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Abstract

A rational parametrization of an algebraic curve establishes a rational correspon-
dence of this curve with the affine or projective line. This correspondence is a
birational equivalence if the parametrization is proper. So, intuitively speaking, a
rational parametrization determines a linear tracing of the curve, when the param-
eter takes values in the algebraic closure of the ground field. Such a parametrization
might trace the curve once or several times. We formally introduce the concept of
the tracing index of a parametrization, we show how to compute it, and we relate
it to the degree of rational reparametrizations as well as to the degree of the curve.
In addition, we show how to apply these results to the case of real curves, where we
introduce the notion of real tracing index.
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1 Introduction

Plane algebraic curves can be uniquely represented, up to multiplication by
constants, by their defining implicit equations. However, rational curves, i.e.
algebraic curves parametrizable by means of rational functions, may be ex-
pressed by infinitely many different such parametrizations. One may introduce
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different criteria of optimality in order to choose the best parametric repre-
sentation. For instance, if one is interested in the coefficients of the rational
functions, one may analyze the smallest possible field where the curve can be
parametrized (see Andradas et al, 1997, 1999; van Hoeij, 1997; Schicho, 1992;
Sendra and Winkler, 1997). Another possibility is to optimize the degree of
the rational functions involved in the parametrization. This leads to the notion
of proper parametrization. Intuitively speaking, proper parametrizations are
parametrizations tracing the curve once when giving values to the parameter in
the algebraic closure of the field containing the coefficients of the parametriza-
tion. More rigorously speaking proper parametrizations correspond to bijective
mappings from the field of parameter values onto the curve.

Most parametrization algorithms provide proper parametrizations (see Ab-
hyankar and Bajaj, 1988; van Hoeij, 1994; Sendra and Winkler, 1991). Fur-
thermore, improperness can be detected algorithmically, and the given para-
metrization can be reparametrized into a proper one (see Sederberg, 1986). An
alternative approach based on rational function decomposition can be found
in Zippel (1991). Proper parametrizations play an important role in many
practical applications in computer aided geometric design, such as in visual-
ization (see Hoffmann, 1993; Hoffmann et al, 1997; Hoschek and Lasser, 1993)
or rational parametrization of offsets (see Arrondo et al, 1997). Also, they pro-
vide an implicitization approach based on resultants (see Theorem 7); similar
results on implicitization can be found in Chionh and Goldman (1992) and
Cox et al (1998). For other related questions of proper parametrizations we
refer to Gao and Chou (1992).

In this paper, we study the relation of improper parametrization to proper
ones. As a consequence of this analysis, the intuitive statements on the trac-
ing properties of a parametrization are formally established. For this pur-
pose, we introduce the notion of tracing index of a parametrization of a
plane algebraic curve. Essentially it is the cardinality of a generic fibre of
the parametrization. Thus, intuitivelly speaking, it measures the number of
times that a parametrization traces a curve over the algebraic closure of the
ground field. The theorem on the dimension of fibres (see Shafarevich, 1994,
pp. 76) states that for almost all points on the curve the dimension of the
fibre, i.e. the set of parameter values mapped to this point, is zero. However,
in order to formally define the concept of index, the cardinality of the fibres
must be, in fact, invariant for all points in a non–empty Zariski open subset
of the curve. This follows from the properties of the degree of a regular map
between irreducible varieties of the same dimension (see Shafarevich, 1994,
Section 6.3.). In fact, the cardinality of a generic fibre is the degree of the
mapping (see Harris, 1995, Prop. 7.16). However, the treatment given to this
problem in classical algebraic geometry is not computational. In this paper,
we give a computational approach that shows how to determine the degree
of the mapping and that characterizes those points where the cardinality of
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the fibre equals the degree of the mapping (see Theorem 1); i.e. those points
where the mapping is unramified. This result provides the theoretical prepa-
ration for formally introducing the notion of index, and shows that the tracing
index really represents the number of times that the parametrization traces
the curve. Furthermore, we give an algorithmic approach based on greatest
common divisors for computing the index (see Theorem 2), that agrees with
Sederberg’s criterion (see Sederberg, 1986) for properness (see Theorem 3).

As we have mentioned, the tracing index measures the number of times the
curve is traced when the parameter takes values in an algebraically closed
field. However, in practice, it might be interesting to know the tracing index
when the parameter values are real. In Section 4 we deal with this problem,
introducing the notion of real tracing index and showing how to compute it.

Once the basic properties of the index have been established, we deal with
the problem of analyzing the behaviour of the index under reparametrizations
(Theorem 4), and we relate it to the degree of the curve. For this purpose,
we first prove how the degree of a proper parametrization (i.e. the maxi-
mum degree w.r.t. the parameter of the rational function components of the
parametrization) and the degree of the curve are related (see Theorem 5). This
result is specially usefull in approaching the implicitization problem by means
of interpolation techniques. Next, we show how the index of the parametriza-
tion, the degree of the parametrization and the degree of the curve are related
(see Theorem 6). In the last part of the paper, we relate the problem of im-
plicitizing rational parametrizations with the tracing index, proving that the
resultant w.r.t. the parameter of the polynomials obtained by clearing the de-
nominators in the parametrization is the defining polynomial of the curve to
the power of the index (see Theorems 7 and 8). Similar results on implicitiza-
tion can be found in Chionh and Goldman (1992) and Cox et al (1998).

In this paper, we only deal with the tracing index for plane curve parametriza-
tions. Nevertheless the notion of tracing index, as well as most of the results
presented here, can be easily generalized to space curve parametrizations. For
this purpose, one just has to introduce the tracing index as the degree of the
rational mapping defined by the parametrization. Furthermore, taking into
account that every space curve is birationally equivalent to a plane curve (see
e.g. Walker, 1950, Theorem 6.5.), the tracing index of a space parametrization
is directly related to the tracing index of a plane parametrization. Further-
more, a more general theoretical statement of the problem can be studied if
the degree of rational maps between curves is considered. For further details
on this related problem we refer to Sendra and Winkler (2001).

In the sequel, we use the following notations. K is an algebraically closed field
of characteristic zero. If C is an algebraic curve over K, we denote the field
of rational functions over C by K(C). For a parametrization P(t) of a curve C
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over K we write its components as

P(t) =

(

χ1,1(t)

χ1,2(t)
,
χ2,1(t)

χ2,2(t)

)

.

We will assume in the paper that rational parametrizations are given in re-
duced form, that is gcd(χ1,1, χ1,2) = gcd(χ2,1, χ2,2) = 1. Furthermore, for given
parametrization P(t) we consider the polynomials

G1(s, t) = χ1,1(s)χ1,2(t)−χ1,2(s)χ1,1(t), G2(s, t) = χ2,1(s)χ2,2(t)−χ2,2(s)χ2,1(t),

and G(s, t) = gcd(G1, G2), as well as the polynomials

H1(t, x) = xχ1,2(t) − χ1,1(t), H2(t, y) = yχ2,2(t) − χ2,1(t).

Proofs are collected in Appendix A.

2 Proper Parametrizations

We start recalling some basic results on proper parametrizations. Let K be an
algebraically closed field of characteristic zero, and C a rational plane algebraic
curve over K. Then, a parametrization P(t) of C is proper if and only if the
map

P : K −→ C
t 7−→ P(t)

is birational, or equivalently, if for almost every point on C and for almost all
values of the parameter in K the mapping P is rationally bijective.

The notion of properness can also be stated algebraically in terms of fields
of rational functions. In fact, a rational parametrization P(t) is proper if and
only if the induced monomorphism ϕP on the fields of rational functions

ϕP : K(C) −→ K(t)

R(x, y) 7−→ R(P(t)).

is an isomorphism. Therefore, P(t) is proper if and only if the mapping ϕP is
surjective, that is, if and only if ϕP(K(C)) = K(P(t)) = K(t). Thus, Lüroth’s
Theorem implies that any rational curve over K can be properly parametrized.
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Most of the parametrization algorithms always output proper parametriza-
tions (Abhyankar and Bajaj, 1988; van Hoeij, 1994; Sendra and Winkler, 1991,
see). Furthermore, given an improper parametrization, in Sederberg (1986) it
is shown how to compute a new parametrization of the same curve being
proper.

