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Abstract

This paper presents an optical music recognition (OMR) system that can automatically recognize the main musical
symbols of a scanned paper-based music score. Two major stages are distinguished: the first one, using low-level pre-
processing, detects the isolated objects and outputs some hypotheses about them; the second one has to take the final
correct decision, through high-level processing including contextual information and music writing rules. This article
exposes both stages of the method: after explaining in detail the first one, the symbol analysis process, it shows through
first experiments that its outputs can efficiently be used as inputs for a high-level decision process. © 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Optical music recognition (OMR) is the process
of interpreting automatically a scanned music
score. It has been an active research topic since
1967 (Carter et al., 1988; Blostein and Baird, 1992)
although it seems to be at first sight a rather simple
problem of document analysis: reasonable number
of symbols, strict location on the staff lines, strong
rules of music writing. In fact, it is a much more
difficult and computationally expensive task than

*Tel.: +33-149545262; fax: +33-149545251.
E-mail address: florence.rossant@isep.fr (F. Rossant).

it seems to be, even in the case of typeset music.
According to Blostein and Baird (1992), one major
problem results from segmentation difficulties, due
to connection of normally separated primitives,
or broken objects. Since then researches have
tended to integrate as much a priori knowledge as
possible, deduced from music writing rules. For
instance, Couasnon and Camillerapp (1994) pro-
posed a segmentation and recognition process
entirely controlled by a grammar which formalises
relative positions between objects. More often,
syntactic rules are introduced later after a first
recognition has been made, in order to detect and
to a certain extent correct some errors, such as
note length errors (e.g. Couasnon and Rétif, 1995;
Blostein and Haken, 1999). Even if some existing
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systems go back to image level processing in order
to re-label primitives, (e.g. Modayur, 1996; Kato
and Inokuchi, 1990), no global review of previous
decisions is made and corrections can conse-
quently only be local. For this reason, other
authors prefer to view the recognition process
as a global optimization problem. They propose
generally a model of the document to be inter-
preted and look for the maximum of a function
expressing the likelihood of the interpretation
(Kopec et al., 1996; Stiickelberg and Doermann,
1999).

The method described in this paper comes from
the assertion that the final decision has to be taken
at the score sheet level, and not only according to
local criteria or specific corrections. For example,
a natural has to be at the left side of a note, at the
same height, but makes sense only if a sharp or a
flat has previously appeared in the bar or in the
key-signature; a false length of a bar may come
from misreading a note flag, as well as from
non-recognition or confusion. Consequently, the
method proposed here looks likewise for a global
solution but is different from global approaches
mentioned above. Indeed symbol recognition is
not based on sophisticated document models.
Moreover, it is computed in two major sequential
stages. In the first one, an analysis process outputs
for each isolated component the major hypotheses
about its nature and eventually its length, but does
not take any definitive decision. During the second
stage, the decision process takes into account all
these ambiguous assumptions and also some glo-
bal information, such as key-signature or time
signature, and results in a global solution that
meets music writing rules. This method is therefore
based on a “feedforward” model, as decision is
made on hypotheses earlier generated, and, in this
sense, is similar to Fahmy and Blostein’s one
(1998). It is also noteworthy that feedforward
models have been studied in other domains of
document analysis (Baird and Ittner, 1994).

This paper begins with an overview of the whole
program, and explains the pre-processing that is
needed for symbol recognition. After that, it fo-
cuses on the recognition process itself. The first
stage, the symbol analysis process, is exposed in
detail. The first experiments of a global decision

and the results obtained are then reported, which
suggest promising improvements of the method.

2. General overview

The inputs of the program are the binary image
of the score sheet (1 for a black pixel, 0 for a white
one), scanned at a resolution of 300 dpi and some
global information, the clef, the key-signature, and
the time signature. For the moment, the system
handles only typeset monophonic music, excluding
handwritten music, and allowing only one voice
per staff. It makes the off-line recognition of the
following symbols: bar lines, rests, notes (note
heads and possible flags, to get pitch and value),
accidentals and duration dots attributed to notes.
It is sufficient to output the melody and all other
writing has to be ignored.

The processing flow, illustrated by Fig. 1, can be
divided into three main steps, which are exposed in
the following three sections. It starts with all the
pre-processing that is needed to make the isolation
of symbols. Then, the analysis process, mainly
based on template matching, outputs a set of
hypotheses expressing ambiguities or uncertainty
about the label or the length of each detected ob-
ject. Finally the global decision process evaluates
bar by bar all consistent hypothesis grouping and
retains the most likely solution matching music
rules.

