 =G ) (7)
VA2

D
N
]
<
<

Yy €12

where the matrix entries are determined by the normalized eigenvectors e; = (€11, €12)7
and ez = (ea1, €22)T. This result can be verified by inserting (7) into the
quadratic form (5). Considering the orthogonality of eigenvectors, GT'CG is
the identity matrix, and it therefore reproduces the quadratic form of g.

We need to construct an optimal triangulation for g, which will also be op-
timal for f, after applying the above transformation. Due to the rotational
symmetry of g, all triangles that share the same circumscribed circle of ra-
dius v/2¢ have the same maximal error €. Hence, an equilateral triangle, with
arbitrary orientation in the zy-plane — like the one in Figure 5 given by the
points (—+/2¢,0)7, (v/0.5¢,4/1.5¢)7, and (1/0.5¢, —v/1.5¢)7 — has maximal
area. The maximal error occurs at the center and at the vertices of the trian-
gle.

Ay Az

X I o/
Ve 2E %‘V—

Fig. 5. Optimal triangle and error profile for g(z,y) = 2 + y.

In the case of positive eigenvalues, the vertices must be placed below the
quadratic surface by a distance ¢ to obtain the error profile shown in Figure 5.
For negative eigenvalues, the function f can be replaced by —f, which implies



positive eigenvalues. The only difference in this case is that the vertices need
to be placed above the surface by €.

To obtain the final triangulation only two of the edges need to be transformed
according to (7). The transformed edges define a regular triangulation that is
established for the convex region corresponding to the cluster, emanating from
its centroid, see Figure 2. Only triangles that lie entirely in the cluster region
are generated, leaving an untriangulated gap along the cluster boundaries.

3.8 The Hyperbolic Case

In analogy to the elliptic case, we can choose a single prototype for a hyperbolic
quadratic polynomial. We choose the polynomial

hMzE,y) = T -7 (8)

To transform the quadratic form of A into the quadratic form of a given
quadratic hyperbolic function f, with eigenvalues A; > 0 and Ay < 0 and
normalized eigenvectors e; = (e11,e12)” and es = (ea,e2)?, we apply the
map

1 1 _ _
o) [Ferdmen) (T gy (7).
Y 7 €12 e, €22 Y Y

The transformation is correct, since it reproduces the quadratic form of h:

1 0
0-1

HT'CH =

Due to the nature of hyperbolic surfaces, it seems necessary to place the
triangle vertices exactly on the surface. Offsetting a vertex may reduce the
error of a single triangle, but, at the same time, it increases the error of an
adjacent triangle. As shown in [26], an optimal triangle for the polynomial h

has the vertices (v/z, /)T, (v&, —v€)T, and ((1 —VB)/E, O)T, see Figure 6.

Since all vertices lie on the surface, the maximal error occurs at the midpoint
of each triangle edge. We note that the graph surface of h has zero curvature
(and zero second derivatives) along the lines z + y = 0 and z — y = 0, which
implies that the error inside a triangle cannot be greater than the maximal
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Fig. 6. Optimal triangle for hyperbolic polynomial h(z,y) = 2 — y2.

error on its edges. The maximal error for any edge ab is given by

can = 1 |00 — b2 — (3~ 8,7 (10)

The final triangulation is established in the same way as in the case of elliptic
surfaces, using two edges transformed according to (9). (In the case of A\; < 0

and Ay > 0, the triangulation can be obtained by considering the quadratic
form of —f.)

3.4 The Parabolic Case

In the parabolic case, one of the eigenvalues A\; and A5, and consequently one of
the principal curvatures, is zero. (In the case of two zero eigenvalues the surface
is a plane, and the cluster region can be triangulated by only considering the
vertices of its convex boundary polygon.) We now consider the case A\; > 0
and A; = 0. We can transform the quadratic form of the function

p(T,7y) = T (11)

into the quadratic form of f by using the map

T —~—e1 0 T
= [ v . (12)
Y —\/1)\—1 ez 0 y

The error profile for a line segment is uniquely determined by its projection
onto the first normalized eigenvector e; of the quadratic form (Figure 7). The

length of this component should be at most y/4¢/A;. As in the elliptic case,
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Fig. 7. Line segment with error £ on parabolic surface.

Fig. 8. Triangulation of region with parabolic graph surface.

the vertices need to be placed below the surface by the distance ¢ for A\; > 0
and above it for A\; < 0. In the case that A\; = 0 and As; # 0 the eigenvalues
and eigenvectors simply change their roles. The cluster region is finally trian-
gulated by two, typically skinny triangles for each subregion of width 4/4e/\
(Figure 8). To leave some space at the cluster boundary for the stitching pro-
cess, we shrink the cluster region by a small percentage towards its centroid.

