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Abstract

The gradient weighted least-squares criterion is a popular criterion for conic fitting. When the non-linear minimi-

sation problem is solved using the eigenvector method, the minimum is not reached and the resulting solution is an

approximation. In this paper, we refine the existing eigenvector method so that the minimisation of the non-linear

problem becomes exactly. Consequently we apply the refined algorithm to the re-normalisation approach, by which the

new iterative scheme yields to bias-corrected solution but based on the exact minimiser of the cost function. Experi-

mental results show the improved performance of the proposed algorithm.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Conic (or quadric) fitting is frequently used as a
model-based approach to parameter estimation
problems involved in many applications of com-
puter vision. Among the criteria applied for fit-
ting algebraic modelling functions, the gradient
weighted least-squares criterion is widely used,
where the cost function is defined by an approxi-
mated measure of the geometric distance of a set of
measured points to a model, i.e. a conic (or

quadric), providing the fitting curve (Bolle and
Vemuri, 1991; Taubin, 1991; Zhang, 1997).

As one of the major themes of pattern recog-
nition, conic fitting has been studied in varieties.
Recently, similar work has also been published by
Chojnacki et al. (2000). They have discussed this
classical parameter estimation problem along with
new insights by considering the covariance matri-
ces characterising the uncertainty of the measure-
ments. They proposed a new iterative scheme to
obtain the minimiser as its theoretical limits to
the cost function with maximum likelihood for-
mulation. But the biasedness of the minimiser is
not considered in their approach. Also, a notable
outcome using the heterocedastic regression algo-
rithm, was given by Matei and Meer (2000) as well
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as by Leedan and Meer (2000). They used the
criterion of maximum likelihood estimation and
proposed a general computational method with
EIV model to solve the estimation problem with
bilinear constraint. They also proved that the
gradient weighted least-squares criterion is just an
approximated case in their proposed EIV model
by neglecting higher order moments of the het-
erocedastic covariance matrix. For the case of el-
lipse-specific fitting, which is a special case of conic
fitting problem, Fitzgibbon et al. (1999) presented
a direct computational method to obtain an ini-
tial estimate, holding the advantage of one-step
computation and being convergence guaranteed.
However, as a trade-off between the optimisation
of criterion and the simplicity of computation, the
gradient weighted least-squares estimation is a
very popular criterion for a wide-range of appli-
cations in conic fitting, with the very attractive
advantage that the eigenvector solution assures
the global minimisation in case of convergence.

Given an algebraic function in the implicit form
f ðxÞ ¼ 0, with x ¼ ðx; yÞT, the curve of the func-
tion is defined by C ¼ fxjf ðxÞ ¼ 0g, i.e., the set of
zeros of f. Supposing fxig8i 2 f1; . . . ; ng to be the
data points observed, the squared distance of a
point xi to the curve can be approximated by
(Bolle and Vemuri, 1991; Keren et al., 1994)

distðxi;CÞ2 	
f 2ðxiÞ

krf ðxiÞk2
ð1Þ

The gradient weighted least-squares criterion for
fitting the function to the data set fxig minimises
the mean-square distance, denoted by the cost
function

H ¼ 1

n

Xn

i¼1
distðxi;CÞ2 ¼

Xn

i¼1
wif 2ðxiÞ ð2Þ

where wi ¼ 1=krf ðxiÞk2 is the ‘‘gradient weight’’.
In general, minimisation of (2) is a non-linear

problem. Well established non-linear least-squares
estimation techniques can be applied. In the case
of conic fitting (more generally, in the case that f
is a polynomial function), the eigenvector method
can be employed to solve the minimisation prob-
lem (Kanatani, 1994, 1996; Taubin, 1991; Zhang,
1997). To cope with the dependency of the weights

fwig on the parameters, a re-weighing procedure is
applied to update the weights fwig.

Although there is no guarantee for convergence,
the eigenvector method is very tractable to search
for the global minimum. It has been utilised to get
approximate estimates for polynomial fitting
(Taubin et al., 1994). However, as we will see in the
next section, the solution of the existing eigenvec-
tor method does not yield an exact minimisation
of the non-linear cost function of (2) because the
dependency of the ‘‘weights’’ fwig on the param-
eters is neglected in the formulation of the mini-
misation problem. To obtain the exact solution,
further non-linear numerical techniques are still
required.