3. Pre-processing
3.1. Staff detection and skew correction

Music has to be read staff by staff. Staff lines
contain important information:

e The staff spacing, in pixel units, conveys the
scale of the score and gives a fundamental unit
used afterwards to normalize distances and
sizes.

e The pitch of a note is deduced from the vertical
position of its head, relative to the staff lines.
Other musical symbols, such as rests, have to
be sought around the third staff line.
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Fig. 1. The processing flow.

e The inclination of staff lines allows us to correct
the image skew.

The following process is implemented to detect the
image inclination and correct it. The image i(x, y),
of W pixels width per H pixels height, is split into
two vertical halves. The right half is vertically
shifted by / pixels, /& being in the range [—#,, +4,).
If C(h) is the correlation function defined by
C(h) = S0l SSUi(x,y) - i(x + W /2,y +h), the
global maximum of this function is obtained for
hmax Which superimposes the staff lines of both
sides of the image. Reported to the half width of
the image, W /2, this value leads to the inclination
angle of the score sheet. When /4, differs from
zero, the inclination of the image is simply cor-
rected by the following transform of each pixel:
I'(x,y) = i(x,y + 2 - hyaxx/W). This supposes that
careful scanning is made so that image skew is less
than one degree and so that rotation of a typical
symbol can be neglected. This simple process has
proven to be sufficient in our experiments.

After that, a horizontal projection profile is
conventionally computed to pinpoint the staff lines

(Baumann and Dengel, 1992; Marinai and Nesi,
1999), and get the average staff spacing.

3.2. Symbol segmentation

Staff lines to some extent disturb recognition,
because they connect and intersect most of the
musical symbols. That is why the segmentation
algorithm begins with the removal of all staff line
segments that do not overlap with a symbol. Each
staff line, located at the y, position, is horizontally
tracked. For each x coordinate, the length of the
vertical segment above and under y, is computed.
If both of these measures are less than the typical
thickness of a staff line (the quarter of staff spac-
ing), the segment is removed; otherwise, it is kept.
Fig. 2 illustrates the results of this process.

The second stage of the segmentation process
concerns all the musical symbols which are fea-
tured by a vertical segment longer than 1.5 staff
spacing: bar lines, notes (whole notes excepted),
flats, sharps, naturals, and some crotchet rests
(Fig. 4). In a first step, the longest vertical segment,
longer than 1.5 staff spacing, is detected in each
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Fig. 3. Isolation of musical symbols featured by a vertical segment.

column of the staff area. These segments may be-
long to a vertical line or be part of a thick hori-
zontal line, such as noisy interconnected beams of
note groups. So, in a second step, an analysis
window is moved along the x coordinate in order
to analyze adjacent segments and keep only the
main segment of each vertical line. It is then used
as seed of a region growing and image-labelling
algorithm, so that the relevant musical symbol is
isolated and precisely located by a bounding box,
as shown in Fig. 3.

3.3. Discussion

These pre-processing algorithms are simple but
do not resolve all difficulties. In the worst case,
staff detection may fail when too many symbols
aligned in an almost horizontal direction blur
horizontal-profile peaks. But this arises very
rarely. The algorithm has been tested on about
fifty music sheets. In only one case, skew was
properly corrected but one staff was not detected.

The staff line removal algorithm may also re-
move parts of symbols, such as flats or half notes,
or beams binding notes together (Fig. 2). On the

other hand, some parts of staff lines are not re-
moved when they are slightly warped. These seg-
mentation defects cause recognition ambiguities,
that will have to be handled by the global decision
process, as explained below in Section 5. Anyway,
it would be better for staff line detection and re-
moval to use a more robust method, such as Carter
and Bacon’s one (1992), based on line-adjacency
graph.

More dramatic is the non-detection of a thin
vertical broken line. Indeed, a segment may be
rejected, and consequently the relevant symbol
definitively lost. Poulain d’Andecy et al. (1994) has
already dealt with this subject through Kalman
filtering.

