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Abstract

We extend the velocity Hough transform (VHT) for tracking objects with arbitrary velocity by finding an optimal,
smooth trajectory that maximises its associated energy. Optimisation is achieved by temporal dynamic programming
(DP). Tracking in noise is much superior to the standard Hough transform (SHT). © 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Motion tracking is an important task in com-
puter vision. A new technique for tracking of
parametric objects is described that extends the
velocity Hough transform (VHT) to cater for ar-
bitrary motion. Like the VHT, the new technique
processes the whole image sequence, gathering
global evidence of motion and structure. However,
we do not assume constant linear velocity but ra-
ther allow arbitrary velocity. The method tries to
find a smooth trajectory in the parameter space
with maximum energy, where the latter incorpo-
rates both the structure of the moving object and
the smoothness of motion. Optimisation is effected
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using a time-delay dynamic programming (DP)
algorithm.

The two main approaches for motion estima-
tion are optical flow and feature-based techniques.
The latter is advantageous in cases of illuminance
change or when the optical flow is large. The
choice of features for a vision system is very im-
portant. No such system can well work unless
good features can be identified and tracked from
frame to frame. According to our choice, we can
have either too many or too few features. Another
problem is that existing methods cannot easily
distinguish moving and static features. A common
assumption in many approaches is that the track-
ing or correspondence problem is solved: accord-
ingly, only the selection of features and/or the
representation of the object are considered. Se-
lecting appropriate features and computing the
correspondence between points in a sequence of
frames are both proven to be difficult problems.

The standard Hough transform (SHT) is known
for its robust performance in noisy environments
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and in situations of occlusion (Illingworth and
Kittler, 1988). The VHT proposed by Nash et al.
(1997) takes advantage of temporal and structural
information simultaneously, by incorporating
motion in the evidence-gathering process of the
Hough transform, enabling global analysis of the
temporal image sequence. In its simplest form it
requires constant linear velocity, which limits its
application.

In the remainder of this paper, Section 2 pre-
sents in detail the new tracking algorithm. Per-
formance under noise is investigated in Section 3,
including a comparison with other evidence-based
methods, and Section 4 concludes.

2. Object tracking algorithm

Here, we explain the proposed algorithm for
object detection in a long image sequence. Initially,
we gather evidence of structure on a frame-by-
frame basis and, incorporating the constraint of
smoothness of motion, we then try to find an op-
timal, smooth trajectory that is supported by the
data.

2.1. Arbitrary motion and assumptions

The following assumptions are made for the
simplification of the problem. The image sequence
is captured from a single camera, far enough from
the moving object that we do not need to take
scaling factors into account. The object is rigid
undergoing arbitrary but smooth translational and
rotational motion. We demonstrate our algorithm
with respect to a moving circle, but the method can
easily be adapted for any parametric and arbitrary
nonparametric shape (Aguado et al., 1998). Most
object-tracking algorithms consider information
within a single image frame: relatively little work
focuses on global analysis of a temporal image
sequence, as used here. Broida and Chellappa
(1986) have applied the iterated Kalman filter to
motion estimation with a long sequence of noisy
images. Shariat and Price (1990) were among the
first to exploit the time flow information from
three or more frames in a sequence. Using long
sequences, a motion—estimation system tolerates

noise and distortions better because the global
analysis exploits both temporal and spatial infor-
mation. Hence, the analysis is tolerant of instances
where a feature is missing or corrupted in some
frames. The main disadvantage is that use of a
long image sequence increases complexity and
computation cost.

2.2. Global structure evidence gathering

Considering the whole image sequence as a
three-dimensional process [(x,y,#) with spatial
variables (x,y) and where ¢ represents the time
index of a frame, we can transform the data se-
quence into a parameter space P(u,v,a,as,...,1):

SHT
1(957%1) —>P(u,v,a1,a2,...,t),

where (u,v) is the position of the object described
by ay,a,, ..., at time ¢. In the case of a circle, a; is
its radius.

