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Abstract

This paper presents an approach to the local stereovision matching problem using edge segments as features with

four attributes. In this paper we design a Support Vector Machine classifier for solving the stereovision matching

problem. We obtain a matching decision function to classify a pair of features as a true or false match. The use of such

classifier makes up the main finding of the paper. A comparative analysis among other existing approaches is included

to show that this finding can be justified theoretically. From these investigations, we conclude that the performance of

the proposed method is appropriate for this task.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A significant amount of research in the com-

puter vision community has been aimed at the

study of the three-dimensional (3-D) structure of

objects using machine analysis of images (Lee and

Leou, 1994). Analysis of video images in stereo has

become an important passive method for extract-

ing the 3-D structure of a scene.
The key step in stereovision is that of image

matching, namely, the process of identifying the

corresponding points in two images that are gen-

erated by the same physical point in space. This
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paper is devoted solely to this problem. The stereo
correspondence problem can be defined in terms of

finding pairs of true matches that satisfy three

competing constraints: similarity, smoothness and

uniqueness (Marr and Poggio, 1979). The simi-

larity constraint is associated with a local match-

ing process where a minimum difference attribute

(properties of features) criterion is applied. The

results computed in the local process are later used
by a global matching process where other con-

straints such as smoothness (Marr and Poggio,

1979), minimum differential disparity (Medioni

and Nevatia, 1985) and figural continuity (Pollard

et al., 1981) are imposed. A good choice of a local

matching strategy is the key for good results in the

global matching process.

This paper presents an approach to the local
stereopsis correspondence problem by designing a
ed.
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Support Vector Machine classifier (SVC) where a

decision function is to be derived. This function

is then mapped as a posterior probability so that

the performance of this matching strategy can be

compared against other existing approaches using

probabilities, as we will see below. The use of the
SVC, applied to stereovision matching, makes up

the main finding of this paper. This classification

technique has a number of properties that make it

particularly attractive and has recently received

much attention in the machine learning commu-

nity.

SVC uses only the similarity constraint in

order to obtain local matching results and then
map it in the global matching strategy described

in (Pajares et al., 1998b) and based on the Hop-

field neural network. This network maps the

similarity, smoothness and uniqueness constraints

in an energy function, which is then minimized to

find the optimal correspondence. This procedure

is also carried out in both, Pajares and Cruz

(2002) and Pajares et al. (1998a) where the simi-
larity constraint is mapped as a probability,

which is computed from a probability density

function (PDF). Such PDFs are previously esti-

mated by using the Parzen�s Windows classifier

(PWC) (Pajares and Cruz, 2002) and a Bayesian

classifier (BYC) (Pajares et al., 1998a) for solving

the same problem.

The SVC improves the matching results com-
pared to the results obtained with PWC and BYC.

Hence, this improvement can be extended to other

recent matching methods using only the similarity

constraint (Pajares et al., 1998c, 1999) as they are

compared in (Pajares and Cruz, 2002). The im-

provement is also considerable when the global

matching strategy maps the similarity constraint

by using SVC. This justifies the choice of our SVC
as a good strategy to measure the similarity be-

tween features in stereovision images.

Two types of techniques have been broadly

used for stereovision matching, namely the corre-

lation-based and the feature-based methods. In the

correlation-based method, the elements to be

matched are image windows of fixed size and the

similarity criterion is a measure of the correlation
between windows in the two images. The corre-

sponding element is given by the window that
maximizes the similarity criterion within a search

region. The number of pairs of features to be

considered becomes high, because all pixels in the

left image must be matched with all pixels in the

right one. The feature-based methods use sets of

pixels with similar attributes, usually either pixels
belonging to edges or the corresponding edges

themselves. Instead of image windows they use

numerical and symbolic properties of features. The

feature-based methods lead only to a sparse depth

map, leaving the rest of the object surface to be

reconstructed by interpolation. They are faster

than area-based methods because there are fewer

points (features) to be considered. See Wei et al.
(1998) and associated references for both types of

techniques.

