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Abstract

Motivated by a recent (continuous) quadratic formulation, in this paper we present a pivoting-based heuristic for

graph matching based on the corresponding linear complementarity problem. Experiments are presented which dem-

onstrate the potential of the proposed method.
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1. Introduction

Graph matching is a fundamental problem in

computer vision and pattern recognition, and a
great deal of effort has been devoted over the past

decades to devise efficient and robust algorithms

for it (see Bunke, 2000 for an update on recent

developments). Basically, two radically distinct

approaches have emerged, a distinction which re-

flects the well-known dichotomy originated in the

artificial intelligence field between ‘‘symbolic’’ and

‘‘numeric’’ methods. The first approach views the
matching problem as one of explicit search in

state-space (see e.g., Messmer and Bunke, 1998;

Shapiro and Haralick, 1981; Tsai and Fu, 1983).

The pioneering work of Ambler et al. (1973) falls

into this class. Their approach is based on the idea

that graph matching is equivalent to the problem

of finding maximal cliques in the so-called associ-

ation graph, an auxiliary graph derived from the

structures being matched. This framework is at-
tractive because it casts the matching problem

in terms of a pure graph–theoretic problem, for

which a solid theory and powerful algorithms have

been developed (Bomze et al., 1999).

In the second approach, the relational matching

problem is viewed as one of energy minimization.

In this case, an energy (or objective) function is

sought whose minimizers correspond to the solu-
tions of the original problem, and a dynamical

system, usually embedded into a parallel relax-

ation network, is used to minimize it (Gold and

Rangarajan, 1996; Li, 1992; Wilson and Hancock,

1997). Typically, these methods do not solve the

problem exactly, but only in approximation terms.

Energy minimization algorithms are attractive

because they are amenable to parallel hardware
implementation and also offer the advantage of

biological plausibility.
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In a recent paper (Pelillo, 1998), we have de-

veloped a new framework for graph matching

which does unify the two approaches just de-

scribed, thereby inheriting the attractive features

of both. The approach is centered around a re-

markable result in graph theory which allows us
to map the maximum clique problem onto the

problem of extremizing a quadratic form over a

linearly constrained domain (i.e., the standard

simplex in Euclidean space). Local gradient-based

search methods such as replicator dynamics have

proven to be remarkably effective when we restrict

ourselves to simple versions of the problem, such

as tree matching (Pelillo, in press; Pelillo et al.,
1999) or graph isomorphism (Pelillo, 1999). How-

ever, for more difficult problems the challenge re-

mains to develop powerful heuristics.

It is a well-known fact that stationary points of

quadratic programs can be characterized in terms

of solutions of a linear complementarity problem

(LCP), a class of inequality systems for which a rich

theory and a large number of algorithms have been
developed (Cottle et al., 1992). Hence, once that the

graph matching is formulated in terms of a qua-

dratic programming problem, the use of LCP

algorithms naturally suggests itself, and this is

precisely the idea proposed in the present paper.

Among the many LCP methods presented in the

literature, pivoting procedures are widely used and

within this class Lemke’s method is certainly the
best known. Unfortunately, like other pivoting

schemes, its finite convergence is guaranteed only

for non-degenerate problems, and ours is indeed

degenerate. The inherent degeneracy of the prob-

lem, however, is beneficial as it leaves freedom in

choosing the blocking variable, and we exploited

this property to develop a variant of Lemke’s

algorithm which uses a new and effective ‘‘look-
ahead’’ pivot rule. The procedure depends critically

on the choice of a vertex in the graph which iden-

tifies the driving variable in the pivoting process.

Since there is no obvious way to determine such a

vertex in an optimal manner, we resorted to iterate

this procedure over most, if not all, vertices in the

graph. The resulting pivoting-based heuristic has

been tested on various instances of randomly gen-
erated graphs and the preliminary results obtained

confirm the effectiveness of the proposed approach.

2. Graph matching and linear complementarity

Given two graphs G1 ¼ ðV1;E1Þ and G2 ¼
ðV2;E2Þ, an isomorphism between them is any bi-

jection /: V1 ! V2 such that ði; jÞ 2 E1 () ð/ðiÞ;
/ðjÞÞ 2 E2, for all i; j 2 V1. Two graphs are said to
be isomorphic if there exists an isomorphism be-

tween them. The maximum common subgraph

problem consists of finding the largest isomorphic

subgraphs of G1 and G2. A simpler version of this

problem is to find a maximal common subgraph,

i.e., an isomorphism between subgraphs which

is not included in any larger subgraph isomor-
phism.