An important fact on proper parametrizations is that any other rational
parametrization of the same curve can be obtained from a proper one by
a rational change of parameter. More precisely, the following lemma holds.

Lemma 1. Let P(t) be a proper parametrization of a plane curve C, and let
Q(t) be any other rational parametrization of C. Then

(1) there exists a non–constant rational function R(t) ∈ K(t) such that
Q(t) = P(R(t));

(2) Q(t) is proper if and only if there exists a linear rational function L(t) ∈
K(t) such that Q(t) = P(L(t)).

3 Tracing Index

In this section, we introduce the notion of tracing index of a parametrization
of a plane algebraic curve and we show how to determine it. For this purpose,
we first state the following technical lemma.

Lemma 2. Let p(x), q(x) ∈ K[x]⋆ be relatively prime such that at least one
of them is non-constant, and let E = {(a, b) ∈ K2 | p(a) − bq(a) = 0, p′(a) −
bq′(a) = 0}. Then, Card(E) < ∞, and p(x) − bq(x) has multiple roots if and
only if b is the y–coordinate of a point in E.

From Lemma 2 we immediately get the following corollary.

Corollary. Let p(x), q(x) ∈ K[x]⋆ be relatively prime such that at least one
of them is non-constant, and let R(y) be the resultant

R(y) = Resx(p(x) − yq(x), p′(x) − yq′(x)).

Then, for all b ∈ K such that R(b) 6= 0, the polynomial p(x) − bq(x) is
squarefree.

Note that, if deg(p) > deg(q) then the roots of the resultant are exactly the
values of b for which p(x) − bq(x) has multiple roots. However, if deg(p) ≤
deg(q) the leading coefficients, w.r.t. x, of the polynomials involved in the
resultant may have a common root, and this root may generate extraneous
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factors in the resultant. For instance, take p(x) = x2, q(x) = 2x2 + 1. Then
R(y) = −4y(2y − 1)2, but p(x) − 1/2q(x) = −1/2.

Theorem 1. Let P(t) be a parametrization with non-constant components
in reduced form. Then, for α ∈ K such that χ1,2(α)χ2,2(α) 6= 0, and such that
G1(α, t), G2(α, t) do not have multiple roots,

Card(P−1(P(α))) = degt(gcd(G1(α, t), G2(α, t))).

The following result follows from Theorem 1 and Corollary of Lemma 2.

Corollary. Let P(t) be a parametrization and let

R1(s) = Rest(G1,
∂G1

∂t
), R2(s) = Rest(G2,

∂G2

∂t
).

Then, for α ∈ K such that χ1,2(α)χ2,2(α)R1(α)R2(α) 6= 0,

Card(P−1(P(α))) = degt(gcd(G1(α, t), G2(α, t))).

Theorem 1 implies that a point (xα, yα) = P(α) ∈ C, with α satisfying
the hypothesis of the theorem, is generated more than once if and only if
degt(gcd(G1(α, t), G2(α, t))) > 1. In Lemma 4 we will see that the degree of
this gcd is preserved under almost all specializations of the variable s. First
we state the following result on gcds. Let ϕa denote the natural evaluation
homomorphism of K[x, y] into K[y], i.e. for a ∈ K,

ϕa : K[x, y] → K[y]
f(x, y) 7→ f(a, y).

Lemma 3. Let f, g ∈ K[x, y]∗, f = f̄ · gcd(f, g), g = ḡ · gcd(f, g). Let a ∈ K

be such that not both leading coefficients of f and g w.r.t. y vanish at a.

(1) degy(gcd(ϕa(f), ϕa(g))) ≥ degy(gcd(f, g)).
(2) If the resultant w.r.t. y of f̄ and ḡ does not vanish at a, then

ϕa(gcd(f, g)) = gcd(ϕa(f), ϕa(g)).

Lemma 4. Let P(t) be a rational parametrization in reduced form with non–
constant components. Then for all but finitely many values α of s we have

degt(G(s, t)) = degt(gcd(G1(α, t), G2(α, t))).

Theorem 2. Let P(t) be a parametrization in reduced form of a plane curve
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C. Then all but finitely many points in C are generated, via P(t), by exactly
m parameter values, where m = degt(G(s, t)).

With these preparations we can now introduce the notion of tracing index of
a parametrization.

Definition. Let C be a rational affine plane curve, and let P(t) be a rational
parametrization of C. Then, we say that k ∈ N is the tracing index of P(t), and
we denote it by index(P(t)), if all but finitely many points on C are generated,
via P(t), by k parameter values; i.e. index(P(t)) represents the number of
times that P(t) traces C.

Remark.

(1) Note that by Theorem 2 index(P(t)) = degt(G(s, t)). Also, the tracing
index can be computed by the corollary to Theorem 1.

(2) If we consider the map P : K → C induced by the parametrization P(t),
then the tracing index of the parametrization P(t) is the degree of the
rational map P. Therefore, index(P(t)) is the degree of the finite field
extension ϕP(K(C)) ⊂ K(t), where ϕP is the monomorphism induced by
P on the fields of rational functions (see Harris, 1995; Shafarevich, 1994);
i.e. index(P(t)) = [K(t) : ϕP(K(C))]. For the relation between the tracing
index and the degree of a rational map see Sendra and Winkler (2001).

Since properness of a parametrization P is defined by requiring P to be a
birationality, properness is characterized by a tracing index 1.

Theorem 3. A rational parametrization is proper if and only if its tracing
index is 1; i.e. if and only if degt(G(s, t)) = 1.

The previous results can be used to derive the following algorithm.

Algorithm INDEX. Given a rational parametrization P(t) =
(

χ1,1(t)
χ1,2(t)

, χ2,1(t)
χ2,2(t)

)

,

in reduced form, the algorithm computes index(P(t)), and decides whether
the parametrization is proper.

1. Compute the polynomials G1(s, t) = χ1,1(s)χ1,2(t) − χ1,2(s)χ1,1(t), and
G2(s, t) = χ2,1(s)χ2,2(t) − χ2,2(s)χ2,1(t).

2. Determine G(s, t) = gcd(G1, G2).
3. t = degt(G(s, t).
4. If t = 1 then return “P(t) is proper” else return “P(t) is not proper

and index(P(t)) = t”.

We illustrate the algorithm INDEX by an example.
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Example 1. Let P(t) be the rational parametrization

P(t) =

(

(t2 − 1) t

t4 − t2 + 1
,

(t2 − 1) t2

t6 − 3 t4 + 3 t2 − 1 − 2 t3

)

.

In Step 1 the polynomials

G1(s, t) = s3t4 − s3t2 + s3 − st4 + st2 − s − t3s4 + s2t3 − t3 + ts4 − ts2 + t

G2(s, t) = s4t6 − s4 − 2 t3s4 − s2t6 + s2 + 2 s2t3 − t4s6 + t4 + 2 s3t4 + t2s6

−t2 − 2 s3t2,

are generated, and in Step 2 their gcd is determined as G(s, t) = t−s+st2−s2t.
Thus, index(P(t)) = 2, and therefore the parametrization is not proper.

Behavior of the cardinality of the fibre

The cardinality of the fibres of the mapping P : K −→ C is the same for almost
all points on C. Nevertheless, for finitely many expections, the cardinality
may vary. ¿From the proofs of the previous results one deduces the following
summary on the behavior of the cardinalty. Let α ∈ K, then P−1(P(α)) =
{β ∈ K |G1(α, β) = 0, G2(α, β) = 0} if χ1,2(α)χ2,2(α) 6= 0, and P−1(P(α)) =
∅ otherwise. Now, let ℓi(t) be the leading coefficient of Gi w.r.t. t, let T (s) =
Rest(G1, G2) and let R1(s) and R2(s) be as in the statement of Corollary to
Theorem 1. Then, it holds that

(1) if ℓ1(α) = 0 or ℓ2(α) = 0 or T (α) = 0 then Card(P(P−1(α))) ≥ index(P(t));
(2) if ℓ1(α)ℓ2(α)T (α) 6= 0 then Card(P(P−1(α))) ≤ index(P(t));
(3) if R1(α) R2(α) 6= 0 then Card(P(P−1(α))) = index(P(t)).