The matching is made difficult in part by

changes in the images of the corresponding points

due to different viewpoints and to the different

physical cameras. Hence, the corresponding attri-

butes in the two images may display different

values. This may lead to incorrect matches. Thus,
it is very important to find features in both images

that are independent of possible variations in the

images. Our experiment has been carried out in an

indoor space where edge segments are abundant,

making suitable such features (Trucco and Verri,

1998). Moreover, they have been used in previous

stereovision matching works (Pajares and Cruz,

2002; Pajares et al., 1998a,b,c, 1999; Medioni and
Nevatia, 1985), and in (Wei et al., 1998) we can

find additional references where edge segments are

used. This fact justifies our choice of features, al-

though such features are produced by intensity

changes. Four attribute values (module and di-

rection of the gradient vector, Laplacian and

variance) are computed for each edge segment.

This paper is organized as follows. In Section 2
the stereo matching system is considered, which

comprises three stages: (1) extraction of features

and attributes; (2) SVC design and (3) matching

for the current stereo pairs. To show the effec-

tiveness of the proposed method, in Section 3 a test

strategy is designed and a comparative analysis

among other existing strategies is performed. A

generalization of the method is proposed in Sec-
tion 4. Finally, in Section 5 the conclusion is pre-

sented.
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2. The support vector classifier in stereovision

matching

Our local stereo matching system is designed

with a parallel optical axis geometry working in
three stages:

1. Extracting information (features and attributes)

from the images.

2. Performing a training process, called OFF-

LINE, with the samples (true and false

matches) which are supplied to the SVC in

order to compute an output function derived
from the SVC. According to the function value

a pair of features is classified as belonging to

one of the two classes: true or false.

3. Performing a matching process, called ON-

LINE, for the current pairs of features.

The first stage is common for both the OFF-LINE

and the ON-LINE processes.

2.1. Feature and attribute extraction

The contour edge pixels in both images are
extracted using the Laplacian of the Gaussian fil-

ter in accordance with the zero-crossing criterion,

(Huertas and Medioni, 1986). At each zero-

crossing in a given image we compute the magni-

tude and the direction of the gradient vector as in

(Leu and Yau, 1991), the Laplacian as in (Lew

et al., 1994) and the variance as in (Krotkov, 1989).

These four attributes are computed from the gray
levels of a central pixel and its eight immediate

neighbors. The gradient magnitude is obtained by

taking the largest difference in gray levels of two

opposite pixels in the corresponding eight-neigh-

bourhood of a central pixel. The gradient direc-

tion points from the central pixel towards the pixel

with the maximum absolute value of the two

opposite pixels with the largest difference. It is
measured in degrees, quantified by multiples of 45.

The normalization of the gradient direction is

achieved by assigning a digit from 0 to 7 to each

principal direction. The Laplacian is computed by

using the corresponding Laplacian operator over

the eight neighbors of the central pixel. The vari-

ance indicates the dispersion of the nine gray level
values in the eight-neighborhood of the same

central pixel. In order to avoid noise effects during

edge-detection that can lead to later mismatches

in realistic images, the following two globally

consistent methods are used: (1) the edges are

obtained by joining adjacent zero-crossings fol-
lowing the algorithm in (Tanaka and Kak, 1990),

in which a margin of deviation of �20% and �45�
is tolerated in magnitude and direction, respec-

tively; (2) then each detected contour is approxi-

mated by a series of line segments as in (Nevatia

and Babu, 1980); finally, for each segment an av-

erage value for the four attributes is obtained from

all computed values of its zero-crossings. All av-
erage attribute values are scaled, so that they fall

within the same range. Each segment is identified

by its initial and final pixel coordinates, its length

and its label.