2.3. Constrained search

Each Hough image, P(u,v,a;,ay, ... ,t), consists
of a set of weighted feature points. Motion
tracking involves finding the correspondence of
these features between frames. The correspon-
dence problem is combinatorially explosive: con-
sidering all possible trajectories will not be feasible
even for a moderate number of frames and feature
points. Even if we know all possible trajectories,
how do we determine which is the correct one? To
cope with the complexity of this problem, we uti-
lise constraints of maximum and minimum veloc-
ity (Rangarajan and Shah, 1991). If an upper
bound on the velocity is known a priori, then, gi-
ven a position in one frame, we can limit the search
for possible matches in the next frame to a small
neighbourhood of the position in the present
frame. Similarly, if the object is moving, it must
change position by some minimal amount between
frames. These constraints enable us to perform a
limited search in a smaller temporal neighbour-
hood, so reducing complexity. We also constrain
the size and the shape of the objects to be fixed
along each possible trajectory.



P. Lappas et al. | Pattern Recognition Letters 23 (2002) 253-260 255

2.4. Smoothness of motion

Sethi and Jain (1987) proposed an approach
for establishing correspondence in a monocular
image sequence using the smoothness of motion.
The argument is that the speed and direction of a
given point will be relatively unchanged from one
frame to the next for all moving objects, rigid and
nonrigid, provided the sampling rate is high en-
ough.

Our cost function uses the following criteria: the
motion must be smooth in velocity and direction,
and the trajectory must pass through the points of
the parameter space with the maximum peak va-
lue. The velocity and direction between frames
t — 1 and ¢ are denoted V;_; and ¢,_;, respectively
(Fig. 1). So, to assess the fitness of any trajectory,
we consider three constraints.

The first constraint adds the peak values of the
accumulator space through which the trajectory
passes:

N
E, :ZPeak,, (1)
=1

which ensures that the trajectory will pass through
the points of the parameter space with the maxi-
mum structure evidence. The second constraint
expresses the smoothness in direction between two
consecutive frames as

N-1
E, :Zld)t—l _¢t|' (2)
t=2

V41

Ut

Vt—1

The third constraint penalises points in the pa-
rameter space which correspond to large changes
in velocity:

N=1

E3:Z|Vl—l_Vt|~ 3)

t=2

Combining Egs. (1)-(3) gives the cost function to
be maximised:

E = W1E1 — W2E2 — W3E},7 (4)

where wy,w, and ws are weights that can be ad-
justed to vary the relative contribution of each
term. To find the optimal trajectory maximising E,
we apply a DP scheme. Despite the hard con-
straints introduced, the computation cost of the
direct enumeration is still high, and increases ex-
ponentially as the number of frames increases. DP
overcomes all these difficulties, always yielding the
absolute maximum and allowing hard constraints
to be enforced.

With DP, we can identify a global optimum in
one multi-stage procedure based on the principle
that an optimal decision for each of the remaining
states must not depend on previously reached states
or previously chosen decisions (Bellman and Drey-
fus, 1962). We divide the optimisation problem
into stages, corresponding to frames, with a policy
decision required at each, namely to maximise the
cost function. Each stage has a number of associ-
ated state variables. In our case, these are the
weighted features (i.e., the peaks of each accumu-
lator array). Our network is not fully connected

Ug—1

Ut Ut41

Fig. 1. Smoothness of motion is defined relative to peak accumulator values for adjacent frames.
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Fig. 2. Schematic illustration of the temporal dynamic programming algorithm.

because we perform a constrained search in a small
temporal neighbourhood, see Section 2.3. A sche-
matic representation of a simplified temporal DP
algorithm, for 4 stages and 12 state variables, is
depicted in Fig. 2. For every trajectory, we define
an energy function of the form:

E=E(x,x2,...,%),

where xj,x,,...,x, are the state variables, or the
points in the parameter space, and ¢ is the stage
index.