4. Symbol analysis
4.1. Template matching

Symbol analysis is mainly based on template
matching. A set of models is used to compute the

correlation with the symbol that has to be identi-
fied. Let us define the correlation between the
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model k, M*, of size d* - d}’f , and the tested shape, at
the (x, y) position in the image I:

1 . . .
Ck(X,y)Zw Z M) - 1'(x + i,y + ),

xS (igemk

M(i,j) = ,
1 for a black pixel,

L[ =0,
(I’J)_{ 1 if 13, )) = 1. (1)

In the case of perfect superimposition between
shape and model, the result will reach the maxi-
mum score of 1.0. The score decreases with the
number of pixels that differ from the model. In
template matching, the correlation is computed for
several (x,y) coordinates. So, the highest score
obtained in (xt,)x), the only interesting one, is a
measure of similarity and of localization.

Various methods have been used in OMR to
recognize symbols: morphological techniques
(Modayur, 1996), neural networks (Miyao and
Nakano, 1995), use of geometrical features and
moments (Fujinaga et al., 1991). Template
matching is rarely mentioned in the literature as a
possible recognition technique of musical primi-
tives, but it is particularly adapted to the proposed
method for the following reasons:

—1 for a white pixel,

e As outlined in Section 3.3, this method is not
based on sophisticated segmentation algorithms
and there may be some errors, due to the con-
nection of normally disconnected objects,
over-segmentation of symbols, or imperfect
staff line removal. But even in these cases, the
correlation score can be computed and remains
significant, if the presence of the object is cor-
rectly identified. The detection of vertical seg-
ments, featuring most musical symbols, and
the use of graphical a priori knowledge for the
others are largely sufficient.

e We can see the correlation score between an un-
known object and a proposed model, represent-
ing a symbol class, as a likelihood measure for
the underlying classification hypothesis. This
measure will be efficiently used in the global de-
cision process.

e As in other recognition methods, and maybe
sometimes more dramatically, template match-
ing is sensitive to typewriting variations. But
the set of models can be easily adjusted to the
analyzed score sheet. This can be made manu-
ally, because models are independent of the pro-
gram, but also automatically as in the proposed
method. This process is explained in Section
4.2.

e It is simple to deal with different sizes of print-
ing by storing corresponding bases of models.
Staff spacing indicates which base has to be
used to analyse the current music sheet. This
has not yet been implemented in the program.

Graphical knowledge is used to improve correla-
tion computing. That is why the analysis of sym-
bols featured by a vertical segment is distinguished
from the analysis of all others.

4.2. Analysis of symbols featured by a vertical
segment

For these symbols, it is interesting to examine
the geometrical features extracted through the
segmentation process. For example, a component
with a narrow bounding box located between the
first and the fifth staff lines may be a bar line.
Symbols are grouped in four main classes: notes
(whole notes excepted), bar lines, accidentals (flat,
sharp, natural, grace note), rests (crotchet rest).
For each group, a set of five criteria is computed
from geometrical features of the bounding box and
of the vertical segment, and also from their posi-
tion relative to the staff lines. When three of them
are satisfied, the correlation with the models of the
group (Fig. 4) is computed in an area deduced
from the bounding box and from the position of
the vertical segment. For each tested model k, the
correlation score, C*(xy, %), and the corresponding
location, (x;,yy), are stored. Three threshold val-
ues have been experimentally defined: a decision
threshold t4, validating the recognition of a tem-
plate, a minimum threshold t,, which has always to
be reached to store a template as possible, and an
ambiguity threshold t,, to deal with a second
highest score close to the first one. The model with
the highest score C*! (x;, y;1) is stored in memory if
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Fig. 4. A set of models featured by a vertical segment.

greater than #,, but also the hypothesis of ab-
sence of a musical symbol if C*(x1, 1) is under
the decision threshold #;. In case of ambigu-
lty (Ckz(xkz,ykz) > Iy and (Ckl (xk1,yk1) — Ckz(xkz,
i2)) < ta), the second highest score C*?(x;a, y12) is
also stored.

To deal with different fonts, the program tests,
at the beginning of the analysis process, several
models for each class. After enough processing, it
determines which model get the highest correlation
score, and stops testing the other ones. This
automatic model selection makes the process
adaptable to several types of sheets and moreover
user-free.

The pitch of possible notes or accidentals is
deduced from the y coordinate. The length of
notes is obtained from an analysis of the number
of possible flags or beams grouping notes, which
have to be found at the opposite end of the note
stem, and from the correlation computed with a
possible duration dot, that may only appear after a
note head. Fig. 5 shows an example of this process.