In this paper, we present a refined version of the
eigenvector method for the solution of the gradient
weighted least-squares conic fitting problem. The
dependency of the ‘‘weight’’ on the parameters is
explicitly represented in the initial formulation of
the minimisation problem, so convergence of the
re-weighing procedure yields to an exact mini-
miser of the cost function defined by (2), without
further processing by other non-linear numerical
techniques. Therefore, accuracy of estimates can be
guaranteed when the refined version of the eigen-
vector method is used, while the merit of searching
the global minimum makes the computation ro-
bust and tractable.

It has been proved that the gradient weighted
least-squares solution of conic fitting is statistically
biased (Kanatani, 1994, 1996). To correct the bias
of the estimates, Kanatani (1994, 1996) proposed
the re-normalisation method. The re-normalisation
method is emphasised in our concerns because of
its property of unbiasedness. This property opens
the possibility to model the uncertainties in pa-
rameter estimates with an explicit probabilistic
representation, which can be used to optimise the
model-based recognition scheme (Wang, 2000). It
should be noted that the existing computational
algorithm of the re-normalisation method (Kana-
tani, 1996) is based on the inexact minimising of the
cost function (2) by eigenvector computation,
which iterative scheme would degrades the reliabil-
ity of the final estimate (Leedan and Meer, 2000).

To refine the re-normalisation method, we uti-
lise the refined version of the eigenvector method
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and incorporate it with the bias-corrected re-nor-
malisation algorithm. Consequently the reliability
of the estimate is improved while the optimality of
the unbiased estimate is preserved.

The paper is organised as follows. Section 2
introduces the well-known eigenvector method for
the gradient weighted least-squares conic fitting
problem and the principle of re-normalisation. In
Section 3, we formulate the non-linear minimisa-
tion problem with an exact representation and the
refined algorithm of the eigenvector solution is
given. Based on the new eigenvector solution, a
refined iterative scheme of the re-normalisation is
described in Section 4. In Section 5, we present
some experimental results of the proposed ap-
proach and compare these results obtained with
the existing approach. Finally a summary is given
in Section 6.

2. The well-known eigenvector method for conic

fitting and the re-normalisation algorithm

When we suppose the conic function to be given
in implicit form as described by

f ðx; yÞ ¼ ax2 þ by2 þ cxy þ dxþ ey þ k ¼ 0

and when we define a vector p ¼ ða; b; c; d; e; kÞT,
then the cost function described by (2) can be ex-
pressed as

H ¼ pTNp with N ¼
Xn

i¼1
wiN i;

N i ¼ mim
T
i and mi ¼ x2i ; y

2
i ; xiyi; xi; yi; 1

� �T
Because any non-zero scalar multiplying p results
in the same expression, constraints on p must be
set. Although there are alternative selections of
the normalisation of p, we set kpk2 ¼ 1, which
is tractable to approach the eigenvector principle
without loss of generality. Under such constraint,
the algebraic parameters of the conic function is
estimated by minimising the cost function defined
in (2), i.e.,

p ¼ argmin
p2P

H ð3Þ

where P ¼ fpjkpk2 ¼ 1g denotes a manifold of the
parameters.

To solve the constraint minimisation problem
of (3), the Lagrange Multiplier method can be
applied. Defining an augmented cost function as

H0 ¼ pTNp� LðpTp� 1Þ ð4Þ

where L is the so-called Lagrange Multiplier, then
solutions of p and L are derived by setting

oH0

op
¼ 0 and

oH0

oL
¼ 0

If we neglect the dependence of fwig on p in the
derivatives, it is obtained

Np ¼ Lp
pTp ¼ 1

�
ð5Þ

Thus the estimate of p is just the eigenvector of N
associated to the smallest eigenvalue. The initial
estimate is given by setting wi ¼ 18i, and the
weights are updated using the current eigenvector
solution of p through iterative computations, i.e.,
the re-weighing procedure. If this process con-
verges, such an eigenvector solution is usually used
as an approximate estimate for the solution of the
gradient weighted least-squares problem.

The gradient weighted least-squares criterion is
based on the minimum mean squared geometric
distances. It has been proved that such a criterion
is statistically biased and the re-normalisation
method was proposed to remove (although not
completely) the bias (Kanatani, 1996).