The explanation of this behavior is the following: in (1) it may happen that
degt(gcd(G1(α, t), G2(α, t))) > degt(G(s, t)) = index(P(t)) (see Lemma 3
(1)). In (2), by Lemma 3 (2), one has that degt(gcd(G1(α, t), G2(α, t))) =
degt(G(s, t)) = index(P(t)), but it may happen that gcd(G1(α, t), G2(α, t)) is
not squarefree, and therefore the cardinality of the fibre decreases. For (3) see
Corollary to Theorem 1.

Example 2. Let P(t) be the rational parametrization in Example 1. G(s, t) =
t − s + st2 − s2t. Thus, index(P(t)) = 2. On the other hand, the polynomials
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ℓ1(s), ℓ2(s), T (s), R1(s), and R2(s) are

ℓ1(s, t) = (s3 − s)

ℓ2(s, t) = (s4 − s2)

T (s) = s2 (s − 1)2 (s + 1)2 (s2 + s − 1)
4

R1(s) = s (s − 1) (s + 1) (4 s4 − 7 s2 + 4) (s2 + 1)
2
(s2 + s − 1)

4
(s2 − s − 1)

4

R2(s) = −64 s6 (s − 1)3 (s + 1)3 (s8 − 4 s5 − s4 + 4 s3 + 1) (s2 + 1)
2

(s2 − 2 s − 1)
2
(s4 + 2 s3 + 2 s2 − 2 s + 1)

2
(s2 + s − 1)

4
(s4 − s3 − s2 + s + 1)

4

The roots of ℓ1(s), ℓ2(s), T (s) may generate points whose fibre has cardinality

greater than 2. In our example these roots are {0, 1,−1,−1
2
±

√
5

2
}, and

P−1(P(0)) = P−1(P(1)) = P−1(P(−1)) = P−1((0, 0)) = {0, 1,−1},
P−1(P(−1

2
±

√
5

2
)) = {−1

2
+

√
5

2
,−1

2
−

√
5

2
}.

The roots of R1(s) and R2(s) not being roots of ℓ1(s), ℓ2(s), T (s) may generate
points whose fibre has cardinality less that 2. In our example

P−1(P(i)) = {i}, P−1(P(−i)) = {−i}.

Finally, the theory ensures that for any α not being a root of R1(s), R2(s),
χ1,2(t), or χ2,2(t), the fibre has cardinality 2.

Geometric interpretation

Let α be such that χ1,2(α)χ2,2(α) 6= 0. Then, the fibre is expressed as

P−1(P(α)) = {β ∈ K |G1(α, β) = 0, G2(α, β) = 0}.

Thus, P−1(P(α)) can be seen as the common affine intersection points of
the curves defined by G1(s, t), G2(s, t) and the line s = α. Therefore, for all
but finitely many exceptions, P−1(P(α)) can be seen as the common affine
intersection points of the curve defined by G(s, t) and the line s = α (case (3)
of the behavior of the cardinality of the fibre). Thus, for all but finitely many
exceptions, index(P(t)) is the number of affine intersections, counted without
multiplicity, of the curve defined by G(s, t) and the line s = α. Note that the
line s = t is always a component of G(s, t).

However it may happen that, for finitely many values α of s, the number
of intersection points of G1, G2, and s = α, is greater than the number of
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intersection points of G, and s = α (case (1) of the behavior of the cardinality
of the fibre). Moreover, it may occur that, although the previous situation does
not happen, the line s = α is tangent to the curve G(s, t), in which case the
cardinality of the fibre decreases (case (2) of the behavior of the cardinality
of the fibre).

–3

–2

–1

0

1

2

3

t

–3 –2 –1 1 2 3s

Fig. 1. Curve G1(s, t)

We finish this section by an analysis of Example 1. In Figure 1, the real part
of the curve G1(s, t) is plotted together with the vertical lines s = 0,s = 1,
and s = −1.

–3

–2

–1

0

1

2

3

t

–3 –2 –1 1 2 3s

Fig. 2. Curve G2(s, t)

In Figure 2 the real part of G2(s, t) together with these vertical lines is plotted,
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and in Figure 3 the real part of G(s, t) is plotted.

–3

–2

–1

0

1

2

3

t

–3 –2 –1 1 2 3s

Fig. 3. Curve G(s, t)

Now observe that for all α 6= 0 the intersection of s = α and G(s, t) consists
of two affine points. However, the intersections of s = 0 and G1(s, t), G2(s, t)
are three affine points; similarly for s = 1 and s = −1.

4 Real tracing index

The tracing index measures the number of times a parametrization traces the
curve when the parameter takes values in the algebraically closed field K.
However, in pratice, one may be interested in computing the number of times
the curve is traced when the parameter takes real values. This leads to the
notion of real tracing index.

Let C be a real curve, i.e. a curve with infinitely many real points, defined by a
rational parametrization P(t). In principle, it may happen that P(t) contains
non–real complex coefficients. However, there exist algorithmic approaches
that reparametrize P(t) into a new rational parametrization, defined over the
reals, of the same real curve (see Recio and Sendra (1997)). Therefore, in the
following, we assume that P(t) is a rational parametrization over R in reduced
form. In this situation, we want to compute the cardinality of the fibres of the
map

P|R : R −→ C.
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If α ∈ R is such that χ1,2(α)χ2,2(α) 6= 0 we denote the fibre P|−1
R

(P|R(α)) by
FR

P (α). That is,

FR

P (α) = P−1(P(α)) ∩ R = {β ∈ R | gcd(G1(α, t), G2(α, t))(β) = 0}.

Thus, for a particular α, Card(FR

P (α)) can be computed by counting the num-
ber of different real roots of a univariate polynomial over the real numbers.
There exist many algorithmic approaches to the problem of counting the num-
ber of different real roots of a univariate polynomial (see, e.g., Bini et al
(2000)).

Before giving a geometric interpretation of the problem, we observe that the
curve defined by G(s, t) is real since it has at least one real component, namely
the line s − t = 0. However, G(s, t) may have non–real components. For
instance, if P(t) = ( 1

t4
, 1

t4
), then G(s, t) = (s − t)(s + t)(s2 + t2).

For almost all α ∈ R, Card(P−1(P(α))) is the number of affine intersec-
tion points of the curve G(s, t) and the line s = α. Thus, since FR

P (α) =
P−1(P(α))∩R, geometrically, the cardinality of FR

P (α) can be seen as the num-
ber of real affine intersections of the real curve G(s, t) with the line s = α. How-
ever, the cardinality of the fibre may be different for the values in two different
intervals of R. Nevertheless, under certain conditions of square–freeness the
theory of Cylindrical Algebraic Decomposition (C.A.D.), see Collins (1975),
ensures the existence of a finite partition of intervals {Ii}0≤i≤r of R such that
in the interior of each interval Ii the cardinality of the fibre is constant. Then,
the idea is to define the real tracing index as the maximum of the cardinal-
ities of the fibres in each of these finitely many intervals. For instance, if we
consider the parametrization P(t) = (t4 − t2, t4 − t2) of the line y = x, then
G(s, t) = (t2 − s2)(t2 + s2 − 1), and hence index(P(t)) = 4. The C.A.D. of
G(s, t) generates the following partition (see Figure 4)

R = (−∞,−1] ∪ (−1,−
√

2

2
) ∪ (−

√
2

2
,

√
2

2
) ∪ (

√
2

2
, 1) ∪ [1,∞)

and the cardinality of the fibre in the interior of each interval is

if α ∈ (−∞,−1) then Card(FR

P (α)) = 2,

if α ∈ (−1,−
√

2
2

) then Card(FR

P (α)) = 4,

if α ∈ (−
√

2
2

,
√

2
2

) then Card(FR

P (α)) = 4,

if α ∈ (
√

2
2

, 1) then Card(FR

P (α)) = 4,

if α ∈ (1,∞) then Card(FR

P (α)) = 2.
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Furthermore, FR

P (−1)), and FR

P (1)) have cardinality 3, and FR

P (−
√

2
2

),FR

P (
√

2
2

)
have cardinality 4.