The association graph derived from G1 ¼
ðV1;E1Þ and G2 ¼ ðV2;E2Þ is the undirected graph
G ¼ ðV ;EÞ defined as follows:
V ¼ V1 � V2

and

E ¼ fðði; hÞ; ðj; kÞÞ 2 V � V : i 6¼ j; h 6¼ k;

and ði; jÞ 2 E1 () ðh; kÞ 2 E2g:

Given an arbitrary undirected graph G ¼ ðV ;EÞ, a
subset of vertices C is called a clique if all of its

vertices are mutually adjacent, i.e., for all i; j 2 C,
with i 6¼ j, we have ði; jÞ 2 E. A clique is said to be

maximal if it is not contained in any larger clique,

and maximum if it is the largest clique in the graph.

The clique number, denoted by xðGÞ, is defined as
the cardinality of the maximum clique.

The following result establishes an equivalence

between the graph matching problem and the

maximum clique problem (see e.g., Barrow and
Burstall, 1976).

Theorem 2.1. Let G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ
be two graphs, and let G be the corresponding as-
sociation graph. Then, all maximal (maximum) cli-
ques in G are in one-to-one correspondence with
maximal (maximum) common subgraph isomor-
phisms between G1 and G2.

Now, let G ¼ ðV ;EÞ be an arbitrary graph of

order n, and let Sn denote the standard simplex of
Rn:

Sn ¼ fx 2 Rn : eTx ¼ 1 and xi P 0; i ¼ 1 . . . ng;
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where e is the vector whose components equal 1,
and a ‘‘T’’ denotes transposition. Given a subset

of vertices C of G, we will denote by xc its char-
acteristic vector which is the point in Sn defined
as

xci ¼
1=jCj if i 2 C;
0 otherwise;

�

where jCj denotes the cardinality of C.
Consider the following quadratic program

minimize fGðxÞ ¼ xTAGx;

subject to x 2 Sn;
ð1Þ

where AG ¼ ðaijÞ is the n� n symmetric matrix
defined as

aij ¼

1
2

if i ¼ j;

0 if i 6¼ j and ði; jÞ 2 E;

1 if i 6¼ j and ði; jÞ 62 E:

8><
>: ð2Þ

The following theorem, recently proved by

Bomze (1997), expands on the Motzkin–Straus

theorem (Motzkin and Straus, 1965), a remarkable

result which establishes a connection between the

maximum clique problem and certain standard

quadratic programs. This has an intriguing com-
putational significance in that it allows us to shift

from the discrete to the continuous domain in an

elegant manner.

Theorem 2.2. Let C be a subset of vertices of a
graph G, and let xc be its characteristic vector. Then,
C is a maximal (maximum) clique of G if and only
if xc is a local (global) solution of program (1).
Moreover, all local (and hence global) solutions of
(1) are strict and are characteristic vectors of
maximal cliques of G.

In a formal sense, therefore, a one-to-one cor-

respondence exists between maximal cliques and

local minimizers of fG in Sn on the one hand, and
maximum cliques and global minimizers on the
other hand.

The following result, which is a straightforward

consequence of Theorems 2.1 and 2.2, establishes

an elegant connection between graph matching

and quadratic programming.

Theorem 2.3. Let G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ
be two graphs, and let G be the corresponding as-
sociation graph. Then, all local (global) solutions to
(1) are in one-to-one correspondence with maximal
(maximum) common subgraph isomorphisms be-
tween G1 and G2.

Computing the stationary points of (1) can be

done by solving the LCP ðqG;MGÞ, which is the

problem of finding a vector x satisfying the system

y ¼ qG þMGxP 0; xP 0; xTy ¼ 0; ð3Þ
where

qG ¼ ½0; . . . ; 0;�1; 1�T and

MG ¼
AG �e e

eT 0 0

�eT 0 0

2
64

3
75: ð4Þ

With the above definitions, it is well known that if
z is a complementary solution of ðqG;MGÞ with
zT ¼ ðxT; yTÞ and x 2 Rn, then x is a stationary

point of (1). Indeed, the matrix AG is always

strictly copositive, hence so is MG and that is

enough to assure that ðqG;MGÞ always has a solu-
tion (Cottle et al., 1992). 1 Of course, a stationary

point of (1) is not necessarily a local minimum, but

in practice this is not a problem since there are
several techniques that, starting from a stationary

point can reach a nearby local optimum. An ex-

ample is given by the replicator dynamics, but see

Massaro et al., in press for a complete discussion

on this topic.