Therefore, each stereo pair of edge-segments

has two associated 4-D vectors xl and xr, where

the components are the attribute values and the

sub-indexes l and r which denote features
belonging to the left and right images, respec-

tively. A 4-D difference vector of the attributes

x ¼ fxm; xd; xp;xvg is obtained from xl and xr,

whose components are the corresponding differ-

ences for the module of the gradient vector, the

direction of the gradient vector, the Laplacian and

the variance, respectively.

2.2. Training process: the support vector machine

classifier

The SVC is based on the observation of a set X
of n pattern samples to classify them as true or

false matches, i.e. the stereovision matching is

the well-known two classification problem. The

outputs of the system are two symbolic values

y 2 fþ1;�1g corresponding each to one of the

classes. So, y ¼ þ1 is with the class of true mat-

ches.

The finite sample (training) set is denoted by:
ðxi; yiÞ, i ¼ 1; . . . ; n, where each xi vector denotes a

training element and yi 2 fþ1;�1g the class it

belongs to. In our problem xi is as before the 4-D

difference vector.

The goal of SVC is to find, based on the

information stored in the training sample set, a
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decision function capable of separating the data

into two groups. The technique is based on the

idea of mapping the input vectors into a high-

dimensional feature space using nonlinear trans-

formation functions. In the feature space a

separating hyperplane (a linear function of the
attribute variables) is constructed (Cherkassky and

Mulier, 1998; Vapnik, 2000). By using different

mapping functions, different types of SVC are

implemented. The SVC decision function has the

following general form

f ðxÞ ¼
Xn

i¼1

aiyiHðxi; xÞ � b ð1Þ

where b is a constant.

Eq. (1) establishes a representation of the deci-

sion function f ðxÞ as a linear combination of
kernels centred in each data point. Using different

kernels Hðx; yÞ we get different functions. In this

paper, we have used Gaussian Radial Basis func-

tions Hðx; yÞ ¼ expf�jx� yj2=r2g where r defines

the width of the kernel, set to 3.0 after different

experiments. The choice of this kernel is motivated

by the use of similar kernels in the PWC approach

(Pajares and Cruz, 2002).
The parameters ai, i ¼ 1; . . . ; n, in Eq. (1) are

the solution for the following quadratic optimisa-

tion problem:

Maximise the functional

QðaÞ¼
Xn

i¼1

ai�
1

2

Xn

i;j¼1

aiajyiyjHðxi;xjÞ

subject to
Xn

i¼1

yiai ¼ 0; 06ai6
c
n
; i¼ 1; . . . ;n ð2Þ

and given the training data ðxi; yiÞ, i ¼ 1; . . . ; n, the
inner product kernel H , and the regularization

parameter c. As stated in (Cherkassky and Mulier,

1998), at present, there is not a well-developed

theory on how to select the best c, although in

several applications it is set to a large fixed con-

stant value, such as 2000, which is the used in this

paper.
The data points xi associated with the nonzero

ai are called support vectors. Once the support

vectors have been determined, the SVC decision

function has the form
f ðxÞ ¼
X

support vectors

aiyiHðxi; xÞ � b ð3Þ

we have chosen in our experiments b ¼ 0.

The SVC generates a scalar output f ðxÞ whose
polarity, sign of f ðxÞ, determines the class mem-

bership. The magnitude can usually be interpreted
as a measure of belief or certainty in the decision

made. As PWC and BYC use posterior probabil-

ities, we use a warping function that maps f ðxÞ to
a posterior probability. This is carried out as-

suming that posterior probabilities take the form

of a sigmoid and directly estimating the sigmoid

(Platt, 2000)

pðxÞ ¼ 1

1þ expf�ðaf ðxÞ þ vÞg ð4Þ

In order to avoid severe bias in the distances for

the training data, the parameters a and v are esti-

mated experimentally and set to 0.2 and 0 in our

experiments.
2.3. The current stereo matching process

This is an ON-LINE or decision process in

which two new features are to be matched. This is

carried out by obtaining the 4-D difference vector

of the attributes x. With this x we compute the

matching probability pðxÞ according to (4). Then,

this incoming x is classified as a true or false
match.