It can be proved that, due to the perturbation
of the set of data points fxig8i 2 f1; . . . ; ng by
noise, the expectation of the perturbation DN
of the matrix N is non-zero. It can be formulated
as (Zhang, 1997)

E½DN � ¼ c
Xn

i¼1
wiBi

where c is the variance of the noise and Bi is a
matrix derived from the Taylor expansion of N i.
Because the perturbation of the eigenvector is lin-
ear in the perturbation of the matrix N, the eigen-
vector of N is thus biased. The re-normalisation
approach compensates the bias by replacing the
matrix N in (5) by N 0 ¼ N � E½DN �, so the bias of
the eigenvector solution is corrected because the
E½DN 0� ¼ 0. Because the variance of the noise is
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unknown in practice, its variance c is estimated
from an imposed constraint pTN 0p ¼ 0 through
the iterative computations, while the weights
fwig8i 2 f1; . . . ; ng are updated by the current ei-
genvector solution p. The re-normalisation esti-
mator is optimal under the small noise level
assumption (Kanatani, 1996).

The re-normalisation process was established
on the eigenvector solution represented by (5).
However, the formulation of (5) is not an exact
representation of the non-linear minimisation
problem formulated by (3), because the depen-
dency of the weights fwig on p has been neglected
in the derivation. Although the re-weighing pro-
cedure has been applied to update the weights
fwig, the converged p is only an approximated
solution with respect to the non-linear minimisa-
tion problem. Due to such insufficiency in the it-
erative minimising process, the iterative scheme of
the re-normalisation would become unstable when
the noise level increases.

Instead of further refinement using other non-
linear minimisation techniques, we reformulate the
estimation problem expressed by (3) with an exact
representation that can also be approached as an
eigenvector problem. Applying the perturbation
theory, a new computing algorithm is proposed to
improve the solution of (5), as well as the reli-
ability of the re-normalisation method. This will be
described in Section 3.

3. The exact eigenvector representation

Starting with the defined cost function of (4),
the minimisation problem is resolved by setting

oH0

op
¼ 0 and

oH0

oL
¼ 0

To get an exact solution of the minimisation
problem of (3), the implicit dependence of fwig
on p has to be encoded in formulating the deriv-
atives. Thus we have

Npþ 1
2

Pn
i¼1 ðpTN ipÞ owi

op

� �h i
¼ Lp

pTp ¼ 1

(
ð6Þ

If the second term in the LHS of (6), which is
associated with the dependency of the weights fwig

on p, is ignored, the expression (6) degenerates to
(5).

In case of noise absence or low-level noise
perturbation in data set, the quantities of pTN ip
multiplied to ðowi=opÞ are either zero or small
enough so that the difference between solutions of
(5) and (6) can be ignored. But in case of a sig-
nificant noise perturbation, the solution of (5)
becomes unreliable.

First, we reformulate the second term of the
LHS of (6) in the form

1

2

Xn

i¼1
ðpTN ipÞ

owi

op

� � �
¼ 1

2

Xn

i¼1

owi

op

� �
pTN i

 �
p

ð7Þ
Supposing the dimensionality of p is m, denoting
the m� m matrix

E ¼ 1

2

Xn

i¼1

owi

op

� �
pTN i

 �
ð8Þ

then (6) can be expressed in the form

ðN þ EÞp ¼ Lp ð9Þ
Defining a matrix

N e ¼ N þ E ð10Þ
the solution of p becomes just the eigenvector of
the new matrix N e.

Since the matrix E is a refined item, it is small
compared with N, it can be treated as a pertur-
bation of N. According to perturbation theory,
the perturbation of an eigenvector is linear in the
perturbation of matrix. Denoting p and pe as the
eigenvector of N and Ne respectively, it is shown
(Stewart, 1973) that

Dp ¼ pe � p ¼ U kI
�

�UTNU
��1

UTEp ð11Þ

Here, U is an m� ðm� 1Þ matrix whose columns
are the other m� 1 eigenvectors of N except the
one indicated by p. The eigenvalue associated with
p is indicated by k.

Therefore, the eigenvector of Ne can be com-
puted as pe ¼ pþ Dp at each iteration step. Briefly,
to obtain an accurate solution from expression
(6), the eigenvector solution by (5) should be cor-
rected with Dp during the re-weighing process. The
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solution of (6) is then obtained when both p and pe
converge.

4. The refined iterative scheme for the re-normali-

sation method

Since the re-normalisation process is initialised
from minimising the cost function (2), the refined
eigenvector method should consequently be ap-
plied to the re-normalisation process.