In order to formally state these ideas, we start with a well known result in Real
Algebra that can be directly deduced from the theory of Cylindrical Algebraic
Decomposition (see, e.g., Collins (1975) or Section 9.2. in Winkler (1996)).

–2

–1

0

1

2

t

–2 –1 1 2
s

Fig. 4. C.A.D. generated by G(s, t)

Lemma 5. Let f ∈ R[x, y] be a square-free polynomial, let D(x) be the
discriminant of f with respect to the variable y, and let I ⊆ R be non-empty
and connected. If D(x) does not vanish on any element of I, then for every
a ∈ I the polynomial f(a, y) is square-free, and the number of real roots of
f(a, y) is constant.

In the next lemma we show that the polynomial G(s, t) satisfies the hypothesis
of Lemma 5.

Lemma 6. G(s, t) is a square–free real polynomial.

Lemma 7. Let D(t) be the discriminant of G(s, t) w.r.t. t, and let b0, . . . , br ∈
R be such that

−∞ = a0 < b0 < a1 < b1 < a2 < · · · < br−1 < ar < br < ar+1 = +∞,

where a1, . . . , ar are the real roots of D(x), and let ℓi denote the number of real
roots of the polynomial G(bi, t). Then for almost all α ∈ (ai, ai+1), i = 0, . . . , r,
we have

Card(FR

P (α)) = ℓi.
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Taking into account Lemma 7, we introduce the notion of real tracing index.

Definition. Let D(t) be the discriminant of G(s, t) w.r.t. t, and let b0, . . . , br ∈
R be such that

−∞ = a0 < b0 < a1 < b1 < a2 < · · · < br−1 < ar < br < ar+1 = +∞,

where a1, . . . , ar are the real roots of D(x), and let ℓi denote the number of
real roots of the polynomial G(bi, t). Then, we define the real tracing index of
P(t), denoted by indexR(P(t)), as

indexR(P(t)) = max{ℓ0, . . . , ℓr}.

Remark.

(1) If D(t) does not have real roots, then for all α ∈ R the number of real
roots of G(α, t) is invariant, and therefore the cardinaltiy of the fibre is
the same for almost all real values. In particular, this is the case if the
given parametrization is proper. Note that in this case G(s, t) = s − t,
and its discriminant is D(t) = 1. The converse is not true, for instance
the parametrization (t5 + t, t5 + t) is not proper (index(P(t)) = 5), but
the discriminat of G(s, t) has no real roots.

(2) In some applications it may be interesting to know the real tracing index
in a particular interval I of R. In this case, one may proceed as follows:

indexI(P(t)) = max{ℓi | bi ∈ I}.

In the following, we outline the algorithm for computing the real tracing index
of a rational parametrization.

Algorithm REAL-INDEX. Given a rational real parametrization P(t) =
(

χ1,1(t)

χ1,2(t)
, χ2,1(t)

χ2,2(t)

)

, in reduced form, the algorithm computes indexR(P(t)).

1. Compute the polynomials G1(s, t), and G2(s, t).
2. Determine G(s, t) = gcd(G1, G2).
3. Compute the discriminant D(t) of G(s, t) w.r.t. t.
4. Isolate the real roots of D(t). Let Ii = (bi, bi+1), i = 0, . . . , r − 1 be such

that each Ii contains exactly one real root of D(t).
5. If D(t) does not have real roots, then

5.1. Compute the number of ℓ real roots of G(0, t).
5.2. Return ℓ.

6. For i from 0 to r determine the number ℓi of real roots of G(bi, t).
7. Return max{ℓ0, . . . , ℓr}.
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Example 3. We consider the real parametrization

P(t) =

(

1

t (t2 − 1)
,
t9 − 3 t7 + 3 t5 − t3 + 1

t (t2 − 1)

)

.

G(s, t) = t3 − t − s3 + s. Thus, index(P(t)) = 3. The discriminant of G w.r.t.
is D(t) = (3 s2 − 4) (3 s2 − 1)

2
, and the real roots of D(t) are

{

−2

3

√
3,−1

3

√
3,

1

3

√
3,

2

3

√
3
}

.

Therefore, we may take b0 = −2, b1 = −1, b2 = 0, b3 = 1, b4 = 2. In this
situation, one has that ℓ0 = 1, ℓ1 = 3, ℓ2 = 3, ℓ3 = 3, ℓ4 = 1. So we see that
indexR(P(t)) = 3.

5 Tracing Index and Curve Degree

In this section we analyze how the tracing index of a parametrization behaves
under reparametrizations and how it is related to the degree of the curve. For
this purpose, we use the notion of degree of a rational parametrization P(t).

Definition. Let R(t) = p(t)
q(t)

∈ K(t) be a rational function in reduced form

(i.e. gcd(p, q) = 1). Then we define the degree of R(t), denoted by degt(R), as

degt(R(t)) = max{degt(p(t)), degt(q(t))}.

Definition. Let P(t) =
(

χ1,1(t)
χ1,2(t)

, χ2,1(t)
χ2,2(t)

)

be a rational parametrization. Then

we define the degree of P(t), denoted by deg(P(t)), as

deg(P(t)) = max

{

degt

(

χ1,1(t)

χ1,2(t)

)

, degt

(

χ2,1(t)

χ2,2(t)

)}

.

Remark.

(1) Note that deg(P(t)), the degree of P(t), is in general different from
index(P(t)), the degree of the rational mapping P induced by P(t) (see
Theorem 6). For instance, any proper rational parametrization of a cir-
cle has degree 2 but its index is 1 because it is proper. In the sequel, in
order to avoid possible ambiguities, we will use the notation deg(P(t))
for the degree w.r.t. the parameter, and index(P(t)) for the degree of the
rational map.
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(2) The degree of a plane curve is defined as the total degree of its implicit
equation. Note that the degree of a rational parametrization of a curve C
does not always agree with the degree of C. For instance, the parametriza-
tion

(

t, 1
t

)

has degree 1 but it defines the hyperbola yx = 1, whose degree
is 2.

In order to study the behavior of the index under reparametrizations we first
prove a technical lemma where we show that, in the case of a single non-
constant rational function R(t), the degree w.r.t. t of R(t) is the degree of the
rational map from K to K defined by R(t).

Lemma 8. Let R(t) ∈ K(t) be a non-constant rational function, and let R :
K → K be the rational map induced by R(t). Then Card(R−1(a)) = degt(R(t))
for almost all a ∈ K.

Theorem 4. Let P(t) be a rational parametrization, and R(t) ∈ K(t) \ K.
Then

index(P(R(t))) = degt(R(t)) · index(P(t)).

In Theorem 5, we prove how the degree of a proper parametrization and the
degree of the curve are related.

Theorem 5. Let C be a rational affine curve defined over K by the polynomial
f(x, y) ∈ K[x, y], and let P(t) be a rational parametrization of C. Then P(t)
is proper if and only if

deg(P(t)) = max{degx(f), degy(f)}.

Furthermore, if P(t) is proper, then deg(χ1,1

χ1,2
) = degy(f), and deg(χ2,1

χ2,2
) =

degx(f).