During the decision process there are unam-

biguous and ambiguous pairs of features, de-

pending on whether a given left image segment

corresponds to one and only one, or several right

image segments, respectively. In any case, the de-

cision about the correct match is made by choos-

ing the pair with the greater probability value (in
the unambiguous case, there is only one) provided

that it surpasses the threshold of 0.50. This value

is the intermediate probability value in the interval

where the probability ranges. This is the uniqueness

stereovision matching constraint also applied in

PWC and BYC. When the probability value for a

pair of features (edge-segments) does not exceed

0.5, it is considered a false match.



Fig. 3. Left original training image (computers I).

Fig. 4. Left original training image (computers II).
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3. Comparative analysis and performance evaluation

To assess the validity and performance of our

method, we designed a test strategy with two goals:

1. To verify the performance of the SVC against

PWC and BYC individually in a local matching

strategy and also when it is used for mapping

the similarity constraint in a global process

(Pajares et al., 1998b), as explained in the intro-

duction.

2. To verify that the matching performance in-

creases as the number of training patterns in-
creases.

3.1. Design of a test strategy

The objective is to test the method by varying

indoor environmental conditions in two ways: by

using new images with different features (different

objects) and by changing the illumination. With
this aim in mind a set SP0 of 12 pairs of stereo-

images captured with natural illumination was

used to extract initial training patterns. Figs. 1–4

show four representative left images of this set.
Fig. 1. Left original training image (blocks).

Fig. 2. Left original training image (furnitures).
Five additional sets of stereo-images, SP1, SP2,

SP3, SP4 and SP5, all different to each other and

to SP0, were used for the test. They were com-

posed of 10, 10, 15, 12 and 11 stereo-images, re-

spectively. The sets SP1 and SP4 were captured

with natural illumination, as was the initial set

SP0, and the sets SP2, SP3 and SP5 with artificial

illumination. Two representative stereo-image
pairs are shown for sets SP2 and SP3 in Figs. 5(a)

and (b) and 6(a) and (b). The remaining stereo-

image pairs belong to the same indoor environ-

ment and it is irrelevant to show representative

pairs. The total number of pairs of edge-segments

extracted from all stereo-images is 4638, which is

the number n of training patterns used during the

OFF-LINE processes for estimating the function
pðxÞ in (4). This number of pairs of edge-segments

is completely representative of the environment

where our mobile robot, equipped with our stereo-

vision system, navigated. From this number,

during all the ON-LINE processes, 2925 pairs of

edge-segments were classified as true matches.

Therefore, this is the total number of training

patterns used for estimating the PDFs in PWC and
BYC methods.



Fig. 5. (a) SP2: original left stereo-image; (b) SP2: original right stereo-image; (c) SP2: labeled segments left image and (d) SP2: labeled

segments right image.

Fig. 6. (a) SP3: original left stereo-image; (b) SP3: original right stereo-image; (c) SP3: labeled segments left image and (d) SP3: labeled

segments right image.
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The process can be summarized as follows:

STEP 0: ON-LINE!Classify the pairs of features
in the set SP0 as true or false matches by

using the unsupervised learning strategy

described in (Pajares et al., 1999).

OFF-LINE!Estimate pðxÞ through Eq.

(4) with the matches classified as true or

false during the previous ON-LINE pro-

cess.

For n ¼ 1 to n ¼ 5 do
STEP n: ON-LINE!Classify each pair of fea-

tures, represented by x, as a true or false

match for the set SPn with the pðxÞ ob-
tained during STEP n� 1.

OFF-LINE!Estimate pðxÞ through

Eq. (4) with the matches classified as

true or false during all the ON-LINE

processes in STEPs 0 to n.