4 Merging Triangulations

Based on the BSP tree defining the cluster hierarchy and the set of individual
optimal triangulations, the final step of the algorithm stitches these triangu-
lations together by triangulating the gaps along the cluster boundaries. This
is done in the reverse order of the cluster subdivision process, which allows
us to stitch exactly two triangulations at a time together along the bisecting
lines that separate the corresponding cluster regions, see Figure 9.

To efficiently identify the polygon strips that need to be connected, we keep
track of the boundary of each triangulation. We initially need to construct a



Fig. 9. “Pairs” of triangulations are stitched together along straight line cluster
bisectors.

Fig. 10. Special stitching cases: All simplices — triangles, edges, and vertices —
need to be enclosed by the boundary polygon.

Fig. 11. Boundary construction for optimal triangulations. Left: boundary vertices
for each scanline are inserted into triangulation boundary; right: additional vertices
are used to minimize enclosed area.

closed boundary polygon for each optimal triangulation. This is straightfor-
ward in the case of a triangulation resulting from a parabolic or planar graph
surface. In the elliptic and hyperbolic cases the triangulation inside the cluster
region may be disconnected or contain line segments that are not part of any
triangle. Some special cases are shown in Figure 10.

The boundary of an optimal triangulation is defined as a single loop that
encloses all triangles, edges, and vertices of the optimal triangulation that are



inside the cluster region. It does not enclose areas other than optimal triangles.
Thus, a vertex can be part of the boundary polygon multiple times.

To efficiently construct a triangulation boundary we use a scanline algorithm
that identifies the left- and right-most vertices inside the cluster region for each
scanline parallel to the longest edge in a triangulation and that inserts these
vertices into the boundary polygon. As illustrated in Figure 11, additional
vertices need to be added to the boundary polygon so that it encloses only
triangles belonging to the optimal triangulation. This is done by traversing
each scanline again and by inserting the vertices that establish the connections
to the two neighboring scanlines as well as all vertices between these connecting
ones.

Fig. 13. Shorter edges are preferred when stitching two triangulations.

The BSP tree structure is traversed in the reverse order of cluster subdivision
to merge the corresponding triangulations. We only need to discuss the stitch-
ing process for two optimal triangulations whose associated cluster regions are
separated by the line segment p1ps, see Figure 12. First, we extract from the
two triangulation boundaries two polygon strips along pips, starting with the
vertex closest to p; and ending with the one closest to p,. Second, we construct
triangles by marching along the two polygon strips and by connecting vertex
pairs using vertices from opposite sides of p;ps. Considering the two possible
choices for defining the next triangle, we choose an edge with minimal length,
see Figure 13. One must not produce triangles with negative area, i.e., trian-
gles that overlap others. In the case that both choices would produce triangles
with negative areas, we construct a triangle from three consecutive vertices in
one of the polygon stips and thus eliminate the vertex in the middle. If the
stitching process would still produce negative areas for both choices, we insert
a triangle from three vertices of the other polygon strip.



The triangles resulting from the stitching process are not guaranteed to satisfy
the given error bound. For a rigorous treatment, the final approximation errors
must be estimated for all scattered data points located inside the regions in
the zy-plane defined by the triangles resulting from the stitching procedure.
Triangles that do not satisfy the error bound need to be modified. This can be
done by flipping an edge between two triangles or by inserting the sample with
greatest approximation error as a vertex into the triangulation. The errors for
all modified triangles need to be checked again. In our numerical examples we
use a greater error bound for quadratic approximation than for triangulating
polynomials. This implies that the total error bound is relatively loose for the
triangles obtained from the stitching process and that violations of the error
bound are extremely rare.

5 Numerical Examples

We have applied our algorithm to approximate scattered data sets sampled
randomly from three different analytical functions and to approximate two
terrain data sets sampled on regular grids. The analytical functions are de-
fined as follows:

22 + ifx<0
file,y) = 050 + v 2, y e [<0.5, 0.5];

—2% + y? otherwise,

folmy) = e & T¥) g ye[—22, 2.2];

and

fa(z,y) = sin(z?) sin(y?), =z, ye [-3, 0].

The numbers of clusters and triangles corresponding to different error bounds
are shown in Table 1. The error bounds (measured in percents of the dis-
tance between minimal and maximal function values) are split in a 4 : 1 ratio
between quadratic approximation and triangulation of the polynomials.