Duration dot and
searching area r

1t TTT

Thus segmentation of symbols featured by a
vertical segment is a very important step. Indeed,
the extracted geometrical features increase the
reliability and the speed of the analysis, by deter-
mining a small search area and eliminating im-
possible classes.

4.3. Analysis of remaining symbols

Musical symbols with no vertical segment, have
now to be analyzed (Fig. 6). This step mainly
concerns rests, which are sought using a correla-
tion computed around the third staff line, along
the free spaces between the bounding boxes. For
whole notes, the program has of course to com-
pute the correlation on a larger vertical area. In
case of good matching between a model and a
symbol, the correlation function presents a maxi-
mum peak exceeding the minimum threshold, and
this result is stored. As in the previous analysis
stage, there can be some ambiguity, when several
models get a great correlation score at almost the

\— Possible note head
+— Note stem

Beams or flags analysis

Fig. 5. An example of note analysis.

o/ 7 Y

Sixteenth rest ~ Eighth rest Quarter rest

- - O

Half rest Whole rest Whole note

Fig. 6. A set of models used in the analysis of symbols with no vertical segment.
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same position. So, in a second step, an iterative
process looks, in decreasing order, for the model
with the highest score and examines its neigh-
bourhood: when a second match overlaps the first
one, it is also stored as second hypothesis. The
process runs until every hypothesis is put in the list
of possible symbols, as first or second hypothesis.

4.4. Hypothesis merging

All of the analyzed symbols are re-arranged
along the horizontal (time) axis. Two pre-pro-
cessing steps are performed before decision in
order to enhance the results. These are briefly de-
scribed below.

4.4.1. Accidental removing

When an accidental does not match in vertical
position the pitch of the following note, it is simply
removed from the hypothesis list.

4.4.2. Length analysis

Time signature indicates the whole length of a
bar, in terms of beat unit, and the number of beats
in the bar. For example, 3/4 implies that the length
of the beat is the crotchet, and that there are 3
beats in a bar. As shown in Fig. 7, beams bind
together notes into discrete groups, generally a
whole number of beats or half beats, so that the
beat structure is better isolated. These conventions
are used to correct misread duration information.
An analysis based on a region growing algorithm
extracts the beamed notes, and compares their
internal rhythmical organization with the possible
common ones, according to the time signature. A
maximum of two hypotheses can be made on a
note, increasing or decreasing the total length of
the group, and changing the smallest possible
number of values. Other notes are now supposed
to be isolated ones and the number of flags is

precisely recounted under this assumption. If the
result differs from the previous one, another hy-
pothesis is generated.

At that time, a set of recognition hypotheses is
available to make the final decision described be-
low.

5. Global decision

Of course, this stage is crucial and has to be
itself the purpose of a deep study. The process
described below is only a first experiment in order
to confirm that the outputs of the analysis process
can be exploited.

To include global information such as time
signature and decrease the computing cost, a bar-
unit process is implemented to make the final
decision. As inputs, we have a set of symbol hy-
potheses, with their correlation score and their
length, and an important music writing rule that
has to be respected inside the bar: its whole length,
indicated by the time signature.

We can now take a global decision inside each
bar. There are five possible levels of assumptions.

L1 — Symbol with the highest correlation score if
ta < C*(x41,11).Or hypothesis of no musical
symbol if t, < cH (xkl ;ykl) < l4.

L2 — Symbol with the highest correlation score if
tm < CH (X1, 301) <t

L3 — Symbol with the second highest score: #, <
C?(xi2,152), (CH (a1, v ) — C(xi2, 102)) <t

L4 — First hypothesis of length change of a note.

L5 — Second hypothesis of length change of a
note.

A two-dimensional table is computed: horizon-
tally, the tested objects inside the bar, and verti-
cally the hypotheses made on this object.
Duration-dots, of C%4(x4.4,vaq) correlation score,

Fig. 7. Two examples of time signature and their common rhythmical grouping.
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Fig. 8. (a) Outputs of analysis process. (b) Two-dimensional table of hypotheses, with symbols, length and correlation scores.

are processed as all other objects and may appear
in L1 if #< Cd_d(xd_d,yd_d) or L2 if #,<
C9Y(xq.4, va.a) < ta. The decision algorithm com-
putes the average correlation score of each possi-
ble and consistent hypothesis grouping. It chooses
the solution of greater score with a minimum
number of corrections, giving priority to solutions
matching the time signature.