Example 4. We consider the rational quintic C defined by the polynomial
f(x, y) = y5 +x2y3 − 3 x2y2 +3 x2y−x2. Theorem 5 ensures that any rational
proper parametrization of C must have a first component of degree 5, and a
second component of degree 2. It is easy to check that

P(t) =

(

t5

t2 + 1
,

t2

t2 + 1

)

properly parametrizes C. Note that f(P(t)) = 0, and that index(P(t)) = 1.

Applying Theorem 5 and Lemma 1 one deduces the following corollary.
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Corollary. Let C be a rational affine plane curve defined by the polynomial
f(x, y) ∈ K[x, y]. Then the degree of any rational parametrization of C is a
multiple of max{degx(f), degy(f)}.

In Theorem 6 we apply Theorem 5 to show the relation between the index of a
parametrization, the degree of a parametrization and the degree of the curve.

Theorem 6. Let C be a rational affine plane curve defined by f(x, y) ∈ K[x, y],
let n = max{degx(f), degy(f)}, and let P(t) be a rational parametrization of
C. Then

index(P(t)) =
deg(P(t))

n
.

6 Tracing Index and Implicitization

The problem of implicitization consists of finding the defining equations for
the smallest algebraic set containing a given set of points S. The problem
can be solved by elimination techniques (see Cox et al, 1997). This approach
is specially usefull for parametric varieties in Kn. Also, for surfaces, different
approaches can be found in González-Vega (1997), Sederberg et al (1997).
However, for the case of plane curves, the implicit equation can be found by
means of gcd’s and resultants. For instance, applying Lemma 9, the defining
polynomial of the curve parametrized by P(t) can be obtained by computing
the square-free part of a resultant. Moreover, if properness is guaranteed,
Theorem 7 shows that the implicit equation can be computed by a single
resultant. This result can be found in Sederberg et al (1997), or can be easily
deduced from Lemma 9. In addition to these results, in Theorem 8 we see that
when computing the resultant the implicit equation appears to the power of
the tracing index. Similar results on implicitization can be found in Chionh
and Goldman (1992) and Cox et al (1998).

Lemma 9. Let P(t) be a parametrization in reduced form with non-constant
components of a curve C. If f(x, y) is the defining polynomial of C, there exists
r ∈ N such that, up to multiplication by constants,

Rest(H1(t, x), H2(t, y)) = (f(x, y))r.

The next result can be found in Sederberg et al (1997), or can be easily deduced
from Lemma 9.

Theorem 7. Let P(t) be a proper parametrization in reduced form of a curve
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C. Then, the defining polynomial of C is the resultant

Rest(H1(t, x), H2(t, y)).

We finish this section showing how Lemma 9, Theorem 7 and the notion of
tracing index of a parametrization are related. Basically, the result follows
from the next lemma on resultants.

Lemma 10. Let A, B ∈ L[t] be non–constant polynomials over a field L:

A(t) = amtm + · · ·+ a0, B(t) = bnt
n + · · ·+ b0,

and let R(t) = M(t)
N(t)

∈ L(t) be a non–constant rational function in reduced

form, such that deg(M − βN) = deg(R) for every root β of A(t)B(t). Let
A′(t) and B′(t) be the polynomials

A′(t) = amM(t)m + am−1M(t)m−1N(t) + · · ·+ a0N(t)m

B′(t) = bnM(t)n + an−1M(t)n−1N(t) + · · · + b0N(t)n

Then, if b is the leading coefficient of B and b′ is the leading coefficient of B′

Rest(A
′, B′) =

(b′)m(deg(R)−deg(N))

bdeg(R)m
Rest(A, B)deg(R) · Rest(B

′, N)m.

Theorem 8 relates Theorem 7 and the tracing index.

Theorem 8. Let P(t) be a parametrization in reduced form of the curve C.
If f(x, y) is the defining polynomial of C, then we have, up to multiplication
by constants,

Rest(H1(t, x), H2(t, y)) = (f(x, y))index(P).

We finish this section with an example that illustrates Theorem 8.

Example 5. We consider the quintic C of Example 4 and its parametrization

P(t) =

(

(t10 + 1)
5

t20 + 2 t10 + 2
,

(t10 + 1)
2

t20 + 2 t10 + 2

)

.

This new parametrization of C is obtained by reparametrizing the proper
parametrization in Example 4 with the rational function t10 + 1. Thus, the
index of the parametrization should be 10. In fact, G(s, t) = t10 − s10. On the
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other hand, computing the resultant w.r.t. t of the polynomials H1 and H2

one gets

Rest(H1(t, x), H2(t, y)) =
(

y5 + x2y3 − 3 x2y2 + 3 x2y − x2
)10

Appendix A.

Proof of Lemma 1. (1) Since P is a birational mapping, it is clear that
R(t) = P−1(Q(t)) ∈ K(t), and that Q(t) = P(R(t)).
(2) If Q(t) is proper, one has that L(t) = P−1(Q(t)) is a birational mapping
from K onto K. Hence, L(t) induces an automorphism L = P−1 ◦ Q of K(t)
defined as:

L : K(t) −→ K(t)

t 7−→ ϕ(t).

Therefore, since K-automorphisms of K(t) are the invertible rational functions
(see e.g. van der Waerden, 1953), one has that L(t) is a linear rational function,
and clearly Q(t) = P(L(t)).
Conversely, let L be the birational mapping from K onto K defined by the
linear rational function L(t) ∈ K(t). Then, Q = P ◦ L : K → C is a birational
mapping, and therefore Q(t) is proper.

Proof of Lemma 2. Let us consider the polynomials f(x, y) = p(x) −
yq(x), g(x, y) = p′(x) − yq′(x). Clearly, p(x) − bq(x) has multiple roots if and
only if b is a root of the discriminant of f w.r.t. x. That is, if and only if
b is the y–coordinate of a point in E. Since gcd(p, q) = 1 and p, q are non-
zero, one has that f is irreducible. Furthermore, g is non-zero, since at least
one of the two polynomials p and q is non-constant. If g is a constant it
follows that E is the empty set. Moreover, if g is not constant, since f is irre-
ducible and deg(g) ≤ deg(f), applying Bézout’s Theorem one concludes that
the curves defined over K by f and g have finitely many intersection points.
Hence Card(E) < ∞.

Proof of Theorem 1. Let S be the set of all α ∈ K such that Pα = P(α) is
defined, and such that G1(α, t) and G2(α, t) do not have multiple roots. First,
we see that S is an infinite set. Indeed: P(t) is not defined only for the common
roots of the denominators. Furthermore, if α is such that χ1,2(α)χ2,2(α) 6= 0,

and G1(α, t) has multiple roots, then the polynomial χ1,1(t)− χ1,1(α)
χ1,2(α)

χ1,2(t) also

has multiple roots. But, by Lemma 2, this can only happen for finitely many
values of α (note that χ1,1, χ1,2 are non-zero relatively prime polynomials).
Similarly for G2(α, t). Therefore, S is infinite.
Now, let us see that P−1(P(α)) = {β ∈ K | gcd(G1(α, t), G2(α, t))(β) = 0}.
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Observe that every element of the fibre P−1(Pα) is a common root of G1(α, t)
and G2(α, t). On the other hand, let β be a root of Gα(t). So χ1,2(β) 6= 0,
since otherwise it would imply that χ1,2(α)χ1,1(β) = 0, but χ1,2(α) 6= 0 and
hence χ1,1(β) = 0, which is impossible because gcd(χ1,1, χ1,2) = 1. Similarly,
χ2,2(β) 6= 0. Thus, β ∈ P−1(Pα).
Finally, since G1(α, t) and G2(α, t) do not have multiple roots, the cardinality
of the fibre is the degree of the gcd.

Proof of Lemma 3. Let h = gcd(f, g). Since not both leading coefficients
(w.r.t. y) of f and g vanish under ϕa, also the leading coefficient of h cannot
vanish under ϕa. So deg(ϕa(h)) = degy(h). Furthermore, ϕa(f) = ϕa(f̄)ϕa(h)
and ϕa(g) = ϕa(ḡ)ϕa(h).