In the sense of the bias correction, the matrix N
in expression of (6) should be corrected using

N 0 ¼ N � EfDNg ¼ N � c
Xn

i¼1
Bi ð12Þ

Replacing the matrix N in (6) by N0 obtained from
(12), the estimation problem becomes

N 0pþ 1
2

Pn
i¼1 ½pT N i � cBiÞpð � owi

op

� �� �
¼ Lp

pTp ¼ 1

(

ð13Þ
In the same way we have from (7) to (10)Xn

i¼1
pT N ið


� cBiÞp

owi

op

� ��

¼
Xn

i¼1

owi

op

� �
pT N ið


� cBiÞ

�
p ð14Þ

Defining

E0 ¼ 1

2

Xn

i¼1

owi

op

� �
pTðN i


� cBiÞ

�
ð15Þ

we have instead of (9)

ðN 0 þ E 0Þp ¼ Lp ð16Þ
Therefore, at each iteration step, p is still obtained
as an eigenvector, but of a new matrix N 0

e, which is
defined as

N 0
e ¼ N 0 þ E0: ð17Þ

Denoting p0 and p0e as the eigenvectors of N
0 and

N 0
e respectively, applying the perturbation theory

expressed by (11), the refined bias-corrected esti-
mate p0e can be computed from p0e ¼ p0 þ Dp0,
where Dp0 is the perturbation of p0 with respect to
the perturbation matrix E0.

In summary, the procedure of the refined re-
normalisation process is as described below. Given
a set of points fxig8i 2 f1; . . . ; ng,

1. Let wi ¼ 18i 2 f1; . . . ; ng and c ¼ 0.
2. Using the data to compute N , we compute the

eigenvectors of

N 0 ¼ N � c
Xn

i¼1
wiBi;

which we denoted as the set fp1; . . . ; p6}. It is
supposed that p1 is the solution associated with
the smallest eigenvalue kmin.

3. Correct p1 to be

p ¼ p1 þUðkminI �UTN 0UÞ�1UTE0p1;

where U ¼ ½p2; . . . ; p6�, I the unity matrix and

E0 ¼ 1

2

Xn

i¼1

owi

op1

� �
pT1 ðN i


� cBiÞ

�

4. According to Zhang (1997), c is updated using

c ¼ cþ kmin
pT

Pn
i¼1 wiBi

� �
p

Update fwig using the new corrected estimate p,
so to update N 0 with new fwig and c.

5. If the updates of p1, p and c have converged, re-
turn the latest p as the final solution. Otherwise
go to step 2 for iteration.

5. Experimental results

Experimental results verify the reliability of the
refined algorithm when applying both the gradient
weighted least-squares eigen-computation and the
re-normalisation method.

Figs. 1 and 2 show the results of gradient
weighted least-squares fitting using synthetic data.
The data points were sampled from a segment of
synthetic ellipses. Gaussian noise was added to the
x and y co-ordinates of each data point. There are
80 points used for fitting. Given a set of points,
both the known eigenvector method based on (5)
(without ambiguity, we denote it as the old ver-
sion), and the proposed new version based on (6),
were used to give a comparison. The solid lines are
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the noise-free prototypes of the ellipse. Results
were obtained for different noise levels and with
different prototypes. Plots indicated as (a) show
the results using the old version and plots indi-
cated as (b) show the results using the new version.

Figs. 3–5 show the results of the refined version
of the re-normalisation approach compared with

the old version. In these figures (a) shows the re-
sults of the old version and (b) shows the results of
new version.

Figs. 6–8 show the histograms of the errors of
the estimates using the old and the new versions.
By applying the transformation of rotation and
translation to the algebraic coefficients, we calcu-

Fig. 1. Results of eigenvector solutions for the gradient weighted least-squares fitting. The noise level was r ¼ 0:08. (a) shows the result

of using the old version and (b) shows the results of using the new version. Data points were sampled from the lower segments within

the range marked by ‘‘þ’’s.

Fig. 3. Results of using the re-normalisation approach. The data points were sampled from the same range of the prototype as used

in Fig. 1. The noise level was r ¼ 0:08. The estimates by the old and new versions are shown in (a) and (b), respectively.