Fig. 8 illustrates an example of ambiguities, and
how the correct solution can be found. For symbol
1, the analysis process outputs the assumption of a
half note, with a correlation score #, <0.54 < t4.
So it is a hypothesis of level L2, the hypothesis of
level L1 being no symbol (NS). It is the same for
the assumption that symbol 2 is a quarter rest
because ¢, <0.55 < t4. But this time, a hypothesis
is also stored in level L3, because the assumption
of a eighth rest gets a sufficient correlation score
(tn <0.51) and is ambiguous ((0.55 — 0.51) < t,).
For the remaining symbols, there is only one as-
sumption with correlation score above ¢4, so stored
in level L1. The group of notes 6-7-8-9 gets a total
length of 7/8 of beats. To reach a common
rhythmical grouping, the length of note 8 may be
changed from a 1/32 note to a 1/16 note. This

hypothesis is stored in level L4. Level 5 is not
represented because no hypothesis of this kind has
been made in this example. Cases in dark grey are
also not used. So, there are finally 12 possible
groups of hypotheses, and the final correct solu-
tion, represented in light grey, validates symbol 1
as half note, eliminates symbol 2, and corrects the
length of symbol 8. The total length of the bar-unit
is right (4 beats), with an average correlation score
of 86.75%.

6. Results and improvements
6.1. Experimental conditions

Experiments have been performed on about
fifty music sheets, with all of the previously de-
scribed algorithms implemented in the program.
Care is taken not to train on specific test cases: the
examples of the test base come from various
publishers, including difficult examples such as
thick printing connecting objects; the program has
been running without any specific parameter tun-
ing, such as symbol models or decision threshold
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r=92.7 r =84.7

Fig. 9. Recognition rates.

changes. Lastly, scanning has been performed on
two different materials, without choosing any
specific threshold to get the binary images.

6.2. Results

Typical run-time is around 2 min on a pentium
500 MHz, without any correlation computing
optimization or other implementation optimiza-
tion. Fig. 9 summarizes recognition results for
each main kind of symbols, bars, accidentals,
notes, rests, without taking into account the ex-
ceptional case where a staff was not detected. A
symbol is counted as initially correct when the
decision process is right to choose the assumption
of level L1 (column 1), and as a rightly corrected
symbol (column 2) when the decision process is
right to choose an assumption of level L2-L5. In
the other cases, it is an error: false initial decision
not corrected (column 3), right initial decision not
kept or non-satisfactory correction (column 4),
symbols missing or added (column 5). Five corre-

sponding rates are computed by ri = ni/ Z;:l nj,
where ni is the number of symbols belonging to
column i. r = (nl +n2)/ 215':1 (nj) represents the
average recognition rate.

6.3. Discussion

All classes merged, the average recognition rate
is over 97%. It is important to note that the rate of
wrongly corrected decisions (r4) is much lower
than the rate of good corrections (#2). But average
recognition rate may vary from one sheet to an-
other. For clearly printed music scores, the rec-
ognition can be perfect and the first hypothesis is
generally the right decision. For more difficult
scores, strong ambiguities, generally resulting from
bad symbol writing, appear more frequently. Fig.
10 shows some common cases of errors: confusion
of an accidental with a note, or with another class
of accidental, adding of symbols due to false
vertical segment detection, misunderstanding of
dots.

%)

(b)

(©) (d)

Fig. 10. Some common cases of errors.
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The main weakness of the decision algorithm is
that it takes its decision using the length of the bar
unit as its only constraint. This has some bad
consequences, that explain unsatisfactory results
for accidentals and especially rests:

e When a bar line is added or not detected, the
correct solution can not be found, and in the
worst case, this introduces errors. Using a more
powerful algorithm for vertical line detection,
even broken, would improve bar detection and
enhance average results.

e When a bar does not have to match the time sig-
nature, for example in cases of pick-up mea-
sures that are not yet handled by the program,
the length constraint introduces non-existing
symbols, most of the time non-existing rests.

e The algorithm is able to correct confusions like
that shown in Fig. 10(a). But no arbitration
between accidental ambiguities (Fig. 10(b))
nor detection of additional accidentals (Fig.
10(c)) can be made.

e Some false interpretation, for example misun-
derstanding of dots (Fig. 10(d)), can introduce
errors, for example the choice of a shorter rest
to compensate the increase of the note length.