(1) ϕa(h) divides gcd(ϕa(f), ϕa(g)), thus one has that deg(gcd(ϕa(f), ϕa(g))) ≥
deg(ϕa(gcd(f, g))) = degy(gcd(f, g)).

(2) We have gcd(ϕa(f), ϕa(g)) = gcd(ϕa(f̄), ϕa(ḡ))·ϕa(h). If gcd(ϕa(f), ϕa(g))
6= ϕa(h), then gcd(ϕa(f̄), ϕa(ḡ)) 6= 1. Hence, the resultant w.r.t. y of ϕa(f̄)
and ϕa(ḡ) is zero. Therefore, since ϕa is a ring homomorphism, one obtains
that 0 = Resy(ϕa(f̄), ϕa(ḡ)) = ϕa(Resy(f̄ , ḡ)). This, however, is excluded by
the assumptions.

Proof of Lemma 4. Since no component of P(t) is constant, one has that
G1(s, t) and G2(s, t) are non-zero. Thus, if G1 = Ḡ1 · G, G2 = Ḡ2 · G, it
holds that T (s) = Rest(Ḡ1, Ḡ2) ∈ K[s] is not identically zero. Therefore,
T (s) and the leading coefficients of G1 and G2, w.r.t. t, can only vanish at
finitely many values. Thus, by Lemma 3(2), for almost all α ∈ K, ϕα(G) =
gcd(ϕα(G1), ϕα(G2)). In particular, for almost all α ∈ K,

degt(gcd(ϕα(G1), ϕα(G2))) = degt(ϕα(G)) ≤ degt(G).

On the other hand, by Lemma 3(1), degt(gcd(ϕα(G1), ϕα(G2))) ≥ degt(G) for
almost all α ∈ K. Thus, for almost all α ∈ K, degt(gcd(ϕα(G1), ϕα(G2))) =
degt(G).

Proof of Theorem 2. If P(t) does not have constant components, the result
follows from Theorem 1 and Lemma 4.
Now assume that P(t) has a constant component. W.l.o.g. let the first compo-
nent be constant. Then G(s, t) = G2(s, t). Now consider the set Ω of all points
a ∈ K such that P(a) is defined, G2(a, t) is squarefree and degt(G2(s, t)) =
degt(G2(a, t)). Note that the denominators in P as well as the leading co-
efficient w.r.t. t of G1 are univariate polynomials. Applying Lemma 2, one
deduces that Ω is a non-empty open subset of K. Moreover, C \P(Ω) is finite,
and all points in C \ P(Ω) are generated by m parameter values.
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Proof of Lemma 6. Clearly, G(s, t) is real. Let us assume that G(s, t) is not
square–free. Then, G1(s, t) and G2(s, t) are not square–free. Let us assume
w.l.o.g. that the first component of the parametrization is not constant. For
almost all α ∈ C the polynomial G1(α, t) has multiple roots, and χ1,2(t), χ2,2(t)
vanish only for finitely many values of α. Thus, for almost all α ∈ C the
polynomial x1(t)− χ1,1(α)

χ1,2(α)
χ1,2(t) has multiple roots, which is impossible because

of Lemma 2.

Proof of Lemma 7. For almost all α ∈ (ai, ai+1) it holds that Card(FR

P (α))
is the number of real affine intersections of G(s, t) and s = α. Thus, it is the
number of different real roots of G(α, t). Now, by Lemma 5 and Lemma 6,
G(α, t) is squarefree and the number of real roots of G(α, t) is invariant for all
α ∈ (ai, ai+1). In particular for α = bi.

Proof of Lemma 8. Let R(t) = p(t)/q(t) be in reduced form. Let W0 be the
non–empty open subset of K where R is defined, and let V0 be the subset of
points a ∈ K such that p(t) − aq(t) is square-free, and such that deg(p(t) −
aq(t)) = deg(R(t)). Note that from Lemma 2 one has that V0 is open and
non–empty. Furthermore, since R is non-constant, one has that R(W0) is also
a non–empty open set. We consider the set U = V0 ∩ R(W0). Since K is
irreducible, one has that V0 ∩R(W0) is a non–empty open set. Let us see that
for all a ∈ U it holds that Card(R−1(a)) = deg(R(t)). Indeed: take a ∈ U ,
since a ∈ R(W0) one has that R−1(a) is non–empty. Moreover, since a ∈ V0, it
holds that p(t) − aq(t) is square-free, and that deg(p(t) − aq(t)) = deg(R(t)).
Therefore, Card(R−1(a)) = deg(R(t))

Proof of Theorem 4. Let Q(t) = P(R(t)). Then in terms of mappings we

have Q : K
R−→ K

P−→ C. Taking into account that index(Q(t)) = [K(t) :
ϕQ(K(C))], where ϕQ is the monomorphism induced by Q on the fields of
rational functions, and using that the degree of finite field extensions is mul-
tiplicative (see e.g. van der Waerden, 1953), one has that the degree of a
composition of maps is the product of the degrees. Thus, applying Lemma 8,
one concludes that index(Q(t)) = degt(R(t)) · index(P(t)).

Proof of Theorem 5. We first prove the result for the special case of
parametrizations having a constant component; i.e. for lines. Afterwards, we
consider the general case. Let P(t) be a parametrization such that one of its

two components is constant, say P(t) = (χ1,1(t)
χ1,2(t)

, λ) where λ ∈ K. Then the

curve C is the line of equation y = λ. Hence, (t, λ) is a proper parametrization
of C. So, by Lemma 1(1) every proper parametrization of C is of the form

(at+b
ct+d

, λ), where a, b, c, d,∈ K and ad − bc 6= 0. Therefore, degt

(

χ1,1

χ1,2

)

= 1, and

the theorem clearly holds.
In order to prove the general case, let P(t) be proper, in reduced form, and
such that none of its components is constant. In this situation, we prove
that max{deg(χ2,1), deg(χ2,2)}=degx(f), and analogously one can prove that
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max{deg(χ1,1), deg(χ1,2)}=degy(f). From these relations, we immediately get
that deg(P(t)) = max{degx(f), degy(f)}. For this purpose, we define S as the
subset of K containing:

(a) all the second coordinates of those points on C that are not generated by
P(t),

(b) those b ∈ K such that the polynomial χ2,1(t)−bχ2,2(t) has multiple roots,
(c) lc(χ2,1)/lc(χ2,2), where “ lc” denotes the leading coefficient,
(d) those b ∈ K such that the polynomial f(x, b) has multiple roots,
(e) the roots of the leading coefficient, with respect to x, of f(x, y).

First we show that S is finite. Indeed: P(t) is a parametrization, so only finitely
many points on the curve are not generated by P(t), and therefore only finitely
many field elements satisfy (a). According to Lemma 2 there are only finitely
many field elements satisfying (b). The argument for (c) is trivial. An element
b ∈ K satisfies (d) iff b is the second coordinate of a singular point of C or the
line y = b is tangent to the curve at some simple point. Since C is irreducible,
it has only finitely many singular points. Moreover, y = b is tangent to C at
some point (a, b) if (a, b) is a solution of the system {f = 0, ∂f

∂x
= 0}. However,

by Bézout’s Theorem, this system has only finitely many solutions; note that f
is not a line. So only finitely many field elements satisfy (d). Since the leading
coefficient, with respect to x, of f(x, y) is a non-zero univariate polynomial
(note that, since C is not a line, f is a non-linear irreducible bivariate polyno-
mial), only finitely many field elements satisfy (e). Therefore, S is finite.
Now we take an element b ∈ K \ S and we consider the intersection of C and
the line of equation y = b. Since b 6∈ S, by (e), one has that the degree of
f(x, b) is exactly degx(f(x, y)), say m := degx(f(x, y)). Furthermore, by (d),
f(x, b) has m different roots, say {r1, . . . , rm}. So, there are m different points
on C having b as a second coordinate (i.e. {(ri, b)}i=1,...,m), and they can be
generated by P(t), becasuse of (a).
On the other hand, we consider the polynomial M(t) = χ2,1(t) − bχ2,2(t).
We note that, since every point (ri, b) is generated by some value of the pa-
rameter t, degt(M) ≥ m. But, since P(t) is proper, and since M cannot
have multiple roots, we get that degt(M) = m = degx(f(x, y)). Now, since
b is not the quotient of the leading coefficients of χ2,1 and χ2,2, we get that
degx(f(x, y)) = deg(M) = max{deg(χ2,1), deg(χ2,2)}.
Conversely, let P(t) be a parametrization of the curve C such that deg(P(t)) =
max{degx(f), degy(f)}, and let Q(t) be any proper parametrization of C.
Then, by Lemma 1 statement (1), there exists R(t) ∈ K(t) such that Q(R(t)) =
P(t). Now, since Q(t) is a proper parametrization, one has that deg(Q(t)) =
max{degx(f), degy(f)} = deg(P(t)). Therefore, since the degree is multiplica-
tive with respect to composition, R(t) is of degree 1, and hence R is invertible.
Thus, by Lemma 1(2), P(t) is proper.