3. A pivoting-based heuristic for graph matching

Technical literature supplies a large number of

algorithms to go about solving an LCP (Cottle

et al., 1992). The most popular is probably Lem-

ke’s method, largely for its ability to provide a so-
lution for a large number of matrix classes.

Lemke’s ‘‘Scheme I’’ belongs to the family of

pivoting algorithms. Given the generic LCP

1 Recall that, given a cone C � Rn, a symmetric matrix Q is

said to be C-copositive if xTQxP 0 for all x 2 C. If the inequality
holds strictly for all x 2 C nf0g, then Q is said to be strictly C-
copositive.
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ðq;MÞ, it deals with the augmented problem

ðq; d;MÞ defined by

y ¼ qþ ½M ; d� x
h

� 

P 0; hP0; xP 0; xTy ¼ 0:

ð5Þ
A solution of ðq; d;MÞ with h ¼ 0 promptly yields
a solution to ðq;MÞ, and Lemke’s method intends
to compute precisely such a solution. We refer

to Cottle et al. (1992) for a detailed description

of Lemke’s algorithm. In our implementation, we
chose d ¼ e, as our problem does not expose pe-

culiarities that would justify a deviation from this

common practice.

As usually done for outlining pivoting algo-

rithms, we will use an exponent for the problem

data. In practice qm and M m will identify the situ-

ation after m pivots and Am
G will indicate the n� n

leading principal submatrix of M m. Consistently, ym

and xm will indicate the vectors of basic and non-

basic variables, respectively, each made up of a

combination of the original xi and yi variables. The
notation hxm

i ; y
m
j i will be used to indicate pivoting

transformations. The index set of the basic vari-

ables that satisfy the min-ratio test at iteration m
will be denoted with Xm, i.e.

Xm ¼ arg min
i

�qm
i

mm
is
: mm

is

�
< 0

�
;

where s is the index of the driving column. Also, in
the sequel the auxiliary column that contains the

covering vector d in (5) will be referred to as the
column nþ 3 of matrix M ¼ MG.

In general, assuming an LCP non-degenerate is

a strategy commonly taken to prove finiteness of

pivoting schemes. This assumption amounts to

having jXmj ¼ 1 for all m, thereby excluding any
cycling behavior. In particular, Lemke’s method is
guaranteed to process any non-degenerate prob-

lem ðq;MÞ where M is strictly Rn
þ-copositive, and

to do so without terminating on a secondary ray

(Cottle et al., 1992). Unfortunately our LCP

ðqG;MGÞ is degenerate and standard degeneracy

resolution strategies have proven to yield unsatis-

factory results (Massaro et al., in press).

The proposed degeneracy resolution technique
makes use of the so-called least-index rule which

amounts to blocking the driving variable with a

basic one that has minimum index within a certain

subset of Xm, i.e. r ¼ minUm for some Um � Xm. The

least-index rule per se does not guarantee conver-

gence. In fact we can ensure termination by

choosing the blocking variable only among those
that make the number of degenerate variables

decrease as slowly as possible, i.e. among the in-

dex-set

Um ¼ arg min
i

Xmj j
�

� Xmþ1
i

�� �� > 0 : i 2 Xm
�
� Xm;

where Xmþ1
i is the index-set of those variables

that would satisfy the min-ratio test at itera-

tion mþ 1 if the driving variable at iteration m
was blocked with ym

i as i 2 Xm. The previous

conditional implies that a pivot step is taken and

then reset in a sort of ‘‘look-ahead’’ fashion,

hence we will refer to this rule as the look-ahead
(pivot) rule.
Before actually proceeding to illustrate a ver-

sion of Lemke’s algorithm applied to our matching

problem, let us take a look at the tableaus that it

generates. This will help us to identify regularities

that are reflected in the behavior of the algorithm

itself. The initial tableau follows:

As qnþ1 is the only negative entry for the column
of q, the first pivot to occur during initialization is
hynþ1; hi thereby producing the following trans-

formation:

1 x1 � � � xn xnþ1 xnþ2 h

y1 0 )1 1 1
..
. ..