The training patterns and the parameters are

stored after each ON-LINE process, so that they

can be used for estimating pðxÞ in (4).
The matches required during STEP 0 can be

supplied to the system by using any unsupervised

stereovision matching method. We have used the
method of Pajares et al. (1999), as it has already

been tested. When this is not possible, the use of a

minimum distance criterion is appropriate and the

Euclidean distance is sufficient. Also, a human

expert could provide such true matches, although

this implies that the system loses its automatic

capability at this stage.
4. Comparative analysis

We analyzed the results in more detail to see the

performance of our SVC approach. Table 1 dis-

plays the percentages of successes for STEPs 1–5.

A distinction is made for local and global pro-

cesses.
Local processes. We call local (L) matching

strategies those which use only the similarity con-

straint, from the known probability function pðxÞ.
First, based on such values separately, we classify



Table 1

Global (G) and local (L) results for the sets of stereo pairs SP1–

SP5

% Successes

classifiers

SP1 SP2 SP3 SP4 SP5

LSV 79.3 88.2 94.1 94.3 94.8

LPW 79.3 88.4 94.0 94.3 94.6

LBY 78.2 83.3 86.7 86.8 87.2

GSV 96.3 96.1 98.0 98.1 98.2

GPW 96.1 96.2 97.8 97.9 98.1

GBY 95.1 95.3 95.6 96.0 96.7

Table 2

Number of training patterns used by PWC and BYC and

support vectors in SVC for the stereo pairs SP1–SP5

SP1 SP2 SP3 SP4 SP5

# Training

patterns

528 1157 1897 2378 2925

# Support

vectors

56 65 73 73 73
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a pair of features, represented by x, as a true

match depending on if its probability value is
greater than a threshold, fixed to 0.5 as it is the

intermediate value in the range of probability

values, otherwise it is a false match. The percent-

age of successes appear in Table 1 as Parzen�s win-
dow (LPW), Bayesian (LBY) and Support Vector

Machine (LSV).

Global processes. As mentioned before, we

select the global matching strategy described in
(Pajares et al., 1998b) where the similarity con-

straint is mapped as a probability function. SVC

uses pðxÞ in (4) and PWC and BYC the corre-

sponding estimated PDFs. The results are given in

Table 1 as GPW, GBY and GSV, respectively,

where G means global and PW, BY, SV refer to

the PWC, BYC and SVC strategies, respectively.

From results of Table 1 the following conclu-
sions may be inferred.

1. As expected, global approaches provide better

results than local ones. This is the consequence

of using a global relaxation approach with more

stereovision matching constraints than in the

local methods.

2. The results obtained by both GSV and LSV
are similar or even better than those obtained

by GPW and LPW. Since the PWC compare fa-

vorably with other existing learning strategies

(Pajares and Cruz, 2002), we can conclude that

the SVC appears to be a valid method for local

stereovision matching.

3. The matching performance increases as the

number of training patterns increases. Indeed,
the best results are obtained for SP5, which
has been processed with a number of training

patterns greater than the remainder SPi.

Table 2 displays the number of training patterns

used for the PWC and BYC methods for esti-

mating the corresponding PDFs for the different

SPs from 1 to 5 and the number of support vectors

obtained for the SVC approach for each set of
stereo pairs.

From results of Table 2 the following conclu-

sions may be inferred.

1. The number of support vectors is significantly

less than the number of training patterns. As

the performance of the SVC has proven to be

acceptable, this implies that we require less
number of patterns to be stored than using

PWC or BYC.

2. The number of support vectors does not vary

for SP3, SP4 and SP5. Moreover, they are prac-

tically the same support vectors, i.e. the SVC re-

quires less number of training images than

PWC or BYC for achieving a best performance.

We have also verified the performance of the

SVC for solving ambiguities during the local

matching process. This is carried out by comput-

ing a coefficient l which provides a decision mar-

gin when ambiguities arise. It is computed as

follows:

(a) Without loss of generality, assume the follow-
ing set of pairs of edge segments as an ambigu-

ous case. The left edge segment l matches with

q right edge segments, r ¼ 1; 2; . . . ; q; with mat-

ching probabilities plr. Let a one of the q right

edge segments, so that pla ¼ maxr¼1;2;...;q fplrg.
Asmentioned before, thematch la is considered
a correct match.