Proof of Theorem 6. Lüroth’s theorem guarantees the existence of a proper
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parametrization P ′(t) of C, and by Lemma 1 there exists R(t) ∈ K(t) \ K

such that P(t) = P ′(R(t)). Applying Theorem 4 and that P ′(t) is proper,
index(P(t)) = degt(R(t)) · index(P ′(t)) = degt(R(t)). Furthermore, since the
degree of rational functions is multiplicative, it also holds that deg(P(t)) =
degt(R(t)) · deg(P ′(t)). Thus,

index(P(t)) =
deg(P(t))

deg(P ′(t))
.

Moreover, taking into account that P ′(t) is proper, by Theorem 5 one has that
deg(P ′(t)) = n, and therefore the theorem holds.

Proof of Lemma 9. We see H1, H2 as polynomials in K[t, x, y]. Let h(x, y) =
Rest(H1, H2). First, note that the polynomials H1, H2 are irreducible because
gcd(χ1,1, χ1,2) = gcd(χ2,1, χ2,2) = 1. Hence H1, H2 do not have common fac-
tors. Therefore, h(x, y) is not the zero polynomial. Furthermore, let us see
that h is neither a constant polynomial. Indeed: let t0 ∈ K be such that
χ1,2(t0)χ2,2(t0) 6= 0. Then H1(t0,P(t0)) = H2(t0,P(t0)) = 0. This implies that
h(P(t0)) = 0. Thus, since h is not the zero polynomial it can not be constant.
Now, we consider the square–free part h′(x, y) of h(x, y) and the plane curve C′

defined by h′(x, y) over K. Let us see that P(t) parametrizes the curve C′. For
this purpose, we check that for almost all values of the parameter t, P(t) ∈ C′,
and that almost all points on C′ are generated by P(t):

(1) Let t0 ∈ K be such that χ1,2(t0)χ2,2(t0) 6= 0. By the previous argument
one has that h(P(t0)) = 0. Thus h(P(t0)) = 0, and hence P(t0) is on C′.

(2) Let L1, L2 be the leading coefficients of H1, H2, w.r.t. t, respectively. Note
that L1 ∈ K[x], L2 ∈ K[y] are of degree at most 1. Let (x0, y0) ∈ C′ be such
that L1(x0) 6= 0 or L2(y0) 6= 0 (note that at most one point in K2 may van-
ish both L1 and L2). Then, h′(x0, y0) = 0 and thus h(x0, y0) = 0. There-
fore, since h is a resultant, there exists t0 ∈ K such that H1(t0, x0, y0) =
H2(t0, x0, y0) = 0. Also, observe that χ1,2(t0) 6= 0 since otherwise it
would imply that χ1,2(t0) = χ1,1(t0) = 0, which is impossible since
gcd(χ1,1, χ1,2) = 1. Similarly, χ2,2(t0) 6= 0. Thus, (x0, y0) = P(t0). There-
fore, almost all points on C′ are generated by P(t).

Therefore, C = C′, and f = h′ up multiplication by constants. Thus, since f
irreducible there exists r ∈ N such that h(x, y) = (h′(x, y))r.

Proof of Lemma 10. Let B decompose over the algebraic closure of L as

B(t) = bn

n
∏

i=1

(t − bi).
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Since B′(t) = Nn · B(R) one has that

B′(t) = bn

n
∏

i=1

(M(t) − biN(t)).

Therefore, since deg(M−biN) = deg(R) for every i ∈ {1, . . . , n}, one has that
deg(B′) = n · deg(R). In particular, since R is non–constant, one gets that B′

is not a constant polynomial. Similarly one gets that deg(A′) = m · deg(R),
and that A′ is also a non–constant polynomial.
Now, observe that if r = deg(R), then every root bi of B generates r roots
{bi,1, . . . , bi,r} of B′(t), namely the roots of M(t) − biN(t). Morevoer, if α is a
root of B′ then N(α) 6= 0, since otherwise one gets that M(α) = 0. But this
is impossible because M and N are relatively prime. Therefore, one deduces
that

bi =
M(bi,j)

N(bi,j)
= R(bi,j) for j = 1, . . . , r.

Let S = Rest(A, B), S ′ = Rest(A
′, B′) and S ′′ = Rest(B

′, N). Then, from
A′ = Nm · A(R) one gets

S ′ = (b′)mr
∏

B′(α)=0

A′(α) = (b′)mr
n
∏

i=1

r
∏

j=1

A′(bi,j) =

= (b′)mr
n
∏

i=1

A(bi)
r

n
∏

i=1

r
∏

j=1

N(bi,j)
m.

Furthermore, if k = deg(N), one has that

S = bm
n
∏

i=1

A(bi), S ′′ = (b′)k
n
∏

i=1

r
∏

j=1

N(bi,j).

Thus,

S ′ =
(b′)mr

brm
Sr

n
∏

i=1

r
∏

j=1

N(bi,j)
m =

(b′)mr−km

brm
Sr(S ′′)m.

Proof of Theorem 8. We distinguish two cases depending on whether C is
a vertical or a horizontal line or not. If C is one these lines, let us say y = a,
then P(t) = (χ1,1(t)

χ1,2(t)
, a). Therefore,

Rest(χ1,2(t)x − χ1,1(t), y − a) = (y − a)deg(P),
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and the theorem follows from Theorem 6.
Let us now assume that C is neither a vertical nor a horizontal line; i.e. its
defining polynomial depends on both variables x, y. By Lüroth’s theorem, we
know that there exist proper rational parametrizations of C. Let us see that
there always exists a proper parametrization of C such that the degrees of the
numerator and denominator of each parametrization component, in reduced
form, are the same. In order to prove this, we remark that, by Lemma 1, any
linear reparametrization of a proper parametrization is again proper. Let P ′

be any proper parametrization of C. If 0 is a root of none of the numerators
and denominators in P ′, then P ′(1

t
) is still proper and the requirement on the

degree is fullfilled. If 0 is a root of any of the numerators or denominators, we
consider the proper parametrization P ′(t + a), where a is not a root of any of
the numerators and denomintors. This a always exists since we have excluded
vertical and horizontal lines, and therefore no component of the parametriza-
tion can be identically 0. Now, observe that no numerator or denominator in
P ′(t + a) vanishes at 0. Therefore, one can always reparametrize the initial
proper parametrization into a proper one, where degrees of numerator and
denominator at each component agree.
Now, let

P ′(t) =

(

ξ1,1(t)

ξ1,2(t)
,
ξ2,1(t)

ξ2,2(t)

)

be a proper parametrization, in reduced form, of C where deg(ξi,1) = deg(ξi,2).
By Lemma 1 there exists a non-constant rational function R(t) such that

P(t) = P ′(R(t)) = (χ1,1

χ1,2
, χ2,1

χ2,2
). Let R(t) = M(t)