.
AG

..

. ..
. ..

.

yn 0 )1 1 1

ynþ1 )1 1 � � � 1 0 0 1

ynþ2 1 )1 � � � )1 0 0 1

1 x1 � � � xn xnþ1 xnþ2 ynþ1
y1 1 )1 1 1
..
. ..

.
AG � eeT ..

. ..
. ..

.

yn 1 )1 1 1

h 1 )1 � � � )1 0 0 1

ynþ2 2 )2 � � � )2 0 0 1
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The driving variable for the second pivot is xnþ1.
Since m1

i;nþ1 ¼ �1 for all i ¼ 1; . . . ; n it is immedi-
ate to see that the relative blocking variable can be

any one of y1; . . . ; yn. In this case we apply no de-
generacy resolution criterion, but rather allow for

user intervention by catering for the possibility of
deciding the second driving variable a priori. Let

thus yp be the (arbitrary) variable that shall block
xnþ1. After performing hyp; xnþ1i, we have the fol-
lowing tableau:

where AG;p denotes the matrix whose rows are de-

fined as

ðAG;pÞi ¼
ðAGÞp � eT if i ¼ p;
ðAGÞi � ðAGÞp otherwise:

�

Algorithm 1 formalizes the previous statements.

Algorithm 1. Lemke’s ‘‘Scheme I’’ with the look-

ahead rule.

Input: A graph G ¼ ðV ;EÞ and p 2 V .
Let qG; e;MGð Þ be the augmented LCP, where qG
and MG are defined in (4).

m 0, hynþ1; hi, m mþ 1, hxp; xnþ1i
The driving variable is xp.
Infinite loop

m mþ 1
Let xm

s denote the driving variable.

Xm ¼ arg mini f�q
m
i

mm
is
: mm

is < 0g
If jXmj ¼ 1 then r ¼ minXm

else Um ¼ arg mini fjXmj � jXmþ1
i j > 0 : i 2 Xmg,

r ¼ minUm.

hym
r2Xm ; xm

si
If ym

r � h then

Let �xx denote the complementary solution
of ðqG;MGÞ.
The result is supp ð�xxÞ \ V

The new driving variable is the complemen-

tary of ym
r .

Algorithm 2. The pivoting-based heuristic (PBH)
for graph matching.

Input: Two graphs G1 and G2.

Construct the association graph G ¼ ðV ;EÞ of
G1 and G2.

Let G0 ¼ ðV 0;E0Þ be a permutation of G
with degðu0ÞP degðv0Þ for all u0; v0 2 V 0 with
u0 < v0.
KH  ;
For v0 ¼ 1; . . . ; n : degðv0Þ > jKHj do
Run Algorithm 1 with G0 and v0 as input.
Let K be the obtained result.
If jKj > jKHj, then KH  K.

The result is the mapping of KH in G.

Empirical evidence indicated p as a key para-
meter for the quality of the final result of Algo-

rithm 1. We thus had to consider iterating for most,

if not all, vertices of V as outlined in Algorithm 2.

We also observed that the schema is sensitive to the

ordering of nodes and found that the best figures

were obtained by reordering G by decreasing node
degrees. We will refer to this scheme by the name

pivoting based heuristic (PBH).
If n denotes the number of vertices in the asso-

ciation graph, computing Xmþ1
i

�� �� can be done with
OðnÞ time complexity as only the driving column is
needed for this purpose, and a pivotal transfor-

mation takes Oðn2Þ computations. Hence, so is the
complexity of each step of Algorithm 1. Moreover,
PBH iterates over (most of) the nodes of G. This,
together with previous observations in (Massaro

et al., in press), gives us a strong empirical evidence

that the number of steps of PBH is OðsnÞ, where s is
the size of the maximal common subgraph found.

4. Results and conclusion

In this section we present some experimen-

tal results of applying PBH to the problem of

1 x1 � � � xn yp xnþ2 ynþ1
y1 0 1 0 0
..
. ..

. ..
. ..

. ..
.

yp�1 0 1 0 0

xnþ1 1 AG;p )1 1 1

ypþ1 0 1 0 0
..
. ..

. ..
. ..