Approximation results for the two terrain data sets “St. Hellens” and “Crater
Lake” are shown in Table 2. The corresponding triangulations are depicted in
Figures 17 and 18. We compared the error bounds for our triangulations with
the approximation errors of regular triangulations that have approximately
the same number of triangles and that are obtained from a rectilinear grid.
The error bounds for our method are split in a 9 : 1 ratio between quadratic



Function No. Error No. No.
Samples | Bound [%] | Clusters | Triangles

f1 1000 1.0 2 179

0.3 3 662

fo 3000 2.0 35 437

0.5 73 1479

f3 3000 10.0 38 332

3.0 79 938

Table 1

Approximation results for sets of points sampled from analytical functions. Figures
14-16 show the resulting triangulations.

approximation and triangulation of polynomials. Since the terrain data sets are
more “noisy” than samples from analytical functions used above, we need to
allocate a larger fraction of the error bound for the quadratic approximation.
The computation times shown in Table 2 have been obtained on a 194 MHZ
MIPS R10000 processor. The computation times are split into three categories:

e (i) Adaptive Clustering.
e (ii) Constructing the Triangulation.
e (iii) Verifying the error bounds for the triangles obtained from stitching.

Dataset, Error [%] No. No. | Comp. Time [sec]

No. Samples Our | Regular | Clusters | Triangles (1) (i) | (iii)
Method Tri.
“St. 10.0 18.7 46 464 | 0.732 | 0.046 | 1.232
Hellens”, 5.0 11.5 173 1,799 | 1.347 | 0.057 | 1.539
151,728 1.0 5.4 2,330 28,881 | 4.361 | 0.246 | 3.284
“Crater 10.0 22.9 114 1,149 | 1.029 | 0.054 | 1.464
Lake”, 5.0 16.4 400 4,316 | 1.861 | 0.077 | 1.951
159,272 1.0 10.1 2,798 36,456 | 4.503 | 0.288 | 3.799
Table 2

Approximation results for terrain data sets. Figures 17 and 18 show the resulting
triangulations.

In the case of tight error bounds the clustering step becomes the most expen-
sive part of the algorithm, but it needs to be computed only once for all levels
of resolution. The computation time for the triangulation (including stitching)
is very small and does not depend on the number of scattered points in the
initial data set. Checking the approximation errors, however, takes much com-



putation time for dense data sets. We suggest to estimate the approximation
error from only a small subset of randomly selected samples.

Fig. 14. Triangulations for f;. Top: samples on original graph surface; middle: op-
timal cluster triangulations in zy-plane (left) and final triangulations in zyz-space
(right); bottom: same for higher level of resolution.



Fig. 15. Triangulations for fs. Top: samples on original graph surface; middle: op-
timal cluster triangulations in zy-plane (left) and final triangulations in zyz-space
(right); bottom: same for higher level of resolution.

6 Conclusions and Future Work

In this paper, we have introduced a new method for the construction of data-
dependent triangulations for scattered bivariate data. The underlying concepts
are (i) the construction of least squares quadratic polynomials locally approx-
imating subsets of a given scattered data set within a certain tolerance; (ii)



Fig. 16. Triangulations for f3. Top: samples on original graph surface; middle: op-
timal cluster triangulations in zy-plane (left) and final triangulations in zyz-space
(right); bottom: same for higher level of resolution.

the triangulation of the resulting quadratic graph surfaces using an optimal
triangulation strategy; and (iii) merging the optimal triangulations by filling
the gaps along the boundaries of the individual optimal triangulations. The
computational cost for step (i) is O(n log m) for n data points and m clus-
ters. The expected computation times for steps (ii) and (iii) are linear in the
number of generated triangles.



Fig. 17. Triangulations for data set “St. Hellens”. Left: optimal cluster triangulations
in zy-plane at three different resolutions, right: corresponding final triangulations
in xyz-space.

Our algorithm is designed to efficiently generate triangulations approximat-
ing a given bivariate scattered data set at multiple levels of resolution by
imposing different error thresholds. The most expensive part, generating the
cluster hierarchy, is done adaptively for multiple levels of detail. For use in
view-dependent rendering applications, different regions of a data set could
be represented by triangulations satisfying different error bounds. The cluster



Fig. 18. Triangulations for data set “Crater Lake”. Left: optimal cluster triangula-
tions in zy-plane at three different resolutions, right: corresponding final triangula-
tions in zyz-space.

splitting procedure needs to satisfy the tightest error bound associated with
all regions that overlap the current cluster.

Considering surfaces of an arbitrary two-manifold topology, we propose to
apply the adaptive clustering algorithm presented by Heckel et al. [16]. This
algorithm applies PCA to subdivide point sets in three-dimensional space until



they are approximated within a prescribed tolerance by least squares planes.
One can use this approach to generate hierarchical cluster representations
of graph surfaces as well. The advantage of our method over the algorithm
described in [16] is a smoother and more accurate surface representation using
approximately the same number of triangles.

We plan to generalize our approach to approximate trivariate scalar fields
defined by scattered points in three-dimensional space with associated func-
tion values by linear, tetrahedral spline functions. Several concepts generalize
straightforward from the bivariate case, like building a BSP tree to define
cluster regions and least squares fitting with trivariate quadratic polynomials.
Other concepts are not that easily generalized, like constructing an optimal
tetrahedrization for the individual trivariate polynomials that correspond to
each cluster.
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