N(t)
be in reduced form. We consider

the polynomials

HP
1 = χ1,2(t)x − χ1,1(t), HP

2 = χ2,2(t)y − χ2,1(t)

HP ′

1 = ξ1,2(t)x − ξ1,1(t), HP ′

2 = ξ2,2(t)y − ξ2,1(t)

and let

ξi,1(t) =
ni
∑

j=1

ai,jt
j , ξi,2(t) =

ni
∑

j=1

bi,jt
j , HP ′

i (t) =
mi
∑

j=1

hi,jt
j , i = 1, 2

Observe that mi = ni. For i = 1, 2, we introduce the polynomials

ξ̄i,1(t) =
ni
∑

j=1

ai,jM(t)jN(t)ni−j, , ξ̄i,2(t) =
ni
∑

j=1

bi,jM(t)jN(t)ni−j ,

H̄P ′

i (t) =
mi
∑

j=1

hi,jM(t)jN(t)mi−j ,
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which result from ξi,1, ξi,2, H
P ′

i by substituting R(t) for t and clearing denomi-
nators. In order to apply Lemma 10 to the polynomials HP ′

1 (t), HP ′

2 (t) and the
rational function R(t), let us see that deg(M(t) − βN(t)) = deg(R) for every
root β of HP ′

1 (t) · HP ′

2 (t). Indeed, if β is such that the deg(M(t) − βN(t)) <
deg(R) one has that β ∈ K. Therefore, either HP ′

1 (β) = 0 or HP ′

2 (β) = 0 and
β ∈ K. This implies that either gcd(ξ1,1, ξ1,2) 6= 1 or gcd(ξ2,1, ξ2,2) 6= 1, which
is impossible. The application of Lemma 10 leads to

Rest(H̄
P ′

1 , H̄P ′

2 ) =

=
(b′)n1(deg(R)−deg(N))

h
deg(R)n1

2,n2

· Rest(H
P ′

1 , HP ′

2 )deg(R) · Rest(H̄
P ′

2 , N)n1 ,

where b′ is the leading coefficient of H̄P ′

2 .
In addition, since P(t) = P ′(R(t)), we get

ξj,1(R(t)) · χj,2(t) = χj,1(t) · ξj,2(R(t)) for j = 1, 2.

Thus,

χj,1(t) · HP ′

j (R(t)) = ξj,1(R(t)) · HP
j (t) for j = 1, 2,

and (note that mj = nj = kj)

χj,1(t)H̄
P ′

j (t) = ξ̄j,1(t)H
P
j (t) for j = 1, 2,

χj,1(t)ξ̄j,2(t) = ξ̄j,1(t)χj,2(t) for j = 1, 2.

Now, we prove gcd(χ1,1, χ2,1) = gcd(ξ̄1,1, ξ̄2,1). Indeed: gcd(χ1,1, χ2,1) divides
ξ̄j,1 · χj,2, and since gcd(χj,1, χj,2) = 1 one has that gcd(χ1,1, χ2,1) divides ξ̄j,1.
Thus gcd(χ1,1, χ2,1) divides gcd(ξ̄1,1, ξ̄2,1). In order to prove that gcd(ξ̄1,1, ξ̄2,1)
divides gcd(χ1,1, χ2,1), we first see that gcd(ξ̄j,1, ξ̄j,2) = 1. Let a be a common
root of ξ̄j,1 and ξ̄j,2. Note that by definition of ξ̄j,1 it follows that N(a) 6= 0,
since otherwise we would have M(a) = 0. But this is impossible because M and
N are relatively prime. Therefore, taking into account that ξ̄j,1 = Nnjξj,1(R),
ξ̄j,2 = Nkjξj,2(R), one deduces that ξj,1(R(a)) = ξj,2(R(a)) = 0 which is im-
possible since gcd(ξj,1, ξj,2) = 1. Now, since gcd(ξ̄1,1, ξ̄2,1) divides χj,1 · ξ̄j,2, from
gcd(ξ̄j,1, ξ̄j,2) = 1 we deduce that gcd(ξ̄1,1, ξ̄2,1) divides gcd(χ1,1, χ2,1).
As a consequence of this remark the equalities above can be expressed as:

χ∗
j,1(t)H̄

P ′

j (t) = ξ̄∗j,1(t)H
P
j (t) for j = 1, 2,

χ∗
j,1(t)ξ̄j,2(t) = ξ̄∗j,1(t)χj,2(t) for j = 1, 2.
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where gcd(χ∗
1,1, χ

∗
2,1) = gcd(ξ̄∗1,1, ξ̄

∗
2,1) = 1. Therefore,

Rest(χ
∗
1,1H̄

P ′

1 , χ∗
2,1H̄

P ′

2 ) = Rest(ξ̄
∗
1,1H

P
1 , ξ̄∗2,1H

P
2 ).

So,

Rest(χ
∗
1,1, χ

∗
2,1) · Rest(χ

∗
1,1, H̄

P ′

2 ) · Rest(H̄
P ′

1 , χ∗
2,1) · Rest(H̄

P ′

1 , H̄P ′

2 ) =

= Rest(ξ̄
∗
1,1, ξ̄

∗
2,1) · Rest(ξ̄

∗
1,1, H

P
2 ) · Rest(H

P
1 , ξ̄∗2,1(t)) · Rest(H

P
1 , HP

2 ).

We prove that if L(t) ∈ K[t] then gcd(L, HP
i ) = gcd(L, H̄P ′

i (t)) = 1. In-
deed: if the gcd is not trivial there exists a ∈ K such that, for instance,
HP

i (a) = 0 but this implies that gcd(χi,1, χi,2) 6= 1, which is impossible. Also,
if H̄P ′

i (a) = 0, from its definition it follows that N(a) 6= 0. Therefore, since
H̄P ′

i (t) = NmiHP ′

i (R(t)), one would deduce that HP ′

i (R(a)) = 0, and hence
gcd(ξi,1, ξi,2) 6= 1 which is impossible.
Taking into account this fact and that gcd(χ∗

1,1, χ
∗
2,1) = gcd(ξ̄∗1,1, ξ̄

∗
2,1) = 1, the

previous equality on resultants can be written as

T1(y)T2(x)Rest(H̄
P ′

1 , H̄P ′

2 ) = T
′

1(y)T
′

2(x)Rest(H
P
1 , HP

2 )

where Ti, T
′

i are univariate non–zero polynomials over K. Now, combining this
last equality and the one on resultants deduced from Lemma 10 one gets that:

T1(y)T2(x)





(b′)n1(deg(R)−deg(N))

h
deg(R)n1

2,n2

Rest(H
P ′

1 , HP ′

2 )deg(R) · Rest(H̄
P ′

2 , N)n1



 =

= T
′

1(y)T
′

2(x)Rest(H
P
1 , HP

2 ).

Furthermore, if f(x, y) is the implicit equation of C, by Lemma 9 and Theorem
7 one obtains that there exists ℓ ∈ N such that

T1(y)T2(x)





(b′)n1(deg(R)−deg(N))

h
deg(R)n1

2,n2

f(x, y)deg(R) · Rest(H̄
P ′

2 , N)n1



 =

= T
′

1(y)T
′

2(x)f(x, y)ℓ

Moreover, since b′, h2,n2
∈ K[y]∗ and Rest(H̄

P ′

2 , N)n1 ∈ K[y]∗ (note that we
have already proved that the gcd of H̄P ′

2 and a polynomial depending only on
t is trivial) the above equaliy can be written as

K1(y)K2(x)f(x, y)deg(R) = K
′

1(y)K
′

2(x)f(x, y)ℓ
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for some non-zero polynomials Ki, K
′

i . Therefore, since f(x, y) is irreducible
and it depends on both variables x, y, one concludes that there exits ℓ ∈ K

such that

f(x, y)deg(R) = f(x, y)ℓ.

Thus, deg(R) = ℓ. Furthermore, from Theorem 4 we get

index(P(t)) = index(P ′(R(t)) = deg(R) · index(P ′(t)) = deg(R).
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