Because of the smoothness of motion con-
straints, Egs. (2) and (3), we introduce a delay, or
time lag, in our system so we cannot apply the
standard form of DP. This means that the policy
decision in the current state depends upon that of
the previous state: therefore, the principle of op-
timality is not applicable. To overcome this diffi-
culty, we implement a temporal, or time-delayed,
DP algorithm in which the two-element vector of
state variables, (x,,x,,1), is fixed. This idea is de-
picted, for the previous example, in Fig. 3.

So the energy function can be written in the
form:

E(x1,x,...,x)

=E\(x1,x2,x3) + - + E o (X2, X1, X)),
where

Et—l(xt—laxtaxtﬂ)
= w; Peak, + wy|¢p,_; — &,| + wslv,1 — v,
In this case, the optimal value is a function of two

temporal peaks in the motion trajectory of the
form:

t=1,2
1 t=2,3 | t=3.4
L1y T3~—1. . .
2I3I6\
2,23 65L10
------- L7, T11
T, Tg<———-----2. T4, Ty
Lo, Ty [ gL T
T1, Ty T4, T9
T7,T12
To, Tgl—rt---"13un 5, 9|
g, T12

Parameter space

Fig. 3. Temporal (time-delayed) dynamic programming algo-
rithm.

St(xt7xt+l) = min [St—l(xz—laxt) +Et—1(xt—17xmxt+l)}-

(xr—1%0)

We can now apply the standard form of DP.

2.5. Implementation issues

In our algorithm, the important features in each
frame are the centroids of candidate objects, in this
example circles. On a frame-by-frame basis, evi-
dence for the existence of all possible centroids is
carried out using a Hough-based technique. The
resulting accumulators are filtered using nonmax-
imal suppression to find all local maxima. DP is
then applied to all the local peaks, without any
threshold or other selection.

Partial occlusion, where the accumulator value
for the centroid of the object is not a global



P. Lappas et al. | Pattern Recognition Letters 23 (2002) 253-260 257

maximum (either by physical partial occlusion or
some noise process), is automatically built into the
algorithm, as selecting centroid positions with
smaller accumulator values along a valid trajec-
tory maximizes the overall energy in Eq. (4).

To cater for full occlusion, where there is no
evidence for the object in one or more frames, an
additional state is added to each stage to the DP
algorithm. This allows the DP algorithm to ignore
noise or other false peaks when doing so results in
a greater total energy. After the optimum trajec-
tory is found, a second stage is used to interpolate
missing centroids with respect to the smoothness
constraint. This modification has been successfully
implemented and tested using sequences of 9
frames. The algorithm performs correctly even
when up to 4 frames are missing.

In this technique we have not attempted to find
the optimum weights for Eq. (4), and in the fol-
lowing experiments we have used fixed and equal
weight values. We note, in common with snake
curves (Davison et al., 2000), that the second
constraint in our cost function is a rigidity term
and the third is an elastic term. Accordingly, we
can choose weights to favour large or small
changes in velocity or direction.

3. Experimental results

The algorithm was tested on both synthetic and
real images. Following Nash et al. (1997), we have
chosen a moving circle of fixed radius to evaluate
our algorithm. With synthetic images, we per-
formed two trials with increasing levels of noise:
one for constant linear motion and one for curvi-
linear motion. In both, the sequence consisted of
10 frames, each of which is a binary image. The
added noise had a uniform probability density
function; affected pixels had their polarity in-
verted.

The first experiment quantified the noise per-
formance of the new tracking algorithm com-
pared with the SHT and the VHT. Each image of
the 10-frame sequence consisted of 120 x 120
pixels. The circle was of known radius, » = 10,
moving with constant linear velocity in both x
and y directions. For a given noise level, 60 se-

quences were generated, with the level of noise
increasing from 0% to 50% in 2% increments. Fig.
4 depicts the tracking performance as a function
of noise for SHT, VHT and the new evidence-
based tracking algorithm. The error measure
employed here is the Euclidean distance between
the centre of the detected circles and ground
truth, averaged over 60 different sequences. As
shown in Fig. 4, the new method offers superior
performance over the SHT and gives comparable
results to the VHT: until about 40% noise, the
new method and the VHT give comparable (es-
sentially perfect) robustness to noise. For greater
levels of noise, the new algorithm is inferior to the
VHT, but still gives better results than the SHT.
However, it avoids the strong assumption of
constant linear velocity.