Fig. 2. Results of the gradient weighted least-squares fitting for a different prototype. The noise level is r ¼ 0:15.
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lated the two major lengths of the ellipse (denoted
as r1 and r2) and its central position (denoted as tx
and ty). Defining a vector vs ¼ ½r1; r2�, the Euclid-

ean distance between the true and the estimated vs
was used as a measure of the shape deviation. The
same way, the error of a vector composed of tx
and ty was also calculated to indicate the deviation
of position estimate. Fig. 6 shows a comparison
of the results using old and new versions of the
gradient weighted LSE. Figs. 7 and 8 show the
comparisons of the results using old and new
versions of the re-normalisation approach at dif-
ferent noise level. In these figures, the number of
trials is 100. The histograms of the errors of shape
estimates and the position estimates were shown in
(1) and (2) respectively, in which (a) shows the
result of the old version and (b) shows the result of
new version. The vertical axis indicates the number
of estimates corresponding to the error level
quantified at the horizontal axis. The error level
(the Euclidean distance) was quantified by an in-
terval of 0.25. Fig. 9 shows the results obtained
with real image data. Fig. 9(a) shows the grey-level
image of a part of a cup and the detected curved
edge (noise was added to the original grey-level
image). Data points were sampled from a portion

Fig. 6. Histogram of errors by the gradient weighted LSE using

the old version (a) and the new version (b). The results for shape

estimates and the position estimates of the ellipse are shown in

(1) and (2) respectively. The noise level was r ¼ 0:15.

Fig. 4. Results at noise level of r ¼ 0:15. The prototype was the same as the one of Fig. 3.

Fig. 5. Results of using the re-normalisation approach for a different prototype. The noise level was r ¼ 0:15.
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of the detected edge at upper side for conic fit-
ting (the number of fitted points is 150). Fig. 9(b)
shows the comparison of the eigenvector solutions
by both old and new versions of the gradient
weighted least squares fitting. Fig. 9(c) shows the
results of the old version of the re-normalisation
method and the refined version.

In the above experiments, only a few iterations
(3)–(10) were required for convergence of both the
old and the refined versions.

From the results we can see that the fittings in
the range occupied by sampled points were good
and almost indistinguishable for both the old and
the new methods, but the difference in global de-
scription was obvious. From the Figs. 1 and 2 it
appears, just as we expected, because of the inexact

eigenvector solution of (5), that the solutions of
the old version have large errors, although the re-
weighing process converged. In contrast with these
results, the refined algorithm used for eigenvector
solution, which is derived from an exact formula-
tion of (6), gives rise to much better results.

In our experiments, the results of the old and
the new versions of the re-normalisation method
are almost indistinguishable at small noise level.
But at higher noise level, the new version yielded
less errors in average and showed more stable than
the old version. For all trials during experiments at
the noise level of r ¼ 0:15 (the number of trials is
100), there were cases (8%) that failed to conver-
gence in using the old version of the re-normali-
sation approach, while the new version converged

Fig. 7. Histogram of errors by the re-normalisation approach

using the old version (a) and the new version (b). The results for

shape estimates and the position estimates of the ellipse are

shown in (1) and (2) respectively. The noise level was r ¼ 0:08.

Fig. 8. Histograms of the errors using the old version (a) of the

re-normalisation approach and the new version (b). The errors

in the estimated shape and the position parameters of the ellipse

are shown in (1) and (2) respectively. The noise level r ¼ 0:15:

Fig. 9. Results of fitting real image data: (a) shows the greylevel image of part of a cup and the detected edge (the white trace) after

adding noise; (b) show the results of the gradient weighted least-squares fitting using the old and new versions of the eigenvector

solution and (c) show the results of applying the re-normalisation method, both of the old and the new versions were used.
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for all cases. Such an improvement of the new
version is due to the more reliable modelling of the
eigenvector solution in the refined iterative scheme
when applying the re-normalisation.

6. Conclusions

Conics belong to the most fundamental fea-
tures, which are frequently encountered in images.
The reliable estimation of their parameters is
critical for further image analysis. In this paper, we
presented a refined algorithm of eigenvector solu-
tion to conic fitting based on the gradient weighted
least-squares criterion. By reformulating the min-
imisation problem with a refined eigenvector rep-
resentation, the non-linear minimisation problem
can be approached using the refined eigenvector
method towards an exact minimum. While taking
advantage of searching the global minimum by
eigenvector computing, the accuracy of solution is
guaranteed without employing other well-estab-
lished non-linear minimising techniques. Applying
the refined algorithm to the bias-corrected re-
normalisation process, the reliability of the esti-
mator is improved, by which the new iterative
scheme yields to bias-corrected solution but based
on the exact minimiser of the cost function. Fur-
thermore, the proposed algorithm can be directly
applied to approach higher order polynomial fit-
ting in a wide range of applications. Due to the
restricted subject of this paper, a general compar-
ison of our method and other methods for conic
fitting is beyond the scope of this paper.
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