Table 3

Decision margin measures for the sets of stereo pairs SP1–SP5

l SP1 SP2 SP3 SP4 SP5

LSV 0.14 0.18 0.23 0.28 0.31

LPW 0.08 0.10 0.15 0.18 0.20

LBY 0.04 0.09 0.11 0.12 0.17
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(b) Compute q ¼ minfjpla � plrjg, for r ¼ 1; 2; . . . ;
q; r 6¼ a.

(c) For each ambiguous case j on each set of ste-

reo-image pairs SPh, where h ¼ 1; . . . ; 5, com-
pute mj as in (b).

(d) For each SPh at each step h, compute the coef-

ficient l as follows:

l ¼ 1

k

Xk

j¼1

mj ð5Þ

where k is the number of ambiguous cases in

SPh.

Table 3 displays the decision margin when

ambiguities arise. It is clear that the best decision

margin is achieved with the LSV approach, i.e. the

number of errors is minimized under this strategy.
5. Generalization

In this paper, we have used edge segments as

features and the similarity constraint has been

proved separately and also mapped in a global

strategy. We have proven the performance of the

SVC for stereovision matching. The proposed

method can be generalized and applied as follows:

1. For any type of features, i.e. curved segments,
regions, edge points, corners, etc., according

to the salient features in the environment (in-

door or outdoor). This is because our approach

is based on the estimation of one function

where the patterns are the attribute values for

the edge segments. Hence, for any given feature

the only problem is to compute its attributes,

which is beyond the scope of this paper.
2. For a multiresolution scheme where the similar-

ity matching constraint is used. Three types of

multiresolution are commonly used:
(2.1) classical pyramidal structures using La-

placian of the Gaussian filters extract in-

formation at different resolution levels

based on the standard deviation para-

meter (Huertas and Medioni, 1986). The
matching process at a given resolution

level can be carried out through Eq. (4)

and is driven by disparity values produced

at a coarser level;

(2.2) multiscale decomposition (Zhang and

Blum, 1999) including wavelets Kim et al.

(1997). At each level an activity-level

measurement is required. In stereovision
matching this is performed through a sim-

ilarity measurement (Kim et al., 1997)

which can be achieved by using Eq. (4);

(2.3) a two level scheme, where the first level

matches intensity edges, i.e. a feature-

based matching, which drives the dispar-

ity at a second level based on area-based

matching (Baillard and Dissard, 2000).
As before, the similarity measurement

can be obtained through Eq. (4).

3. Studying in depth the influence of different ker-

nels in the SVC such as: polynomials of degree

qHðx; yÞ ¼ ½ðx � yÞ þ 1�q or two layer neural

networks Hðx; yÞ ¼ tanhfbðx � yÞ þ cg. Other

kernels can be found in (Vapnik, 2000; Cher-

kassky and Mulier, 1998).
6. Concluding remarks

The SVC improves results when it is used to

measure the similarity constraint in both: local and

global strategies. An interesting conclusion is that

SVC has proven to be an acceptable classifier when
compared individually with PWC and BYC and in

a indirect fashion against the methods which have

been compared with PWC and BYC in (Pajares

and Cruz, 2002; Pajares et al., 1998a), respectively.

The number of stereo-images, features and ex-

periments was adequate for our stereo matching

approach. This number of pairs of edge-segments

was completely representative of the environment
where our mobile robot, equipped with our ste-

reovision system, navigated.
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The performance of the SVC approach im-

proves as the number of training patterns in-

creases. This behavior is affected neither by the

nature of the different objects nor by the illumi-

nation conditions.

We have made a generalization of the proposed
method and given guidelines for its extension and

application to other matching strategies where the

similarity constraint is used. This generalization is

applicable to other types of environments, such as

outdoor scenes or aerial images, where edge seg-

ments are probably inappropriate features and

therefore different features and attributes would be

more suitable.
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