In the second noise experiment, the circle was
moving on a parabolic trajectory (Fig. 5), gener-
ated for a range of curvature angles. The smaller
the curvature angle, the tighter the curve. Curva-
ture angles range from 180° (a straight line) to 20°,
where the circle reverses direction in a few pixels.
Again, our sequence consists of 10 frames, each
120 x 120 pixels. At each combination of curva-
ture angle and noise level, we generated 30 images.
Results of the simulation are depicted in Fig. 6 for
the new tracking algorithm and in Fig. 7 for the
SHT. Despite some small curvature angles, im-
plying abrupt changes in motion, the new tracking
algorithm is very robust, as seen by the large re-
gion of perfect performance.

We also evaluated the performance of the new
tracking algorithm on one real image sequence: the
well-known table tennis sequence (City University-
IPL Image Database). A ball bounces on a table-
tennis bat, reaches a maximum elevation and then
falls under gravity. The sequence consists of 10
frames and each frame has resolution 360 x 243
pixels. The background (texture) of the sequence is
quite complex, as seen from the edge-detected
image (10th frame) on the left of Fig. 8, containing
many potential but false circle features. The right
image of the same figure illustrates the same frame
of the sequence, where the ball is blurred by mo-
tion and the SHT fails to track it. Results with our
new method are depicted with a circle and those of
the SHT with a rectangle. The results for the whole
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Fig. 4. Comparison of the noise performance of SHT, VHT and the evidence-based algorithm with constant linear velocity (synthetic

image).
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Fig. 5. Defining curvature angle.
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Fig. 6. Noise performance of new tracking algorithm for dif-
ferent curvature angles.
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Fig. 7. Noise performance of SHT for different curvature an-

gles.

sequence in a restricted region around the ball
(marked with a white rectangle in the right of
Fig. 8) are depicted in Fig. 9.

4. Conclusions and future work

This work has adopted the concepts of
smoothness of motion and the global evidence-
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Fig. 8. 10th frame of table-tennis sequence. Left: edge-detected image. Right: ball position from new method (circle) and SHT

(rectangle).

Fig. 9. Ball position obtained by new method (circle) and SHT (rectangle where present) for complete table-tennis sequence.

gathering of structure from earlier work. There
are several advantages of our approach relative
to other trajectory-based algorithms using the
notion of smoothness of motion. First, our al-
gorithm requires no initialisation, since we use a
Hough-based approach for evidence gathering.
Second, the whole image sequence is processed
globally and optimally using a temporal (time-
delay) DP algorithm. Third, a weighting scheme
ensures that we use only ‘good’ features. Finally,
the method copes with arbitrary smooth motion:
no assumptions of constant or linear velocity are
imposed. Nonetheless, we can still handle rela-
tively abrupt changes as shown in the results for
high curvature (i.e., small curvature angle)
motion. These advantages are reflected in

excellent tracking performance in high levels of
noise — considerably above the performance
of the SHT.

The method is also suitable for extension to
tracking nonparametric and parametric objects
other than circles. In future work the GHT (Bal-
lard, 1981) will be utilised to generate accumula-
tors for the centroid, scale and rotation. The cost
function for the DP algorithm will be modified to
impose smoothness constraints on the changes in
size and orientation from frame to frame. Alter-
natively, a scale/rotation invariant version of the
GHT (Kassim et al., 1999) may be utilised to track
only centroids. Finally the algorithm will be ex-
tended to track multiple models and evaluated in
more realistic environments.
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