. ..
.

yn 0 1 0 0

h 1 )1 � � � )1 0 0 1

ynþ2 2 )2 � � � )2 0 0 1
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matching pairs of random graphs. Random

structures represent a useful benchmark not only

because they are not constrained to any particular

application, but also because it is simple to repli-

cate experiments and hence to make comparisons

with other algorithms.
We generated random 50-node graphs using

edge-probabilities (i.e., densities) ranging from 0.1

to 0.9. For each density value, 20 graphs were

constructed so that, overall, 180 graphs were used

in the experiments. Each graph had its vertices

permuted and was then subject to a corruption

process which consisted of randomly deleting a

fraction of its nodes. In so doing we obtained a
graph isomorphic to a proper subgraph of the

original one. Various levels of corruption (i.e.,

percentage of node deletion) were used, namely 0%

(the pure isomorphism case), 10%, 20% and 30%.

In other words, the order of the corrupted graphs

ranged from 50 to 35.

PBH was applied on each pair of graphs thus
constructed and, after convergence, the percentage

of matched nodes was recorded. Replicator dy-

namics, a class of dynamical systems developed in

evolutionary game theory and other branches of

mathematical biology, have recently proven re-

markably powerful on simple versions of the graph

matching problem, despite their inherent inability

to escape from local optima (Pelillo, 1998; Pelillo,
1999; Pelillo, in press; Pelillo et al., 1999). For the

Fig. 1. Results of matching 50-node random graphs, with varying levels of corruption, using PBH and replicator dynamics. The x-axis

represents the (approximate) density of the matched graphs, while the y-axis represents the percentage of correct matches. Here x is the

size of the maximum clique of the association graph, i.e., the size of the maximum isomorphism, and jCj is the size of the isomorphism
returned by the algorithms, i.e., the size of the maximal clique found. Figures (a)–(d) correspond to different levels of corruption, i.e.,

0%, 10%, 20% and 30%, respectively. All curves represent averages over 20 trials.
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sake of comparison, we therefore tested their ef-

fectiveness on our (more difficult) subgraph iso-

morphism task.

Fig. 1 plots the results obtained with both PBH

and replicator dynamics. As can be seen, whenever

no corruption was applied on the original graphs
(i.e., in the case of isomorphic graphs), both

methods found systematically a maximum iso-

morphism, i.e. a maximum clique in the associa-

tion graph (as far as replicator equations are

concerned, this is indeed not surprising, as shown

in (Pelillo, 1999)). The emerging picture did not

change significantly for PBH when we did delete

some nodes, whereas the replicator equations un-
derwent a notable deterioration of performance.

For the latter case, in fact, the curves (b)–(d) of

Fig. 1 have a peculiar ‘‘w’’ shape with a perfor-

mance peak on 0.5-density graphs, where the

corresponding association graphs have minimum

density.

It is also possible to compare our approach with

the well-known Graduated Assignment method
(GA) of Gold and Rangarajan (1996). Their al-

gorithm is based on the minimization of an ob-

jective function which is significantly different

from ours. In (Gold and Rangarajan, 1996, Fig. 8)

they present results of applying GA on 100-node

random graphs with density values ranging from

4% to 28%, and various corruption levels up to

30%. From their results a significant sensitivity of
GA to node deletion emerges, similarly to what

happens for the replicator dynamics, but in a less

pronounced manner. In contrast, the performance

of PBH (on smaller graphs) seems to be more in-

sensitive to the corruption level, a feature which is

clearly desirable. Notice, however, that the results

tend to degrade slowly for the denser associa-

tion graphs that arise for densities close to 0 and 1.
This phenomenon tends to strengthen up slowly

as more nodes are deleted, but the average effi-

ciency never goes below 85%. This figure is supe-

rior to those obtained with replicator dynamics

and GA.

These experimental results are very encouraging

and indicate that the proposed framework offers a

promising new way to tackle graph matching and
related combinatorial problems. Note also that

our algorithm is completely devoid of working

parameters, a valuable feature which distinguishes

it from other heuristics proposed in the literature.

Clearly, more experimental work needs to be done

in order to fully assess the potential of the method.

Also, generalizations of the proposed approach

to attributed graphs and error-tolerant (many-
to-many) matching problems are possible, along

the lines suggested in (Pelillo, 1998; Pelillo et al.,

2001). All this will be the subject of future work.
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