6.4. Improvements

We can notice that the correct solution is rarely
missing in the outputs of the analysis process. So
the effectiveness of the decision process has to be
improved. At present, studies on this are under way
by adding much more global structural and con-
textual knowledge, particularly on graphical rela-
tive positions, and rules about accidentals. Use of
fuzzy models seems to be an interesting approach
because it allows to merge such different kinds of
knowledge. Experiments have already been made
to improve the recognition of accidentals, by ex-
pressing a position compatibility degree between
an accidental and the following note and a syn-
tactic compatibility degree between the tonality
and the accidentals inside a same bar unit (Rossant
and Bloch, 2001). Average recognition rate of ac-
cidentals has thus been improved by 4.5%. The
method is at present being extended to dots and
note groupings and leads to promising results.

When the correct solution does not exist in the
outputs of the analysis process, it is generally due
to serious segmentation problems. As previously
commented, it would be interesting to replace the
pre-processing algorithms by more robust solu-
tions proposed by other researchers.

6.5. Comparison with commercial software

Although advertisements for commercial OMR
packages claim very good recognition rates, users
of such systems agree that they are still too error-
prone to be of much practical use. Instead of
verifying and correcting all the generated results, it
is generally faster to convert a score to a computer
file by playing the piece on a keyboard connected
to a PC and even more convenient to use a music
editor. Hence it is interesting to verify if the ex-
posed method can improve this situation.

One of the most recent well-known software for
Windows (SmartScore), freely available for demos
on the web, has been tested. It is obvious that this
program is not able to find a correct solution
matching elementary music writing rules, such as
length of a bar, whereas the method we propose
uses this rule to produce a correct global solution.
This is demonstrated by Fig. 11: Fig. 11(a) is an
original part of a scanned music sheet, Fig. 11(b) is
the score re-edited by the commercial software,
Fig. 11(c) shows recognized symbols superimposed
on the original image by our program. Regardless
of pitch, accidental or grace note errors, 17 of the
45 bars get a wrong length with the commercial
software, for four main reasons: false length of a
note, symbol missing, symbol adding, confusion.
On the contrary, our program reaches much more
satisfactory results. Indeed it uses correlation score
as confidence measure to arbitrate between several
recognition possibilities under the constraint of the
whole length of a bar. That is why it is able to
reintroduce symbols (e.g rests in red in Fig. 11(c)),
to leave definitively others (no adding of symbols
in Fig. 11(c)), to deal with ambiguities (e.g. the
confusion between note and crotchet, Fig. 11(b)
staff 2, would be corrected), and to correct note
length errors (e.g Fig. 11(c) staff 2). Moreover, it
would be easy to indicate to the user where errors
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Fig. 11. (a) Original music sheet. (b) Re-edited by commercial software. (c) Results of proposed program.

might be found whenever the program does not
provide a satisfactory solution.

6.6. Extension to polyphonic music

Density of information is increased in the case
of polyphonic music: more than one symbol may
be vertically found. We can now review each stage
of the algorithm and examine how it can be ex-
tended to polyphonic music.

No specific assumptions have been used during
pre-processing. But we can guess that staff line
detection and consequently skew removal algo-
rithms will not work as well as they do with
monophonic scores, because the increase of sym-
bol density blurs horizontal line detection. So,
again, it would be interesting to use a more robust
algorithm from the literature.

Symbol analysis can still be based on correla-
tion computing, but symbols will have to be
sought in larger areas. For example, several note

heads may be found along a vertical segment,
and rests are no longer put on the third staff line
only.

New music writing rules on graphical relative
positions and note groupings will be required to
re-arrange symbols in several voices, to define the
set of hypotheses and to evaluate them through the
decision process. Again, fuzzy logic and possibility
theory may be interesting to fusion analysis pro-
cess outputs with music syntactic rules, taking into
account the uncertainty of extracted information,
their mutual interactions and relative importance.

7. Conclusion

A global system for OMR has been presented in
this article. After staff line detection, skew cor-
rection, and segmentation, the recognition process
proceeds in two sequential stages to find a global
solution. The first one outputs a set of recognition
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Fig. 11 (Continued)

hypotheses, used by the second one to take a global
decision matching music writing constraints. First
experiments show the efficiency of this methodol-
ogy. But the high-level global decision process has
to be improved by including more contextual
knowledge. This is currently being studied.
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